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What ?...
SHAKESPEARE

Des essais ? – Allons donc, je n’ai pas essayé !
Étude ? – Fainéant je n’ai jamais pillé.
Volume ? – Trop broché pour être relié...
De la copie ? – Hélas non, ce n’est pas payé !

Un poëme ? – Merci, mais j’ai lavé ma lyre.
Un livre ? – ...Un livre, encor, est une chose à lire !...
Des papiers ? – Non, non, Dieu merci, c’est cousu !
Album ? – Ce n’est pas blanc, et c’est trop décousu.

Bouts-rimés ? – Par quel bout ?... Et ce n’est pas joli !
Un ouvrage ? – Ce n’est poli ni repoli.
Chansons ? – Je voudrais bien, ô ma petite Muse !...
Passe-temps ? – Vous croyez, alors, que ça m’amuse ?

– Vers ?... vous avez flué des vers... – Non, c’est heurté.
– Ah, vous avez couru l’Originalité ?...
– Non... c’est une drôlesse assez drôle, – de rue –
Qui court encor, sitôt qu’elle se sent courue.

– Du chic pur ? – Eh qui me donnera des ficelles !
– Du haut vol ? Du haut-mal ? – Pas de râle, ni d’ailes !
– Chose à mettre à la porte ? – ...Ou dans une maison
De tolérance. – Ou bien de correction ? – Mais non !

– Bon, ce n’est pas classique ? – À peine est-ce français !
– Amateur ? – Ai-je l’air d’un monsieur à succès ?
Est-ce vieux ? – Ça n’a pas quarante ans de service...
Est-ce jeune ? – Avec l’âge, on guérit de ce vice.

... ÇA c’est naïvement une impudente pose ;
C’est, ou ce n’est pas çà : rien ou quelque chose...
– Un chef-d’œuvre ? – Il se peut : je n’en ai jamais fait.
– Mais, est-ce du huron, du Gagne, ou du Musset ?

– C’est du... mais j’ai mis là mon humble nom d’auteur,
Et mon enfant n’a pas même un titre menteur.
C’est un coup de raccroc, juste ou faux, par hasard...
L’Art ne me connaît pas. Je ne connais pas l’Art.

Préfecture de police, 20 mai 1873.
— Tristan Corbière, “Ça”, Les Amours Jaunes
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Abstract

This thesis aims to study some of the mathematical challenges that arise in the analysis of
statistical sequential decision-making algorithms for postoperative patients follow-up. Stochas-
tic bandits (multiarmed, contextual) model the learning of a sequence of actions (policy) by
an agent in an uncertain environment in order to maximise observed rewards. To learn optimal
policies, bandit algorithms have to balance the exploitation of current knowledge and the
exploration of uncertain actions. Such algorithms have largely been studied and deployed in
industrial applications with large datasets, low-risk decisions and clear modelling assump-
tions, such as clickthrough rate maximisation in online advertising. By contrast, digital health
recommendations call for a whole new paradigm of small samples, risk-averse agents and
complex, nonparametric modelling. To this end, we developed new safe, anytime-valid concen-
tration bounds, (Bregman, empirical Chernoff), introduced a new framework for risk-aware
contextual bandits (with elicitable risk measures) and analysed a novel class of nonparametric
bandit algorithms under weak assumptions (Dirichlet sampling). In addition to the theoretical
guarantees, these results are supported by in-depth empirical evidence. Finally, as a first step
towards personalised postoperative follow-up recommendations, we developed with medical
doctors and surgeons an interpretable machine learning model to predict the long-term weight
trajectories of patients after bariatric surgery.



Résumé

Cette thèse porte sur l’étude des défis mathématiques liés à l’analyse d’algorithmes de prise
de décision séquentielle pour le suivi postopératoire de patients. Les bandits stochastiques
(multi-bras, contextuels) modélisent l’apprentissage d’une suite d’actions (politique) par un
agent évoluant dans un environnement incertain afin de maximiser les récompenses observées.
Afin d’apprendre de telles politiques optimales, les algorithmes de bandits se confrontent au
dilemme de l’exploitation de l’information déjà acquise et de l’exploration d’actions incertaines.
De tels algorithmes ont été amplement étudiés et déployés dans le cadre d’applications indus-
trielles faisant intervenir de grands jeux de données, un faible risque pour chaque décision,
ainsi que des hypothèses de modélisation bien définies, comme par exemple la maximisation
du taux de clic dans la publicité en ligne. À l’inverse, le problème des recommandations de
santé requiert un tout nouveau paradigme de petits échantillons, d’aversion au risque et de
modélisation complexe et non paramétrique. Dans cette optique, nous avons développé de
nouvelles bornes de concentration uniforme en temps (Bregman, Chernoff empirique), intro-
duit un nouveau cadre de bandits contextuels conscients des risques (au moyen de mesure de
risque élicitables), et analyser une nouvelle classe d’algorithmes de bandits non paramétriques
sous des hypothèses faibles (échantillonnage de Dirichlet). Outre des garanties théoriques,
ces résultats sont étayés par des observations empiriques. Nous avons enfin développé, en
coordination avec une équipe de médecins et chirurgiens dans le cadre d’un projet de suivi
postopératoire, un modèle interprétable par apprentissage automatique de prédiction de la
trajectoire de poids à long terme de patients après chirurgie bariatrique.
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Ā Complement of an event A ⊆ Ω, i.e. Ā = Ω \A
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Foreword

Ἀγεωμέτρητος μηδεὶς εἰσίτω

Statistical sequential decision-making in healthcare

According to the American college of surgeons, “the surgeon is responsible for the preoperative
diagnosis of the patient, for performing the operation, and for providing the patient with
postoperative surgical care and treatment” (American college of surgeons, 2023). Regarding
the last point, let us say, for the sake of simplicity, that the surgeon has two possible recommen-
dations for postoperative follow-up. The first option is to schedule an appointment directly
at the surgery department, where the patient can be examined by a large, specialised and
possibly multidisciplinary team. The second option is to refer the patient to their general
practitioner of choice. While the former ensures a priori the best care, it is also the most costly
and likely the most impractical for the patient (longer waiting times, longer commute, etc.), and
therefore the latter may be an appealing alternative for patients with no major postoperative
complications. In addition, let us imagine that a third option has recently emerged in the form
of remote electronic consultation, which is even less costly than a face-to-face visit to the general
practitioner. Which of these three options should the surgeon recommend?

Ignoring the part of subjectivity that feeds into such a decision process 1, let us say that the
surgeon has asked a team of statisticians to compute a postoperative care score to help inform
their decision. This imaginary score2 is a single number, normalised between 0 and 100, that
reflects the cost-benefit analysis of each alternative and has been calibrated on medical records
of recent patients of the surgery department. Naturally, every patient has responded differently
to postoperative care, and thus the scores are modelled as random variables. We illustrate in
Figure 1 the mean score (± standard deviation) observed for each follow-up option.

1This thesis is, after all, about quantitative sciences. This is not to say that this approach is right for medical
recommendations. Social sciences, economics, geopolitics and many other fields have a lot to say too on this topic.

2We do not discuss either how such scores could be computed. Implementing these in practice would require a
significant interdisciplinary effort and prospective testing to ensure they incentivise desirable behaviours.
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Patient at time t
Patient at time t−1 Patient at time t+1

Surgery department General practitioner Electronic consultation

80± 10
85± 20

?

Figure 1 – Should the surgeon recommend postoperative follow-up at the surgery department, the safest
but most costly option? At the general practitioner, less costly but also less specialised? Using electronic
consultation, which has seldom been tried?3

A simple, naive solution would be to send every patient to the general practitioner, which
exhibited the highest postoperative score (85). However, due to the inherent randomness of
patients’ responses, and the potentially small sample size (only recent patients at this specific
surgery department were accounted for in these statistics), it is still possible that another option
would offer a better mean score. Furthermore, future patients, including those who were
subjected to this recommender system, may be used to continuously update these statistics,
and therefore the recommended option may change with additional data.

This idealised toy model is an example of a stochastic bandit. Informally, a bandit represents
a game where an agent (the player) picks an arm among a set of possible alternatives (here, the
three follow-up pathways) and receives a reward (here, the postoperative score). The goal of
the player is to maximise (a certain statistic of) the total reward accumulated during the game.

3The top image is a direct contribution of the author. Credits: Cécile Gauthiez, Flora Tixier. The bottom images
were generated from text prompts using https://deepdreamgenerator.com/generator.
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More generally, bandits belong to a field of quantitative methods at the crossroads of
mathematics, computer science and machine learning, known as

statistical sequential decision-making

data-driven,
provable probabilistic
performance guarantees,
uncertainty quantification;

prospective design,
online recommendations,
continuous learning;

actions are recommended
to an agent interacting
with an environment to
maximise rewards.

Rather than a single model, stochastic bandits form a large class of methods. A simple
branching decision pattern as described above is called a multiarmed bandit: patients are consid-
ered equal and the agent is looking for the best one-size-fits-all solution. Realistically, designing
postoperative follow-up programmes calls for more sophisticated solutions. When the reward
is a function of one or several contextual variables that change between rounds, this model
becomes a contextual bandit. For instance, every round may represent a new patient with some
clinical characteristics (sex, weight, height, age, etc.) that condition the postoperative scores
(e.g. the score of the surgery department follow-up is higher for older patients as they are
more at risk of developing complications and thus require more specialised care). Even more
sophisticated approaches form the basis of reinforcement learning, which studies agents that are
able to learn autonomously in complex environments. All these models are part of what is
colloquially (and often somewhat abusively) known as artificial intelligence.

A success story in online advertising

Industrial applications of statistical sequential learning soared with the widespread use of
Internet starting in the early 2000s. Indeed, the core businesses of many technology companies
revolve around providing accurate recommendations to customers: which ad to click on when
using a search engine, which movie to watch on a streaming platform, which item to purchase
on an online marketplace, etc. As an example of this growing interest, Netflix hosted from
2006 to 2009 an open competition called the Netflix Prize for predicting user ratings for films
using collaborative filtering, a core component, alongside stochastic bandit methods, of modern
recommender systems. In terms of revenues, Amazon reported a positive impact of the use of
personalised recommendations of 35% through cross-sales (Jannach and Jugovac, 2019). In
2020, the global recommender systemmarket size was valued at USD 1.8 billion and is expected
to continue its fast expansion (Grand View Research, 2020).
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Beyond the obvious business incentive, we posit that the success of recommender systems,
and bandits in particular, in online marketing is also due to the conjunction of favourable
modelling and data environments:

• data is available in huge quantities (e.g. millions of customers) and quality (cookies,
metadata, purchase or viewing history, etc.);

• each decision is virtually risk-free: although maintaining engagement in the long run
can be challenging, it is unlikely that a customer will stop interacting with the platform
altogether if a single recommendation is unsatisfying;

• many recommender systems are essentially optimisers of clickthrough rates, i.e. the ex-
pected frequencies of a positive response from a customer exposed to a given ad, which
makes for a clear, well-studied theoretical setting (Bernoulli trials, logistic models, etc.).

Towards recommender systems in healthcare

Given the successes of sequential learning in online advertising, it is tempting to replicate this
approach in other fields. In this thesis, we focus primarily on healthcare applications, where
we seek to recommend efficient postoperative pathways (follow-up visits at the hospital versus
at the general practitioner as seen above, but also when to schedule such visits). However, we
identified several drawbacks that hinder the deployment of existing approaches and call for
new theoretical and methodological groundwork.

• Small samples: clinical trials require careful preparation and usually concern at most
thousands of individuals. Examining electronic registries or national health databases
allows to scale up, albeit with typically much less precise or reliable data.

• Risk: even a single inappropriate decision can be detrimental to a patient (if for instance
an algorithm suggested to skip the next follow-up visit that would have made it possible
to detect a life-threatening complication). Healthcare is hardly a numbers game where
we seek to optimise the average outcome.

• Modelling: medical datasets often comprise heterogeneous variables, which may not
fit the scope of classical statistical models. Moreover, the constraint of small samples
prevents any large numbers effect (normal distribution, central limit theorem). The main
criterion to optimise is not necessarily a binary outcome (Bernoulli trial), but may be a
continuous target (“what dose of a certain drug should a patient take”), a date (“when
should a patient schedule a follow-up visit”), etc.

This thesis explores some mathematical aspects of these three challenges, and fits within a
long-term collaboration between Inria (team Scool) and the bariatric surgery department at

xx



Lille University Hospital to develop such recommender systems for the treatment of chronic
diseases, and in particular obesity.

These roadblocks towards practical recommender systems are however not specific to
healthcare, and we hope this line of research fosters new developments in other critical areas. A
complementary field of applications we consider in this manuscript is the recommendation of
agricultural practices, which shares many of the technical challenges that we face in healthcare:
small data (e.g. it takes a whole year to observe the effect of new crop management policies on
the harvest yield), risk (e.g. crop mismanagement can threaten food security in developing
countries) and modelling complexity. A major difference however is the availability of efficient,
open-source simulators for crop yields supported by engineering knowledge and largely
accessible data, allowing us to perform synthetic experiments on which to test our algorithms.
This is in stark contrast with medical data, which are highly sensitive and protected, and also
exceedingly complex to simulate accurately. For these reasons, we use agricultural data as a
proof of concept for the methods we develop here, hoping for later use in healthcare.
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Chapter 1

Background material on statistical
sequential decision-making models

Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.

—Robert Frost, The Road Not Taken

In this introductory chapter, we present an overview of the main mathematical tools to
analyse statistical sequential decision-making problems. As introduced in the foreword, the
main models we study in this thesis are stochastic bandits, which form a subclass of the larger
field of reinforcement learning that is especially suited for rigorous mathematical analysis. A
critical assumption in any bandit problem is to specify a statistical model for the reward
distributions, and we present standard examples such as sub-Gaussian, bounded, exponential
families, and others. Finally, a pivotal concept in both the design and analysis of bandit
algorithms is the concentration of measure phenomenon, for which we provide a detailed
introduction, completed with original results.

Contents
1.1 Mathematical setting and notations . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 How to play? An overview of stochastic bandits . . . . . . . . . . . . . . . . 6

1.3 What is the reward? An overview of statistical models . . . . . . . . . . . . . 18

1.4 How to play (provably) well? Concentration and martingales . . . . . . . . 22
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Background material on statistical sequential decision-making models

1.1 Mathematical setting and notations

We consider a topological space (Ω, T ) and further assume that it is separable (there exists a
countable dense subset), metrisable (there exists a metric dT such that dT induces the topology
T ) and that the metric space (Ω, dT ) is complete (every Cauchy sequence converges); in other
words, (Ω, dT ) is a Polish space. We let A be the corresponding Borel σ-algebra, i.e. the
smallest σ-algebra containing the open sets of (Ω, T ), which we denote by A = σ(T ), and
P the corresponding Borel measure. We further assume that P is positive, locally finite and
inner regular (∀A ∈ A, P(A) = sup{P(C), C ⊂ A compact}) and that P(Ω) = 1; in other
words, P is a (Radon) probability measure, and (Ω,A,P) is a probability space. We refer to
Rudin (1987) for background material on measure theory.1 The Borel-Cantelli lemma states
that if a sequence of events (An) ∈ AN satisfies∑n∈N P(An) ⩽ +∞, then almost surely only
a finite number of them occur, i.e. P(lim supn→+∞An) = 0. Given a finite sequence of n ∈ N
events (Ai)ni=1 ∈ An, the union bound (also known as the Bonferonni inequality) states that
P(
⋃n
i=1Ai) ⩽

∑n
i=1 P(Ai). In particular, if all events Ai occur with probability at most δ/n for

i ∈ {1, . . . , n}, then the complement events Āi = Ω \Ai satisfy P(
⋂n
i=1 Āi) ⩾ 1− δ.

We recall that a random variable on a measurable space (X ,B) is a measurable function
(Ω,A)→ (X ,B); when the context is clear, we drop the reference to the σ-algebra A, B or both.
Unless stated otherwise, we use the notation X for random variables on the Euclidean space
X = Rd for some d ∈ N and Y for random variables on X = R, equipped with the Euclidean
norm ∥·∥ and the Lebesgue measure. Alternatively, we sometimes consider discrete random
variables on N equipped with the counting measure. The pushforward measure ν : B → [0, 1]
defined for all Borel sets B of X as ν(B) = P ({ω ∈ Ω, X(ω) ∈ B}) is called the distribution of
X . We denote byM+

1 (X ) the set of all such distributions. We recall that EX∼ν [X] =
∫

X xdν(x)
is the expectation ofX assuming its distribution is ν, and for p ∈ R⋆+, we denote byLp(X ) = {ν ∈
M+

1 (X ), EX∼ν [∥X∥p] < +∞} the space of p-integrablemeasures. The support of a distribution
ν, denoted by Supp ν, is the smallest closed subset C ⊆ X such that PX∼ν(X ∈ C) = 1. If
Supp ν ⊆ R+, the probability measure is related to its expectation by Markov’s inequality
λPX∼ν(X ⩾ λ) ⩽ EX∼ν [X]. If X ⊆ R, the cumulative distribution function of ν, or c.d.f., is the
function x ∈ R 7→ PX∼ν(X ⩽ x). The set of discontinuity points of the c.d.f. is called the set of
atoms of ν and correspond to points x such that PX∼ν(X = x) > 0. The total variation distance
between two distributions ν, ν ′ ∈ M+

1 (X ) is defined as δTV(ν, ν ′) = supB∈B|ν(B) − ν ′(B)|,
which also satisfies the equality δTV(ν, ν ′) = supf |EX∼ν [f(X)] − EX∼ν′ [f(X)]|, where the
supremum is taken over all measurable functions f : X → [−1, 1].

A measure ν is said to be absolutely continuous with respect to another measure ν ′ defined
on the same measurable space (X ,B) if for all B ∈ B, ν ′(B) = 0 implies ν(B) = 0. In that case,

1These assumptions will not be used directly in the rest of this thesis but form a convenient setting to apply
standard results of probability and mathematical analysis.
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1.1 Mathematical setting and notations

there exists a measurable function dν
dν′ : X → R+ called the Radon-Nikodym derivative, such

that ν(B) =
∫
B

dν
dν′ (x)dν ′(x) for allB ∈ B. If ν is a probability measure, dν

dν′ is called the density
of ν with respect to ν ′. If both ν and ν ′ are probability measures, we define their Kullback-
Leibler divergence as KL(ν ∥ ν ′) = EX∼ν [log dν

dν′ (X)]. Moreover, the KL divergence and the
total variation distance are related by Pinsker’s inequality: δTV(ν, ν ′) ⩽

√
1
2KL(ν ∥ ν ′).

For a set I and a sequence of probability spaces (Xi,Bi, νi)i∈I , we define the product
probability space (

∏
i∈I Xi,

⊗
i∈I Bi,

⊗
i∈I νi) where∏i∈I Xi is the Cartesian product,⊗i∈I Bi

is the σ-algebra generated by subsets of the form ∏
i∈I Bi where (Bi)i∈I ∈

∏
i∈I Bi, and⊗

i∈I νi ∈ M+
1 (
∏
i∈I Xi) is the product measure defined by⊗i∈I νi ((Bi)i∈I) =

∏
i∈I νi(Bi).

For a sequence of subspaces (Hi)i∈I ⊆
∏
i∈IM+

1 (Xi), we define the space of product measures⊗
i∈I Hi = {ν =

⊗
i∈I νi, (νi)i∈I ∈

∏
i∈I Hi}. A sequence of random variables X = (Xi)i∈I is

called a stochastic process. If the distribution of X is⊗i∈I νi, we say the random variables are
independent. If all these random variables are defined on the same measurable space (X ,B)
and if all their distributions are equal, we say they are identically distributed. In addition, if
I is a totally ordered set, we define the natural filtration of the process X as the sequence of
σ-algebra (Gi)i∈I such that for all i ∈ I, Gi = σ({X−1

j (B), j ∈ I, j ⩽ i, B ∈ B}). A stochastic
process (X ′

i)i∈I is adapted to the filtration (Gi)i∈I if X ′
i is (Gi,B)-measurable for all i ∈ I. If

I = N, (X ′
i)i∈I is predictable with respect to (Gi)i∈I if (X ′

i+1)i∈I is adapted to (Gi)i∈I . Finally,
a random variable τ defined on the filtered probability space (Ω,A, (Gi)i∈I ,P) with values in I
is a stopping time if {τ ⩽ i} ∈ Gi for all i ∈ I . In practice, we often consider I = N or I = R⋆+,
and interpret it as a set of discrete or continuous times.

� In the rest of this chapter, we present an overview of stochastic bandits, concentration of measure
theory and the interplay between them, which constitutes the theoretical foundations of this thesis.
We provide proofs of these results for several reasons. First, while most of them are known, they are
typically presented here at a higher level of generality than is commonly found in the literature (e.g.
the lower bounds of Theorems 1.6 and 1.10, adapted to generic risk measures). Second, the rest of this
thesis heavily builds on the techniques presented here (e.g. the method of mixture of time-uniform
concentration, extended to various settings in Chapters 3, 4 and 5). Finally, to the best of our knowledge,
some of these results are actually new (e.g. the mixture peeling technique of Proposition 1.29) or folk
knowledge (e.g. the generic analysis of UCB of Theorem 1.33). We indicate this last category of results
by the symbol (�). For readability, we defer the proofs to Appendix A.

5



Background material on statistical sequential decision-making models

1.2 How to play? An overview of stochastic bandits

The history of stochastic bandits begins with Thompson (1933), which studied statistical
properties of two samples likelihood tests, motivated by the design of clinical trials, and
introduced what is now known as multiarmed bandits. Their theoretical foundations were layed
in the 1980s and 1990s (Gittins, 1979; Whittle, 1980; Lai et al., 1985; Agrawal, 1995; Burnetas and
Katehakis, 1996), and they have since found industrial applications in recommender systems
(Mary et al., 2015; Felício et al., 2017), dynamic pricing (Misra et al., 2019), network routing
(Boldrini et al., 2018) and personalised online advertisement (Singh et al., 2022); see Bouneffouf
et al. (2020) for a recent survey. Stochastic bandits are also a core component of several areas of
theoretical statistics and machine learning, such as sequential testing (Lai, 2001; Bartroff et al.,
2012), online optimisation (Shalev-Shwartz et al., 2012; Hazan et al., 2016), active learning and
games (Cesa-Bianchi and Lugosi, 2006), and reinforcement learning (Puterman, 2014; Sutton
and Barto, 2018; Szepesvári, 2022). In this section, we introduce notations, definitions and basic
results that are used throughout this thesis. For a more in-depth introduction to stochastic
bandits, we refer the reader to Slivkins (2019); Lattimore and Szepesvári (2020).

Multiarmed bandits

We start by formalising the concept of multiarmed bandit model introduced in the Foreword.
We adopt here the idiom of probability theory, which forms the theoretical foundations on
which the analysis of such decision problems rely.
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1.2 How to play? An overview of stochastic bandits

Definition 1.2 (Bandit model). Let K ∈ N⋆. We denote by [K] the set of arms. A multiarmed
stochastic bandit model is a pair ((νt)t∈N, (Ft)t∈N) such that (νt)t∈N is a sequence of product
measures (νt)t∈N and (Ft)t∈N is a sequence of subspaces ofM+

1 (R)K such that for all t ∈ N, νt =
(νkt )k∈[K] ∈ Ft. It is said to be unstructured if in addition, we have the factorisation

νt =
⊗
k∈[K]

νkt ∈ Ft =
⊗
k∈[K]

Fkt . (1.1)

Let π = (πt)t∈N be a stochastic process in [K]. The reward process associated with π is defined as

Yπ = (Y πt
t )t∈N ∼ (νπtt )t∈N , (1.2)

and the corresponding natural bandit filtration is defined as

(Gπt )t∈N = (σ ({(πs, Y πs
s ), s ⩽ t}))t∈N . (1.3)

The number of pulls associated with π is the sequence

(
Nk,π
t

)
k∈[K],t∈N

=
(

t∑
s=1

1πs=k

)
k∈[K],t∈N

. (1.4)

Furthermore, π is said to be a bandit policy if there exists a filtration (G⊥
t )t∈N independent on (Gπt )t∈N

such that π is predictable with respect to (σ(Gπt ∪ G⊥
t ))t∈N. Finally, a bandit model is said to be

stationary if the sequence ((νt)t∈N, (Ft)t∈N) is constant.

The natural bandit filtration (Gπt )t∈N represents the information available to the agent right
after making the decision πt and receiving the reward Y πt

t at time t ∈ N. Moreover, the
definition of a bandit policy π merely states that (i) π depends on past arms and rewards, but
not future observations (predictable with respect to the natural bandit filtration), and (ii)
π may also depend on an external source of randomness, unrelated to all the other random
variables (encoded by the independent filtration (G⊥

t )t∈N). If π is predictable with respect to
the natural bandit filtration, it is said to be a deterministic policy, otherwise it is said to be a
stochastic or randomised policy. When the policy is clear from the context, we drop the index π.

Stationarity. Unless stated otherwise, we consider stationary bandit in this thesis and there-
fore drop the dependency on t in the definition of the bandit model and write ν = (νk)k∈[K]

and (Fk)k∈[K]. For background materials on nonstationary bandits, we refer to Garivier and
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Stationary stochastic bandit

Patient
at time t

Patient
at time t−1

Patient
at time t+1

Y 1
1 , . . . , Y

1
N1,π
t

∼ ν1 . . . Y K
1 , . . . , Y K

NK,π
t

∼ νK

K probability distributions
ν1, . . . , νK

(arms)

For arm k,
Nk,π
t random variables

(rewards)

︸ ︷︷ ︸

Figure 1.1 – Graphical description of a stationary stochastic bandit for healthcare decision-making.

Moulines (2011); Allesiardo et al. (2017), as well as to Baudry et al. (2021b); Besson et al.
(2022); Bhatt et al. (2023) for recent developments. An abstract graphical representation of a
stationary stochastic bandit for healthcare decision-making is presented in Figure 1.1.

� Many algorithms for nonstationary bandits rely on change point detection to identify when
the underlying bandit distribution νt significantly changes with respect t ∈ N. Although we do not
specifically consider nonstationary bandits in this thesis, we develop a new change point detection test
in Chapter 3, in the context of generic exponential families.

Regret. The learning goal of an agent facing a bandit problem is to find a policy π in order
to optimise a given criterion. Two main settings have been considered. The first one is called
best arm identification and aims to identify an arm or a group of arms with certain properties,
either by maximising the probability of correct identification given a fixed time horizon T ∈ N
or by minimising the total number of pulls required to make this probability at least 1 − δ
for a fixed δ ∈ (0, 1). Notably, the agent does not seek to maximise the rewards accumulated
during this learning phase in any way, which is why this problem is sometimes called pure
exploration. We do not discuss this setting further and refer to Bubeck et al. (2009); Garivier
and Kaufmann (2016); Jourdan et al. (2022, 2023) for recent advances on the topic. The second
setting is precisely that of reward maximisation, or equivalently of regret minimisation.
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1.2 How to play? An overview of stochastic bandits

Definition 1.4 (Pseudo regret). Let ((νt)t∈N, (Ft)t∈N) be a bandit model, π a bandit policy and
ρ = (ρt)t∈N a sequence of mappingsM+

1 (R) → R ∪ {±∞} called the risk measures. For t ∈ N,
we define Lρt(R) = |ρt|−1(R) ⊂ M+

1 (R) the set of probability measures that are ρt-integrable and
assume that νkt ∈ Lρt(R). The cumulative pseudo regret of policy π with respect to the risk measures
(ρt)t∈N and bandit model (νt)t∈N is the stochastic process

(
Rπ,ρ,νT

)
T∈N =

(
T∑
t=1

ρ⋆t (νt)− ρt(νπtt )
)
T∈N

, (1.5)

where ρ⋆t (νt) = maxk∈[K] ρt(νkt ). When the bandit model is stationary and ρ is the expectation
mapping, we use the notations µk = ρ(νk) = EY∼νk [Y ], µ⋆ = max

k∈[K]
µk and k⋆ ∈ argmax

k∈[K]
µk.

The ρ-integrability condition is implicitly assumed to hold for every bandit model we
consider in this thesis; under the expectation risk measure, this simply means that the bandit
measure for each arm k ∈ [K] is integrable, i.e. νk ∈ L1(R). A policy π that minimises the
pseudo regretRπ,ρ,νT alsomaximises the sum of rewards, measured by the risk measures (ρt)Tt=1,
i.e. ∑T

t=1 ρt(νπtt ) up to horizon T ∈ N. The pseudo regret is convenient as it normalises this sum
of rewards against an oracle benchmark policy that always selects ρ⋆t (νt). A typical example of
risk measure is the expectation; we discuss other risk measures extensively in Chapter 5. In the
stationary case, a policy that misses the optimal arm a nonvanishing fraction of the time suffers
linear pseudo regretRπ,ρ,νT = Θ(T ), in contrast with a policy that learns to pull the optimal arm
increasingly often, resulting in sublinear pseudo regretRπ,ρ,νT = o(T ). Note that even though ρ
is deterministic,Rπ,ρ,νT is a random variable because the policy π itself is stochastic, and it is
nonnegative thanks to the definition of ρ⋆t (νt).

To analyse the pseudo regret, both in theory and in practice, we either (i) bound its expecta-
tionEπ,ν⊗T

π
[Rπ,ρ,νT ] ⩽ f(T ), where f : R⋆+ → R⋆+, and report themean regret across independent

replicates during numerical experiments; or (ii) bound the regret with high probability, i.e.
Pπ,ν⊗T

π

(
Rπ,ρ,νT ⩽ g(δ, T )

)
⩾ 1 − δ, where g : (0, 1) × R⋆+ → R⋆+ and δ ∈ (0, 1), and report em-

pirical quantiles of the regret across independent replicates. Lemma A.1 in Appendix A.1
shows that both bounds are essentially equivalent. In this thesis, we focus on expected pseudo
regret when dealing with multiarmed bandits. The main reason is that controlling this quantity
amounts to bounding each expected number of pulls independently, as shown in the next
proposition.

9



Background material on statistical sequential decision-making models

Proposition 1.5 (Pseudo regret decomposition). Let (ν,F) be a stationary, unstructured bandit.
For any risk measure ρ and policy π, we have

Rπ,ρ,νT =
∑

k∈[K]\{k⋆}
∆ρ,ν
k Nk,π

T , (1.6)

where ∆ρ,ν
k = ρ⋆(ν)− ρ (νk) is the suboptimality gap of arm k ∈ [K]. In particular, we have

Eπ,ν⊗T
π

[
Rπ,ρ,νT

]
=

∑
k∈[K]\{k⋆}

∆ρ,ν
k Eπ,ν⊗T

π

[
Nk,π
T

]
. (1.7)

Instance-dependent lower bound for multiarmed bandits (�). The regret decomposition
above allows to focus on each suboptimal arm separately. The following result establishes a
model-dependent lower bound on the expected number of pulls to such arms, and thus on the
expected pseudo regret. This lower bound represents the best possible regret achievable by a
policy in terms of quantities that depend on the bandit model ν,F), such as the optimal risk
measure ρ⋆(ν). First introduced by Lai et al. (1985) for parametric families of distributions
and then extended by Burnetas and Katehakis (1996) for more general families under the
expectation risk measure, it was recently adapted for the conditional value at risk measure
(Baudry et al., 2021a). Using similar generic change of measure arguments, we show here that
it actually holds for virtually any reasonable risk measures (see Appendix A.1 for the proof).
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1.2 How to play? An overview of stochastic bandits

Theorem 1.6 (Instance-dependent regret lower bound). Let (ν,F) be a stationary, unstructured
bandit, ρ a risk measure and π a policy. Assume that:
(i) ρ is confusable over F , i.e. for any measure ν′ =

⊗
k∈[K] ν

′
k ∈ F , there exists a measure

ν̃′ ∈ F such that for any k, j ∈ [K],
ν̃

′
j = ν ′

k if j ̸= k,
ρ(ν̃ ′

k) > ρ⋆(ν′) otherwise;
(1.8)

(ii) π is strongly consistent over F , i.e. for any measure ν′ ∈ F and suboptimal arm k ∈ [K] such
that ρ(ν ′

k) < ρ⋆(ν′), we have, for any ε ∈ [0, 1), when T → +∞,

Eπ,ν⊗T
π

[
Nk,π
T

]
= o(T 1−ε) . (1.9)

Then for any suboptimal arm k ∈ [K] \ {k⋆}, we have the asymptotic lower bound

lim inf
T→+∞

Eπ,ν⊗T
π

[
Nk,π
T

]
log T ⩾

1
KFk,ρ

inf (νk; ρ⋆(ν))
, (1.10)

where we define the extremal Kullback-Leibler operator over Fk as:

KFk,ρ
inf : Fk × R −→ R

(ν; ρ⋆) 7−→ inf
ν′∈Fk

{
KL(ν ∥ ν ′), ρ(ν ′) > ρ⋆

}
. (1.11)

In particular, the expected pseudo regret satisfies the following lower bounded:

lim inf
T→+∞

Eπ,ν⊗T
π

[
Rπ,ρ,νT

]
log T ⩾

∑
k∈[K]\{k⋆}

∆ρ,ν
k

KFk,ρ
inf (νk; ρ⋆(ν))

. (1.12)

When the risk measure is the expectation, we simply write KF
inf instead.

Minimax lower bound. As noted aboved, the regret lower bound of Theorem 1.6 is model-
dependent, in the sense that it is specific to a given banditmodel (ν,F). Note that the right-hand
side is independent of the policy π, so this lower bound actually holds for infπ Eπ,ν⊗T

π
[Rπ,ρ,νT ].

A complementary, model-agnostic lower bound can be found by studying the robustness of
the policy with respect to the worst possible bandit model, i.e. infπ supν Eπ,ν⊗T

π
[Rπ,ρ,νT ], which

is also known as the minimax expected pseudo regret. Such worst case lower bounds typically

11
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scale as Ω(
√
KT ) (Audibert and Bubeck, 2009). Note that policies can be optimal with respect

to the model-dependent regret but perform poorly in terms of minimax expected pseudo regret,
and vice versa. Recently, best of both worlds policies (Zimmert and Seldin, 2021) have been
designed to simultaneously match both types of lower bounds.

Alternative definitions of regret. The regret of Definition 1.4 is called the dynamic pseudo
regret for nonstationary bandit models. Even in the stationary case, there exists several al-
ternative notions of regret. In general, the regret compares the quality of a policy π against
an oracle benchmark policy π⋆. In our definition, quality is measured by ρ and π⋆ selects at
each time the arm k with the highest risk measure. One may instead compare the rewards
directly and let π⋆ selects the arm with the best total reward in hindsight at horizon T , i.e.
RπT = maxk∈[K]

∑T
t=1 Y

k
t − Y

πt
t . However, this regret is less convenient to analyse and interpret

due to the additional randomness of the rewards themselves. For instance, using the expec-
tation criterion, if ν is a product of R-sub-Gaussian bandit measures (see Section 1.3) such
that all arms are centred (µk = 0 for all k ∈ [K]), then E[maxk∈[K]

∑T
t=1 Y

k
t ] ⩽ R

√
2T logK

(Boucheron et al., 2013, Theorem 2.5), which is asymptotically sharp (up to a constant mul-
tiplicative factor) for many distributions (Gaussian, Bernoulli, etc.). Consequently, for these
distributions, the regret scales as E[RπT ] = Θ

(√
T logK

) regardless of the policy, while the
pseudo regret RT is uniformly zero, which corresponds with the intuition that no option is
better than another. An even harder benchmark would be to consider the policy π⋆ that selects
the armwith the best reward at each time, i.e. ∑T

t=1 maxk∈[K] Y
k
t −Y πt

t , which can scale linearly
with T on some instances, irrespective of the policy π⋆. Finally, an altogether different approach,
pioneered in Cassel et al. (2018), is to consider trajectories of rewards, i.e. YπT = (Y πt

t )Tt=1, and
compare policies using a risk measure U : R(N) → R, i.e. RUT = E[U(Yπ⋆T )]− E[U(YπT )], where
π⋆ = argmaxπ E[U(YπT )].

Structured bandits. An unstructured bandit model simply means that the rewards generated
by each arm are mutually independent. In particular, pulling a given arm does not give any
information on the marginal distributions of the other arms. By contrast, structured bandits
assume some dependency, potentially allowing for more efficient learning strategies by lever-
aging shared information between arms. Generic structures have been studied in the literature
(Combes et al., 2017), as well as specific instance such as unimodal bandits (k ∈ [K] 7→ µk

is a unimodal function, see e.g. Combes and Proutiere (2014); Saber et al. (2021)), Lipschitz
bandits (k ∈ [K] 7→ µk is a Lipschitz function, see e.g. Bubeck et al. (2011); Magureanu et al.
(2014)) and bandits with groups of similar arms (Pesquerel et al., 2021), among others. An
important class of structured bandits is that of contextual bandits, where k ∈ [K] 7→ µk(Xt) is
allowed to depend on a vector of side information Xt ∈ Rd at time t ∈ N. In the rest of this
thesis, we focus on unstructured bandits and contextual bandits only.
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1.2 How to play? An overview of stochastic bandits

Toy example. We now formalise the multiarmed bandit introduced in the Foreword (Fig-
ure 1). In this example, a surgeon (the agent) is faced with K = 3 follow-up options: at the
surgery department (k = 1), at the general practitioner (k = 2) or remotely (k = 3). Say
they adopted a policy π, so that the t-th patient is addressed to the postoperative pathway
πt ∈ {1, 2, 3}. Upon completion of the follow-up visit, the surgeon observes a score (reward)
generated by an unknown distribution νπt . For simplicity, we assume here that the problem
is stationary, i.e. only the policy may evolve with time, not the reward distributions. The
scores are normalised between 0 and 100, so the bandit model is ((νk)k∈[K], (Fk)k∈[K]) and
Fk is the family of distributions supported in the interval [0, 100] for each k. We also assume
for now that it is unstructured ((νk)k∈[K] forms a product measure); for instance the scores
generated by visiting the surgery department do not provide information on the scores of the
other two alternatives. The goal of the surgeon is to adapt their policy π in order to maximise
the cumulative rewards∑T

t=1 ρ(νπt) (i.e. minimise the pseudo regret), where ρ is mapping
from reward distributions to scalar values that encodes the risk preference of the surgeon.

Contextual bandits

Building on the foundations laid by Definition 1.2, we extend the notion of multiarmed bandits
to account for contextual information that influences the distribution of rewards.

13
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Definition 1.7 (Contextual bandit model). Fix d ∈ N. Let (Xt)t∈N ∈ P(Rd)N be a sequence of
subsets of Rd called the action sets. A contextual bandit model is a sequence of mappings (νt)t∈N

such that νt : Xt →M+
1 (R) for all t ∈ N. Let X = (Xt)t∈N be a stochastic process such that Xt is a

Xt-valued random variable for all t ∈ N. The reward process associated with X is defined as

YX =
(
Y Xt
t

)
t∈N
∼ (νt (Xt))t∈N , (1.13)

and the corresponding natural contextual bandit filtration is defined as(
GXt
)
t∈N

=
(
σ
({(
Xu, Xs, Y

Xs
s

)
, s ⩽ t, u ⩽ t+ 1

}))
t∈N

. (1.14)

Furthermore,X is said to be a contextual bandit policy if there exists a filtration (G⊥
t )t∈N independent

on (GXt )t∈N such that X is predictable with respect to (σ(GXt ∪ G⊥
t ))t∈N. A bandit model is said to be

linear if there exists p ∈ N⋆, a sequence (ℓ⋆t )t∈N of linear mappings and a mapping φ such that the
following factorisation holds for all t ∈ N:

Xt Rp M+
1 (R) .

ℓ⋆t φt

νt = φ ◦ ℓ⋆t

Finally, it is said to be stationary if the sequence (νt)t∈N (or (ℓ⋆t , φt)t∈N) is constant and equal to the
mapping ν : X →M+

1 (R), where X =
⋃
t∈NXt.

Again, the definition of a contextual bandit policy X = (Xt)t∈N allows Xt+1 to depend on
(i) the set of available actions Xt+1, (ii) the history of past decisions and rewards (measurable
with respect to GXt ) and (iii) an independent source of randomness. In other words, the natural
contextual bandit filtration represents the information available to the agent after making the
decision Xt, receiving the reward Y Xt

t and observing the next action set Xt+1, but right before
making the decision Xt+1. It is often convenient to also consider instead the adapted filtration

(ḠXt )t∈N =
(
σ
(
Xu, Xu, Y

Xs
s

)
, s ⩽ t− 1, u ⩽ t

)
t∈N

, (1.15)

which represents the information available aftermaking the decision at time t but before receiving
the corresponding reward (in particular, the policy X is adapted to this filtration).

A simple example of linear bandit is to assume a linear statistical model between rewards
and actions, e.g. Yt = ⟨θ⋆, Xt⟩+ ηt, where θ⋆ ∈ Rd and (ηt)t∈N is an i.i.d. Gaussian process with
mean zero and variance σ2 ∈ R⋆+ (i.e. p = 1, ℓ⋆ : x ∈ Rd 7→ ⟨θ⋆, x⟩ and φ : y ∈ R 7→ N (y, σ2)).
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1.2 How to play? An overview of stochastic bandits

The formulation above allows for a slightly more general notion of linearity; for instance, we
could also parametrise the variance σ2 as a function of the action Xt.

� In Chapter 5, we explore settings where other characteristics of the reward distribution than the
expectation are linearly parametrised.

Similarly to multiarmed bandits, we do not focus on nonstationary contextual bandits in
this thesis, and refer instead to Cheung et al. (2019); Russac et al. (2019). However, we point
out that our definition of stationarity allows for time-varying action sets (Xt)t∈N, i.e. only the
mapping from actions to rewards is constant with time, not the actions available to the agent.

This generic definition of contextual bandits encompasses many well-studied settings.
• Unstructured K-armed bandit models. (

⊗
k∈[K] ν

k
t )t∈N is a special instance of linear

bandit in dimension d = K where, if we denote by X = (ek)k∈[K] the canonical basis of
RK , we have θ⋆ = (k)k∈[K], ℓ⋆ : x ∈ RK 7→ ⟨θ⋆, x⟩ and φt : k ∈ [K] ⊂ R 7→ νkt for t ∈ N.

• UnstructuredK-armed bandit location models. If theK-armed bandit model can fur-
ther be written as Y k

t = µkt + ηt with random variables Y k
t ∼ νkt and µkt ∈ R for all

k ∈ [K] and t ∈ N (e.g. νkt = N (µkt , σ2)), we also have the representation with d = K,
θ⋆t = (µkt )k∈[K] and φt : y ∈ R 7→ y + ηt (where we identify ηt with its distribution).

• Linear K-armed bandit models. Assume further that the action sets at all time t ∈ N
are of size K, i.e. Xt = (Xk

t )k∈[K], and that the reward associated with arm k ∈ [K] is
Y k
t = ⟨θ⋆t , Xk

t ⟩+ ηt. This is a linear bandit in dimension d = K.

• Linear K-armed bandit models with shared contexts. Alternatively, assume that the
agent observes a single vector xt ∈ Rm at time t ∈ N and that each arm k ∈ [K] generates
a different reward distrib¸ution with respect to xt, e.g. Y k

t = ⟨θkt , xt⟩+ ηt. This is a linear
bandit in dimension d = Km with θ⋆t is the concatenation of K vectors θ1

t , . . . , θ
K
t and

Xt = (ek ⊗ xt)k∈[K], where ⊗ is the Kronecker product on RK × Rm.
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Definition 1.9 (Pseudo regret). Let (νt)t∈N a contextual bandit model and ρ = (ρt)t∈N a sequence
of mappingsM+

1 (R)→ R ∪ {±∞} called the risk measures. We assume that νt(Xt) ⊂ Lρt(R) for
all t ∈ R. The cumulative pseudo regret of policy π with respect to the risk measures (ρt)t∈N and
contextual bandit model (νt)t∈N is the stochastic process

(
RX,ρ,ν
T

)
T∈N

=
(

T∑
t=1

ρt (νt(X⋆
t ))− ρt (νt(Xt))

)
T∈N

, (1.16)

where X⋆
t = argmaxx∈Xt ρt(νt(x)).

Minimax lower bound for contextual bandits. (�). Lower bounds have also been derived
for linear bandits under the expectation risk measure and various assumptions on the geometry
of the action sets (Xt)t∈N. In the model-dependent setting, for finite action sets, Ω(log T )
bounds have been proven, see e.g. Graves and Lai (1997); Combes et al. (2017). In this thesis
however, we will focus on minimax regret bounds for contextual bandits. In that setting,
Chu et al. (2011) introduced a Ω(

√
dT ) lower bound assuming a finite number K of actions

at each round (as in the bandit model with shared contexts presented above). This result
was recently strengthened to Ω(

√
dT log(K) log(T/d)) (Li et al., 2019). For infinite action

sets, Rusmevichientong and Tsitsiklis (2010) proved a Ω(d
√
T ) lower bound for actions in the

Euclidean unit ball Bd∥·∥2
(0, 1) and Gaussian rewards; their proofs was later simplified and

extended to the hypercube Bd∥·∥∞
(0, 1) in Lattimore and Szepesvári (2020). Drawing inspiration

from the latter, we slightly extend their results to handle (i) generic risk measures that are
linearly parametrised by the actions, and (ii) non-Gaussian models, assuming instead a milder
condition on the bandit log likelihood; we refer to Appendix A.1 for the proof.
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1.2 How to play? An overview of stochastic bandits

Theorem 1.10 (Minimax regret lower bound for contextual bandits). Let νθ be a stationary
contextual linear bandit with constant action set Xt = X for all t ∈ N, and ρ a risk measure such
that ρ(νθ(x)) = ⟨θ, x⟩ for all x ∈ X . Assume that there exists a mapping g : R → R+ such that
EX,θ[log dνθ(Xt)

dνθ′ (Xt)(Yt) | Xt] ⩽ g(⟨θ − θ′, Xt⟩/σ) for all t ∈ N and some fixed σ ∈ R⋆+ such that
g(y) = O(y2) when y → 0. If either (i) X = Bd∥·∥∞

(0, 1) or (ii) X = Bd∥·∥2
(0, 1), we have, for T large

enough,

inf
X

sup
θ∈Rd

EX,θ
[
RX,ρ,νθ
T

]
= Ω(σd

√
T ). (1.17)

� The likelihood condition of Theorem 1.10 is satisfied in particular in the linear Gaussian bandit
models νθ : x ∈ Rd 7→ N (⟨θ, x⟩, σ2) with g : y ∈ R 7→ y2/2. In Chapters 5 and 7, we apply this result
to non-Gaussian models (with piecewise quadratic log likelihood) and other risk measures than the
expectation (namely the expectiles).

Although this lower bound is stated on the expected pseudo regret, we favour high proba-
bility bounds when dealing with contextual bandits in this thesis, as we analyse algorithms
based on concentration results that naturally yield such bounds. Of note, Lemma A.1 extends
readily to contextual bandit regret, so that both bounds are essentially equivalent.

Toy example. Contextual bandits offer a richer class of models to analyse the example of
postoperative recommendations recalled above. When addressing the t-th patient to one of
the follow-up pathways, the surgeon has access to clinical informations, represented by a
vector xt; for instance, xt may contain 4 variables: sex, weight, height and age. In terms of
postoperative score, each of the K = 3 options interacts differently with these additional
variables, which we model as a linearK-armed bandit with shared contexts, i.e. the random
reward for choosing option k at time t is Y k

t = ⟨θk, xt⟩ + ηt, where ηt represents noise and
(θk,j)j∈{1,...,4} is a vector parameter for option k. As an example, θ1,4 > 0 and θ2,4 < 0, θ3,4 < 0
encodes a preference towards addressing older patients (age is the fourth component of xt) to
the surgery department (k = 1), as it increases the associated mean postoperative score.
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1.3 What is the reward? An overview of statistical models

In this section, we introduce standard statistical models for stochastic bandits, i.e. families of
measures F ⊂M+

1 (R) to represent reward distributions. Following standard conventions in
statistics, we distinguish two broad categories of statistical models. If F can be embedded in a
finite dimensional space (i.e. distributions in F can be described with a vector parameter), it is
called a parametric model, otherwise it is called a nonparametric model. The models we consider
in this thesis are summarised in Table 1.1.

Parametric models and exponential families. A typical example of parametric model is the
family of Gaussian distributions, parametrised by a vector (µ, σ) ∈ R× R⋆+ corresponding to
their means and standard deviations.

More generally, Gaussian distributions form an instance of exponential family. Given a set Y ,
an exponential family is a set of measures FEF

h,F,L = {νθ}θ∈Θ ⊂M+
1 (Y), parametrised in some

open set Θ ⊆ Rd, such that given a common base measure ν̄, for all θ ∈ Θ, the measure νθ has
a density pθ = dνθ

dν̄ given by

pθ : Y −→ R+

y 7−→ h(y) exp(⟨θ, F (y)⟩ − L(θ)) , (1.18)

where F : Y → Rd is the feature function, h : Y → R+ is the base function, and L represents the
normalisation term (also known as the log-partition function) given by the convex mapping

L : Θ −→ R

θ 7−→ log
∫

Y
h(y) exp(⟨θ, F (y)⟩)dy . (1.19)

Note that a change of base measure ν̄ only affects the base function h, so we often omit it, and
we resort to a slight abuse of notation and refer to the distribution νθ by its density pθ. We
denote by ΘD = {θ ∈ Rd : L(θ) <∞} the domain of L and by ΘI = {θ ∈ ΘD : det∇2L(θ) > 0}
the set on which its Hessian is invertible. Throughout this thesis, we assume that Θ ⊂ ΘD ∩ΘI ,
which is tantamount to assuming that the family is minimal, and ensures we only consider
nondegenerate distributions (∇L is one-to-one on its domain). We use the notations Pθ and
Eθ to explicitly refer to the probability and expectation under the distribution pθ ∈ FEF

h,F,L. We
also assume that pθ ∈ LF (Y) for all θ ∈ Θ, i.e. Eθ [F (Y )] < +∞.

A fundamental property of exponential families is the following form for the KL divergence
between two distributions with parameters θ, θ′ ∈ ΘD:

KL(pθ ∥ pθ′) = ⟨θ − θ′,Eθ [F (Y )]⟩ − L(θ) + L(θ′) . (1.20)
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Here, Eθ [F (Y )] is called the vector of expectation parameters (also known as dual parameters),
and is equal to ∇L(θ). Hence, it holds that KL(pθ ∥ pθ′) = BL(θ′, θ), where BL is known as the
Bregman divergence (Bregman, 1967) with potential function L, defined as

BL : ΘD ×ΘD −→ R+

(θ′, θ) 7−→ L(θ′)− L(θ)− ⟨θ′ − θ,∇L(θ)⟩ . (1.21)

A particular type of exponential families of interest are the single parameter exponential
families (SPEF), i.e. Θ ⊆ R. For instance, for a fixed σ ∈ R⋆+, {N (µ, σ2), µ ∈ R} forms a
SPEF. Such statistical models are especially appealing in stochastic bandits since the extremal
Kullback-Leibler operator has an explicit expression for SPEF. Indeed, for FEF

h,F,L = {pθ, θ ∈ Θ}
and risk measure ρ : pθ ∈ F 7→ Eθ[F (Y )], the properties of univariate optimisation shows that:

∀θ ∈ Θ, ∀ρ⋆ > ρ(pθ), KF ,ρ
inf (pθ; ρ⋆) = KL(pθ ∥ pθ⋆) = BL(θ⋆, θ) , (1.22)

where θ⋆ ∈ Θ is such that Eθ⋆ [Y ] = ρ⋆ (assuming it exists).

Nonparametric models. A typical example of nonparametric model is given by the family of
distributions over R with a given bounded support, i.e.

F[B,B] = {ν ∈M+
1 (R), Supp ν ⊆ [B,B]} (1.23)

for some B,B ∈ R. Such families cannot be embedded in a finite-dimensional space: indeed,
any continuous function p : [B,B] → R (which forms an infinite-dimensional vector space)
generates a distribution in F[B,B] with density |p|/ ∫B,B|p(x)|dx. These statistical models are
popular in stochastic bandits for a similar reason as the SPEF, i.e. their extremal Kullback-Leibler
operator can be computed easily with the dual form (Honda and Takemura, 2015):

∀ν ∈ F[B,B],∀µ
⋆ > EY∼ν [Y ], K

F[B,B]
inf (ν;µ⋆) = max

λ∈[0, 1
B−µ⋆

]
EY∼ν [log (1− λ(Y − µ⋆))] . (1.24)

Note that the right-hand side does not depend onB, and in factK
F[B,B]
inf (ν;µ⋆) = K

F(−∞,B]
inf (ν;µ⋆)

(Honda and Takemura, 2015, Theorem 2).
A critical property of Gaussian distributions is the behaviour of their tails, characterised by

their moment generating function (MGF) λ ∈ R 7→ EY∼N (µ,σ2)[exp(λ(Y − µ))] = exp(λ2σ2/2)
for µ ∈ R and σ ∈ R⋆+. A natural extension is to consider sub-Gaussian distributions defined by

FG,R = {ν ∈M+
1 (R), ∀λ ∈ R, EY∼[exp(λ(Y − EY∼ν))] ⩽ exp(λ2R2/2)} (1.25)
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for R ∈ R⋆+, i.e. their MGF are upper bounded by a Gaussian MGF. Bounded distributions
form a subset of sub-Gaussian distributions (Hoeffding’s lemma, see Hoeffding (1963)):

F[B,B] ⊂ FG,(B−B)/2 . (1.26)

For Gaussian distributions, the parameter σ2 that controls theMGF also represents the variance;
for sub-Gaussian distributions, it is only an upper bound, as shown by the following lemma.

Lemma 1.12 . Let R ∈ R⋆+ and ν ∈ FG,R. Then VY∼ν [Y ] ⩽ R2.

In particular, the MGF of any distribution ν, if it is defined in a neighbourhood of zero, is
equivalent to λ 7→ 1 + VY∼ν [Y ]λ2. The sub-Gaussian condition simply states that this relation
holds globally for all λ ∈ R. A less stringent requirement is to ask that the MGF is locally
defined, which gives rise to the notion of light tailed distributions

Fℓ =
{
ν ∈M+

1 (R), ∃λν ∈ R⋆+, ∀λ ∈ (−λν , λν), EY∼ν
[
eλY

]
< +∞

}
. (1.27)

In particular, if the MGF exists locally, we may obtain the k-th moments by differentiating it
k ∈ N times, and thus moments of all order exist. An even less stringent condition is thus to
ask only for the existence of a certain (raw or central) moment, i.e.

FM,ε =
{
ν ∈M+

1 (R), EY∼ν
[
|Y |1+ε

]
⩽M

}
or (1.28)

F centred
κ,ε =

{
ν ∈M+

1 (R), EY∼ν
[
|Y − EY∼ν [Y ]|1+ε

]
⩽ κ

}
(1.29)

for some ε,M, κ ∈ R⋆+. These form a subset of the so-called heavy tailed distributions.
Nonparametric models capture a much broader range of distributions than parametric ones

and are less prone to model misspecification. However, this comes at the cost of typically worse
algorithmic performances. For bandits, achieving logarithmic regret may be impossible when
the underlying statistical model is too large, as evidenced by the following lemma.
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Lemma 1.13 (Obstruction to logarithmic pseudo regret). If F = ∪B,B∈RF[B,B] (all bounded
distributions), F = ∪R∈R⋆+FG,R (all sub-Gaussian distributions), F = Fℓ (all light tailed distribu-
tions), F = ∪M∈R⋆+FM,ε = ∪κ∈R⋆+F

centred
κ,ε for some ε ∈ R⋆+ (all distributions with finite 1 + ε-th

moment), or F =M+
1 (R) (all probability distributions), then

∀ν ∈ F , ∀µ⋆ > EY∼ν [Y ], KF
inf(ν;µ⋆) = 0 . (1.30)

The counterexample used in the proof (see Appendix A.2) for bounded distributions is
borrowed from Hadiji and Stoltz (2023, Theorem 3, Theorem 11); see also Ashutosh et al.
(2021) and Agrawal et al. (2021) in the sub-Gaussian and finite moment settings respectively.
Informally, such counterexamples show that the main obstruction to logarithmic regret is the
possible “mass leakage at infinity” that results from a lack of compactness in the family F (in
bandits idiom, we say that this allows arbitrarily close confusing instances to exist).
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Table 1.1 – Summary of classical statistical models for stochastic bandits.
Name Definition Dimension
Gaussian
fixed variance
σ2 ∈ R⋆+

FN ,σ =
{
pµ : y ∈ R 7→ 1√

2πσe
− (y−µ)2

2σ2 , µ ∈ R
}

1

SPEF FSPEF
h,F,L =

{
pθ : y ∈ Y 7→ h(y)eθF (y)−L(θ), θ ∈ Θ ⊆ R

}
1

Gaussian FN =
{
pµ,σ : y ∈ R 7→ 1√

2πσe
− (y−µ)2

2σ2 , (µ, σ) ∈ R× R⋆+
}

2

EF FEF
h,F,L =

{
pθ : y ∈ Y 7→ h(y)e⟨θ,F (y)⟩−L(θ), θ ∈ Θ ⊆ Rd

}
d

Bounded
B,B ∈ R

F[B,B] =
{
ν ∈M+

1 (R), Supp ν ⊆ [B,B]
}

∞

Semibounded
B ∈ R

F(−∞,B] = {ν ∈M+
1 (R), Supp ν ⊆ (−∞, B]} ∩ L1(R)

or F[B,∞) = {ν ∈M+
1 (R), Supp ν ⊆ [B,∞)} ∩ L1(R)

∞

Sub-Gaussian
R ∈ R⋆+

FG,R =
{
ν ∈M+

1 (R), ∀λ ∈ R, EY∼ν
[
eλ(Y−EY∼ν [Y ])

]
⩽ e

λ2R2
2

}
∞

Light tailed Fℓ =
{
ν ∈M+

1 (R), ∃λν ∈ R⋆+, ∀λ ∈ (−λν , λν), EY∼ν
[
eλY

]
< +∞

}
∞

Finite moment
M ∈ R⋆+, ε ∈ R⋆+

FM,ε =
{
ν ∈M+

1 (R), EY∼ν
[
|Y |1+ε

]
⩽M

}
∞

Finite moment
(centred)
κ ∈ R⋆+, ε ∈ R⋆+

F centred
κ,ε =

{
ν ∈M+

1 (R), EY∼ν
[
|Y − EY∼ν [Y ]|1+ε

]
⩽ κ

}
∞

1.4 How to play (provably) well? Concentration and martingales

In this section, we introduce fundamental results that are ubiquitous in statistics and probability
theory, known as the concentration of measure phenomenon. Not only do they offer powerful tools
to analysis bandit algorithms (and beyond the scope of this these, machine learning at large),
they also directly dictate the design of many policies, known as UCB (see Theorem 1.33). We
adopt a fairly generic formulation that unifies several known results as the methods presented
here form the basis of several key results in Chapters 3, 4 and 5. We conclude with two original
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contributions: an order-optimal time-uniform mixture bound with mixing parameter time
peeling, and a generic analysis of UCB with arbitrary confidence sequences.

Fixed sample concentration and the Cramér-Chernoff method.

We recall here the standard definition of martingales and the classical Cramér-Chernoff bound.

Definition 1.14 (Martingale). Let T = N or T = R+, (Gt)t∈T a filtration and (Y, ∥·∥) a normed
space. A stochastic process (Mt)t∈T is said to be a (Gt)t∈T -supermartingale if for all t ∈ T , (i)Mt

is Gt-measurable, (ii) E[∥Mt∥] < +∞, and (iii) E[Mt+1 | Gt] ⩽Mt. If instead E[Mt+1 | Gt] ⩾Mt

for all t ∈ T , it is said to be a (Gt)t∈T -submartingale. Finally, it said to be a (Gt)t∈T -martingale if
it is both a supermartingale and a submartingale.

A typical example of a martingale is (
∑t
s=1 Ys − µ)t∈N where (Yt)t∈N is an i.i.d. sequence of

integrable randomvariableswith expectationµ. In this thesis, wewillmostly consider stochastic
processes over R or Rd, in which case the norm ∥·∥ is implicitly set to be the corresponding
Euclidean norm. Moreover, for a given a nondecreasing, right-continuous mapping F : R→ R,
we define the generalised inverse (de La Fortelle, 2020) of F as F−1 : u ∈ R 7→ inf{y ∈ R, F (y) >
u}, which satisfies in particular the order-preserving property thatF−1(u) ⩽ y implies u ⩽ F (y)
for all y ∈ R and u ∈ R+ (a similar definition exist for nonincreasing mappings, which we skip
to avoid cluttering). When F is invertible, its generalised inverse is equal to its inverse, which
we also denote by F−1.
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Proposition 1.15 (Generic Cramér-Chernoff bound). Let t ∈ N, (Gs)ts=1 a filtration, (Ss)ts=1 a
(Gs)ts=1-adapted process, an open interval I ⊆ R with 0 ∈ I and a function ψ : I → R+ such that for
all s ∈ {1, . . . , t−1} and λ ∈ I , we have logE[exp(λ(Ss+1−Ss) | Gs] ⩽ ψ(λ). We let I+ = I ∩R+

and I− = I ∩ R− and define the Fenchel-Legendre transforms:

ψ⋆,+ : u ∈ R+ 7→ sup
λ∈I+

λu− ψ(λ) and ψ⋆,− : u ∈ R+ 7→ sup
λ∈I−

λu− ψ(λ) . (1.31)

Then for any δ ∈ (0, 1), we have

P
(
St ⩾ t(ψ⋆,+)−1

(1
t

log 1
δ

))
⩽ δ and P

(
St ⩽ t(ψ⋆,−)−1

(1
t

log 1
δ

))
⩽ δ . (1.32)

Note that this generic bound applies to martingales (St)t∈N, not just sums of i.i.d. random
variables (sometimes called weak dependency), as long as the control by ψ holds. In particular,
this is the case for sub-Gaussian distributions with ψ : λ ∈ R 7→ λ2R2/2 for some R⋆+.

Corollary 1.16 (Cramér-Chernoff sub-Gaussian bound). Let R ∈ R⋆+, t ∈ N and (Ys)ts=1 a
sequence of i.i.d. random variables drawn from ν ∈ FG,R with expectation µ ∈ R. For any δ ∈ (0, 1),
we consider µ̂t = 1/t

∑t
s=1 Ys and

Θ̂δ
t =

[
µ̂t ±R

√
2
t

log 2
δ

]
, (1.33)

Then Θ̂δ
t is a confidence set at level δ for µ, i.e. P(µ ∈ Θ̂t) ⩾ 1− δ.

Time-uniform concentration and the method of mixtures

The main limitation of the above confidence sets is that they are only valid for a fixed sample
size t, i.e. we control ∀t ∈ N, P(µ ∈ Θ̂δ

t ) rather than the much stronger statement P(∀t ∈ N, µ ∈
Θ̂δ
t ). The latter is of utmost importance to handle sequential settings where data is actively

collected by an agent, rather than studied retrospectively. Stochastic bandits offer a typical
example of such settings: although each arm k ∈ [K] generates i.i.d. samples, the number of
observationsNk

t at time t ∈ N is a (random) function of past observations and the policy of the
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agent. Similarly, model-based reinforcement learning (Jaksch et al., 2010) suggests exploration
strategies in Markov decision processes from random numbers of visits to state-action pairs.

Definition 1.17 (Time-uniform confidence sequence). Let F ⊆M+
1 (Y), ρ : F → Rd a mapping

and δ ∈ (0, 1). A time-uniform confidence sequence at level δ for ρ andF is a sequence of mappings
(Θδ

t )t∈N such that for t ∈ N, Θ̂δ
t : Yt → P(Rd) and for all ν ∈ F , we have

PY∼ν⊗N

(
∀t ∈ N, ρ(ν) ∈ Θ̂δ

t

(
(Ys)ts=1

))
⩾ 1− δ , (1.34)

where Y = (Yt)t∈N ∼ ν⊗N denotes an i.i.d. sequence of random variables drawn from ν. When the
context is clear, we identify the mapping Θ̂δ

t with the set Θ̂δ
t ((Ys)ts=1), i.e. (Θ̂δ

t )t∈N is a set-valued
stochastic process adapted to the natural filtration of Y.

In this thesis, confidence sequences typically consist of compact, convex subsets of Rd, e.g.
for a given t ∈ N, Θδ

t is a closed segment (d = 1) or is (contained in) an ellipsoid (d ⩾ 2).
Moreover for any fixed t ∈ N, δ ∈ (0, 1) 7→ Θ̂δ

t is typically a nonincreasing mapping (for the set
inclusion), i.e. lower δ means less room for errors and thus larger confidence sets.

Remark 1.18 (Equivalence between time-uniform and random time confidence). Howard et al.
(2020, Lemma 3) shows that the time-uniform bound P(∀t ∈ N, ρ(ν) ∈ Θ̂δ

t ) ⩾ 1− δ is equivalent to
P(ρ(ν) ∈ Θ̂δ

τ ) ⩾ 1− δ for any adapted (not necessarily stopping) random time τ .

Of p-values and e-values. We briefly highlight the connections between confidence sets and
p-values, which are ubiquitous in statistical hypothesis testing.
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Definition 1.19 (P-values). Let F ⊂M+
1 (R), ρ : F → R and t ∈ N such that for all δ ∈ (0, 1), Θ̂δ

t

is a confidence set at level δ for ρ and F . Fix ρ0 ∈ R. The p-variable associated to the confidence sets
(Θ̂δ

t )δ∈(0,1) and null hypothesisH0 = {ν ∈ F , ρ(ν) = ρ0} is the random variable defined as

PH0
t = inf

{
δ ∈ (0, 1), ρ0 /∈ Θ̂δ

t

}
. (1.35)

In particular, we have that PY∼ν⊗t(PH0
t ⩽ δ) ⩽ δ for all δ ∈ (0, 1) and ν ∈ H0. If for all δ ∈ (0, 1),

(Θ̂δ
t )t∈N is a time-uniform confidence sequence for all δ ∈ (0, 1), then the stochastic process (PH0

t )t∈N

is called a time-uniform p-process, which satisfies in particular PY∼ν⊗N(∃t ∈ N, PH0
t ⩽ δ) ⩽ δ)

and PY∼ν⊗N(PH0
τ ⩽ δ) ⩽ δ) for any adapted N-valued random time τ . Realisations of p-variables and

p-processes are called p-values and time-uniform p-values respectively.

In the light of this definition, the confidence parameter δ is an upper bound on the false
discovery rate, or type I error, i.e. the probability of rejecting the null (ρ0 ̸∈ Θ̂δ

t ) even though the
observed samples (Y) were drawn from ν ∈ H0. A typical threshold for type I error is δ = 0.05.

Recently, p-values have come under scrutiny due to their frequent misuse and erroneous
interpretation (Wasserstein and Lazar, 2016), leading to the so-called replication crisis in
empirical sciences (Pashler and Wagenmakers, 2012). A major flaw of classical p-variables
built from fixed samples confidence sets is their lack of robustness to stochastic sampling,
i.e. PY∼ν⊗N(PH0

τ ⩽ δ) ⩽ δ is not guaranteed if τ is random. In particular, if an experiment is
designed with sample size T , such p-variables are invalid under optional stopping (concluding
the experiments after t samples if PH0

t < 0.05), optional continuation (collecting additional
data t > T if PH0

T > 0.05) or even data peeking (computing PH0
t before PH0

T ).
To mitigate this issue, Johari et al. (2022) introduced the notion of anytime-valid p-values,

which correspond to our definition of time-uniformp-processes. A related topic, that has gained
widespread attention in the recent years, is that of e-values and e-processes, which are nonnegative
processes (Et)t∈N such that EY∼ν⊗N [Eτ ] ⩽ 1 for every adapted stopping time τ and hypothesis
ν ∈ H0 (in particular, this property allows for seamless testing under optional stopping or
continuation). Equivalently, e-processes are envelopes of so-called test martingales, i.e. there
exists a family of nonnegative martingales {(Mν

t )t∈N, ν ∈ H0}withM0 = 1 such that Et ⩽Mν
t

for all t ∈ N. While we do not focus on such processes in this thesis, we use and introduce
several time-uniform concentration results derived from nonnegative (super)martingales (see
below, and Chapters 3 and 4 in particular), which are thus examples of e-processes. We refer
to Grünwald et al. (2020); Vovk and Wang (2021) for an introduction, Turner and Grunwald
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(2023); Turner and Grünwald (2023) for applications to contingency tables and count data,
and Ramdas et al. (2022) for a recent overview of this rapidly growing field.

Numerical experiments on p-values. As a witty illustrative example of the importance of
time-uniform statistics, let us consider three friends playing a card game on holidays. At the
end of each round, players are ranked as winner, neutral and looser. One of them (who may
be the author of this thesis) started in a streak of losing hands, and was prone to stop playing
after finishing a few rounds as looser. After a while, this player wanted to test whether he
was unlucky or plain bad at the game. To this end, he considered the statistical Bernoulli
model F = {B(p), p ∈ (0, 1)} (p represents the probability of loosing a round) and the null
hypothesisH0 = {p ⩽ 1/3}. The three friends played a total of T = 226 rounds across N = 29
sessions. Denoting by (τi)Ni=1 the (random) length of these sessions, they collected a dataset
Y = ((Y i

t )τit=1)Ni=1 where each (Y i
t )τit=1 is an i.i.d. sequence of random variable drawn from

a distribution ν ∈ F . We report in Figure 1.2 the fixed sample and time-uniform p-values
computed after each completed round (using the classical binomial test and the time-uniform
Bregman confidence sequence for the Bernoulli SPEF derived in Chapter 3 respectively) on
synthetic data drawn from B(1/2) (in N = 1 session) and on real data (in N = 29 sessions).

In the synthetic experiments, both methods easily rejected the null (which is indeed false)
at δ = 0.05 after 226 rounds. Being more conservative in nature, the time-uniform p-process
started rejecting after about 100 rounds, which was much later than the first rejection of the
fixed sample p-variable (about 25 rounds). However, computing in hindsight this p-variable
renders it statistically invalid (peeking at the data, i.e. p-hacking); only the time-uniform process
allows to prematurely stop the experiment while preserving type I error guarantee. In the
real-world experiment, the resulting p-values after playing 226 rounds were 0.06 and 0.93
respectively, thus failing to reject the null (i.e. that player was not so bad after all). However,
we see that the p-variable was deceived and would have rejected the null had the experiment
been stopped after about 60 to 210 rounds (but again, without guarantees on the type I error).
By contrast, the time-uniform p-process never rejected the null, which we interpret as a sign
of its robustness to stochastic sampling. Indeed, although the outcomes of each round are
modelled as i.i.d. random variables, the first sessions were stopped due to the early streak of
bad luck (and grumpiness) of one player, thus skewing the results towards more losses.

Nonnegative supermartingales and method of mixtures. We now introduce the fundamen-
tal result of time-uniform concentration, which is essentially a corollary of Doob’s maximal
inequality for nonnegative supermartingale, also known as Ville’s inequality (Ville, 1939). We
present it here in a slightly more general formulation, and derive it from first principles to
highlight the sort of supermartingale constructions that we use throughout this thesis.
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Figure 1.2 – Realisations of p-variables (fixed sample) and p-processes (time-uniform) to test hypothesis
on the skill of a card player. Left: synthetic experiment (226 i.i.d. realisations of B(1/2)). Right: real
data (226 rounds across 29 sessions). Black dashed line: significance level δ = 0.05.

Theorem 1.20 (Time-uniform concentration of nonnegative supermartingales). Let T = N
or T = R+, (St)t∈T a real stochastic process adapted to a filtration (Gt)t∈T , (Ft)t∈T a family of
continuous mappings R→ R+ and t0 ∈ T such that
(i) (Mt)t⩾t0 = (Ft(St))t⩾t0 is a nonnegative (Gt)t⩾t0-supermartingale,

(ii) E[Mt0 ] ⩽ 1,

(iii) All mappings (Ft)t⩾t0 are either nondecreasing or nonincreasing.
Then for any δ ∈ (0, 1) and any (Gt)t∈N-stopping time τ such that almost surely τ ⩾ t0, we have

P
(
Sτ ⩾ F−1

τ

(1
δ

))
⩽ δ or P

(
Sτ ⩽ F−1

τ

(1
δ

))
⩽ δ , (1.36)

depending on whether the (Ft)t⩾t0 are nondecreasing or nonincreasing. Furthermore, we have

P
(
∀t ⩾ t0, St ⩾ F−1

t

(1
δ

))
⩽ δ or P

(
∀t ⩾ t0, St ⩽ F−1

t

(1
δ

))
⩽ δ . (1.37)

In the sub-Gaussian case, we couple the above generic boundwith a specific supermartingale
construction obtained by mixing the processes (Mλ

t )t∈N over λ ∈ R.
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Corollary 1.21 (Time-uniform sub-Gaussian concentration with the method of mixtures). Let
R ∈ R⋆+ and (Yt)t∈N be a sequence of i.i.d. random variables drawn from ν ∈ FG,R with expectation
µ ∈ R. For any α ∈ R⋆+ and δ ∈ (0, 1), we consider (µ̂t)t∈N = (1/t

∑t
s=1 Ys)t∈N and

(
Θ̂δ
t,α

)
t∈N

=

µ̂t ±R
√√√√2
t

(
1 + α

t

)
log

(
2
δ

√
1 + t

α

)
t∈N

. (1.38)

Then (Θδ
t,α)t∈N is a time-uniform confidence sequence at level δ for µ, i.e.

P
(
∀t ∈ N, µ ∈ Θ̂δ

t,α

)
⩾ 1− δ , (1.39)

or equivalently for any adapted random time τ in N,

P
(
µ ∈ Θ̂δ

τ,α

)
⩾ 1− δ . (1.40)

Remark 1.22 (Running intersection). Another advantage of the time-uniform formulation is that if
(Θ̂δ

t )t∈N is a time-uniform confidence sequence at level δ, then the running intersections (∩s⩽tΘ̂δ
s)t∈N,

called the confidence envelopes, also form a time-uniform confidence sequence at the same level, which
is at least as tight as the original sequence. Taking the running intersection is standard in sequential
testing and was pioneered in Darling and Robbins (1967).

We notice that the confidence sequence derived from the method of mixtures depends on a
hyperparameter α, that we call the mixing parameter. The following elementary lemma, which
appeared in Howard et al. (2021, Proposition 3), suggests a natural tuning of α.

Lemma 1.23 (Tuning of the mixing parameter). Let t0 ∈ N and δ ∈ (0, 1). Then we have
γδt0 = argminα∈R⋆+

√
2(t+ α) log(

√
1 + t/α/δ), where γδ = −1/(1 + W−1(−δ2/e)) andW−1 is

the first negative branch of the LambertW function. In particular, in the R-sub-Gaussian case, we have
γδ/2t0 = argminα∈R⋆+ |Θ̂

δ
t0,α|.
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For δ = 0.05, we have γδ ≈ 0.12 for the one-sided bound and γδ/2 ≈ 0.10 for the two-sided
confidence interval. Importantly, this tuning only works for a fixed sample size t0. Note that fast
numerical implementations of the LambertW function are readily available in many scientific
libraries, e.g. scipy.special.lambertw in Python.

Remark 1.24 (Mixtures beyond the sub-Gaussian case). The main idea of the method of mixtures is
to find a suitable mixing measure νΛ to compute the mixture supermartingale (

∫
Mλ
t dνΛ(λ))t∈N. This

is akin to finding a conjugate prior in Bayesian estimation to make such integral calculations tractable.
Thanks to the natural Gaussian structure of the supermartingales (Mλ

t )t∈N in the sub-Gaussian case,
Gaussian measures make for suitable mixing measures in this setting. Under other assumptions, such as
distributions with bounded supports, there is no such natural mixing measures. Of note, Waudby-Smith
and Ramdas (2023) introduced a construction that replaces the mixture process with a so-called hedged
capital process with predictable weights. We detail this construction, which we will use several times
as a benchmark, in Appendix A.3.

� The sub-Gaussian bound of Corollary 1.21 requires the knowledge of the sub-Gaussian parameter
R. In fact, no time-uniform confidence sequences valid over all sub-Gaussian distributions may exhibit
a similar O(

√
log(t/δ)/t) concentration rate, as stated in Corollary 1.36 below. With this in mind, it

is however tempting to replace R with a data-dependent estimator, e.g. the sample standard deviation
σ̂t =

√
1/t

∑t
s=1(Ys − µ̂t)2. Recently, Waudby-Smith et al. (2021) showed that this procedure induces

an asymptotic time-uniform confidence sequence for the family of square-integrable distributions⋃
M∈R⋆+

FM,1,

(
Θ̂δ
t,α

)
t∈N

=

µ̂t ± σ̂t
√√√√2
t

(
1 + α

t

)
log

(
2
δ

√
1 + t

α

)
t∈N

, (1.41)

in the sense that there exists a true time-uniform confidence sequence (Θ̃δ
t )t∈N (typically unknown)

such that almost surely max Θ̃δ
t ∼ max Θ̂δ

t and min Θ̃δ
t ∼ min Θ̂δ

t when t→ +∞ (although, much
like the central limit theorem for fixed sample estimation, this does not provide information on the
nonasymptotic regime). In Chapter 4, we consider a subset of the family of sub-Gaussian distributions
satisfying a high order MGF condition that allows to construct a (nonasymptotic) confidence sequence
for the sub-Gaussian parameter R.
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Extension to multivariate distributions. We have so far stated our results for the concen-
tration of real-valued distributions. The same mixture construction may actually be used in
the multivariate setting. The proposition below is taken from Abbasi-Yadkori et al. (2011,
Theorem 1) and Lattimore and Szepesvári (2020, Theorem 20.4).

Proposition 1.26 (Multivariate time-uniform sub-Gaussian concentration with the method
of mixtures). Let d ∈ N, R ∈ R⋆+. We consider two stochastic processes, (Xt)t∈N in Rd and
(ηt)t∈N in R, and an adapted filtration (Gt)t∈N such that (ηt)t∈N is conditionally R-sub-Gaussian, i.e.
logE[eληt+1 | Gt] ⩽ λ2R2/2 for all λ ∈ R and t ∈ N. For any α ∈ R⋆+, we consider the Rd-valued
process (St)t∈N and the S++

d (R)-valued process (V α
t )t∈N (positive definite matrices of size d) defined

as

(St)t∈N =
(
t−1∑
s=1

ηsXs

)
t∈N

and (V α
t )t∈R =

(
t−1∑
s=1

XsX
⊤
s + αId

)
t∈R

. (1.42)

Then for any δ ∈ (0, 1) we have the following inequality (also valid for adapted random times):

P
(
∃t ∈ N, ∥St∥2(V αt )−1 ⩾ R2

(
2 log 1

δ
+ log detV α

t

αd

))
⩽ δ . (1.43)

� A typical use case of Proposition 1.26 is to construct time-uniform confidence sequences for θ⋆ ∈ Rd

in the linear bandit setting Yt = ⟨θ⋆, Xt⟩+ ηt, where (ηt)t∈N is a centred noise process. In Chapter 5,
we derive a similar multivariate time-uniform concentration bound with the method of mixtures for
linear bandits with risk measures.

Optimal time-uniform concentration rate. Wehave seen in various instances that themethod
of mixtures produces time-uniform confidence sequences of decreasing sizes O(R

√
log(t)/t)

when the sample size t goes to +∞ and R2 is some measure of variance (such as the sub-
Gaussian parameter). A natural question is whether this rate can be improved. The answer is
affirmative, which is a direct consequence of the celebrated law of iterated logarithms (see e.g.
Darling and Robbins (1967)). For completeness, we provide a proof of a weak version, that
also sheds light on the pivotal role of the exponential supermartingale.
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Proposition 1.28 (Law of iterated logarithms). Fix R ∈ R⋆+. If (i) T = N and (St)t∈T =
(
∑t
s=1 Ys − µ)t∈T where (Yt)t∈T is an i.i.d. sequence of random variables drawn from ν ∈ FG,R with

expectation µ ∈ R, or (ii) T = R+ and (St)t∈T satisfies the SDE dSt = RdWt, then

P
(

lim sup
t→+∞

St
R
√

2t log log t
⩽ 1, lim inf

t→+∞

St
R
√

2t log log t
⩾ −1

)
= 1 . (1.44)

In simpler terms, for many centred Gaussian or R-sub-Gaussian processes (St)t∈T , almost
surely, it occurs infinitely often that St ⩽ O(R

√
t log log t), which imposes a lower bound

Ω(R
√

log log(t)/t) on the width of any time-uniform confidence sequences. Of note, in the
Brownianmotion case or if the variance of (Yt)t∈N is exactlyR, the lim sup and lim inf are exactly
1 and −1 respectively with probability 1.

In particular, the method of mixtures appears to produce suboptimal confidence sequences
as their concentration rate is O(

√
log(t)/t) (this is a universal feature of the method, even with

other controls of the cumulant generating function by a function ψ, see Howard et al. (2021,
Proposition 2)). Alternative constructions such as time peeling or discrete mixtures Howard
et al. (2020, 2021) are able to achieve this asymptotic concentration rate. However, they typically
do so at the cost of higher leading constant and wider confidence sets for small samples.

Catching the optimal rate with mixtures (�)

We now show that it is possible to force a O(
√

log log(t)/t) concentration rate with the method
of mixtures by combining it with a peeling argument, not on the process (St)t∈N itself but on the
mixing parameterα. To the best of our knowledge, this result is new and offers a complementary
view on mixing versus peeling. More precisely, we have seen in Lemma 1.23 that for a fixed
time t0 ∈ N, the choice α ∝ t0 provides the minimal width for the confidence sequence at
time t0. However, a time-dependent α is not supported by the theory as it would break the
supermartingale property; in addition, it wouldmake the time-uniform bound of Corollary 1.21
asymptotically bounded by O(1/

√
t), in contradiction with Proposition 1.28. Nevertheless, we

show that it is possible to make α partially time-dependent, i.e. piecewise constant over epochs
of geometrically increasing length, resulting in an order-optimal concentration rate. We defer
the proofs of the following two results to Appendix A.3.
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Proposition 1.29 (Asymptotically order-optimal time-uniform concentration with mixing
parameter time peeling). Let (St)t∈N be a real-valued stochastic process adapted to a filtration
(Gt)t∈N and (Fαt )t∈N,α>0 a sequence of mappings such that for each α ∈ R⋆+,
(i) for each t ∈ N, x 7→ Fαt (x) is nondecreasing,

(ii) for each x ∈ R, t 7→ Fαt (x) is nonincreasing,

(iii) (Mα
t )t∈N = (Fαt (St))t∈N defines a nonnegative (Gt)t∈N-supermartingale with E [Mα

0 ] ⩽ 1.
Fix ∆ > 1, η > 0, δ ∈ (0, 1) and a sequence (αn)n∈N. For t ∈ N, we define

nt =
⌈ log t

log ∆

⌉
, tn = ⌊∆n⌋ and ut =

(
F
αnt−1
tn

)−1
(
ζ(η)nηt
δ

)
, (1.45)

where ζ(η) =
∑+∞
n=1 n

−η. Then for any (Gt)t∈N-stopping time τ in N, we have

P (Sτ ⩾ uτ ) ⩽ δ . (1.46)

In the sub-Gaussian case, this result translates to a mixture bound achieving the order-
optimal asymptotic rate. To the best of our knowledge, this is the first time-uniform bound to
achieve this while resorting only to explicit mixtures. In particular, it differs (albeit complemen-
tary) from the so-called discrete mixture bound introduced in Howard et al. (2021, Theorem 2)
(see also Appendix A.3), which implements a peeling-like mixture, leading to a numerical
optimisation problem rather than a closed-form inequality, in contrast to the following corollary.

Corollary 1.30 (Asymptotically order-optimal time-uniform sub-Gaussian concentration with
mixing parameter time peeling). Let R ∈ R⋆+ and (Yt)t∈N be a sequence of i.i.d. random variables
drawn from ν ∈ FG,R with expectation µ ∈ R. For δ ∈ (0, 1), γδ = −1/(1 + W−1(−δ2/e)) and
t ∈ N, we consider

Θ̂δ
t,∆,η =

µ̂t ±R
√√√√ 2
t2

(1 + γδ)⌊∆
⌈ log t

log ∆

⌉
⌋ log

(
ζ(η)
δ

√
1 + 1

γδ

⌈ log t
log ∆

⌉η)
t∈N

. (1.47)

Then (Θ̂δ
t,∆,η)t∈N is a time-uniform confidence sequence at level δ forµwhich satisfies the asymptotic

relation |Θ̂δ
t,∆,η| = O

(
R
√

log(log(t)/δ)/t
)
when t→ +∞.
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Remark 1.31 . The above result still holds if (tn)n∈N is replaced by any strictly increasing sequence
of integers such that t0 = 0 and limn→+∞ tn = +∞ and if (ζ(η)nη)n∈N is replaced by any posi-
tive sequence (cn)n∈N such that ∑∞

n=1
1
cn

⩽ 1. The choice of geometric sequences for both (tn)n∈N

and (cn)n∈N provides examples of such sequences and is standard in the literature on time peeling
concentration (Garivier, 2013; Maillard, 2019b).

In Figure 1.3, we compare these asymptotically optimal mixture peeling bounds with the
standard sub-Gaussian mixture bound of Corollary 1.21 (on the right-hand figure, mixture
peeling bounds are smoothed by upper bounding the various ceils and floors in their definition).
We conclude that the improvement due to the O(

√
log log(t)/t) concentration rate is only

asymptotic in nature and leads to wider bounds in practice, even for fairly large samples. The
take-home message is that virtually any mixture bound can be turned into an asymptotically
optimal bound if theory calls for it, but doing so is often detrimental to the actual performances.
Therefore, for the practitioner, we recommend using simple mixture bounds.

� Mixture bounds in various settings beyond the sub-Gaussian case is the focus of Part II.
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Figure 1.3 – Left: Comparison of confidence envelopes around the mean forN (0, 1), as a function of the
sample size t, over 1000 independent replicates. Grey lines are trajectories of empirical means µ̂t. Right:
ratio of upper mixture peeling bounds of Corollary 1.30 to the classical sub-Gaussian mixture bounds
(greater than 1 means the classical mixture bound is tighter).

Generic UCB algorithm for multiarmed bandits (�)

We now show a direct application of time-uniform concentration to the design of deterministic
K-armed bandit algorithms. We already introduced the upper confidence bound (UCB) policy
in Section 1.3. In the original article (Auer et al., 2002), UCB was studied for bandit models
(
⊗

k∈[K] νk,
⊗

k∈[K]Fk) with Fk = FN ,σ (Gaussian) or Fk = F[B,B] (bounded) using sub-
Gaussian concentration bounds. Here, we extend the analysis to any bandit models, provided
there exist a confidence sequence for each arm. Although folk knowledge, this is, as far as
we know, the first occurrence of such generic results. Precisely, we define for arm k ∈ [K]
and δ ∈ (0, 1) the generalised UCB index UCBδ

k : R(N) → R such that if Ykt is the reward
history of arm k at time t, UCBδ

k(Ykt ) is the upper bound of the confidence sequence at level
δ for µk = EY∼νk [Y ]. To emphasise the dependency on the size n = Nk

t of Ykt , we also write
UCBδ

k,n = UCBδ
k(Ykt ); e.g. in the R-sub-Gaussian case with mixing parameter α ∈ R⋆+, we have

UCBδ
k(Ykt ) = R

√√√√√ 2
Nk
t

(
1 + α

Nk
t

)
log

2
√

1 + Nk
t
α

δ
. (1.48)

The main result of this section is the following theorem, that bounds the number of pulls to
a suboptimal arm by the sample size required to statistically separate it from the optimal arm.
We defer its proof, as well as those of the subsequent corollaries, to Appendix A.3.
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Algorithm 1 Generic UCB
Input: K arms and upper confidence mapping Y ∈ (R)(N) 7→ UCBδ

k(Y).
Initialisation: ∀k ∈ [K], Yk = {}, Nk = 0.
while continue do

π ← argmaxk∈[K] UCBδ
k(Yk) ; ▷ Best plausible arm

Observe Y π
Nπ , Yπ ← Yπ ∪ {Y π

Nπ}, Nπ ← Nπ + 1 ; ▷ Update

Theorem 1.33 (Generic UCB pseudo regret analysis). Let δ ∈ (0, 1) and (Θ̂δ
k,n)n∈N be a time-

uniform confidence sequence at level δ for ρk = ρ(νk) for each k ∈ [K], where ρ is a risk measure. We
recall that ∆k = ρ⋆ − ρk and define

τ δk = inf{n ∈ N,
∣∣∣Θ̂δ

k,n

∣∣∣ < ∆k} . (1.49)

Fix T ∈ N. Then we have

P
(
∀k ∈ [K], Nk

T ⩽ τ
δ

2K
k

)
⩾ 1− δ and Eπ,ν⊗T

π
[Nk

T ] ⩽ Eπ,ν⊗T
π

[τ δk ] + 2δT . (1.50)

In particular, if δ = 1/T , we have

Eπ,ν⊗T
π

[Nk
T ] ⩽ Eπ,ν⊗T

π
[τ

1
T
k ] + 2 . (1.51)

In particular, Algorithm 1 with upper confidence mapping UCBδ
k,n = max Θ̂δ

k,n is an
instance of no regret algorithm: after playing each suboptimal arm k ∈ [K]\{k⋆} exactly τ δ/(2K)

k

times, the generic UCB policy only selects the optimal arm k⋆ and stops accumulating pseudo
regret with probability 1− δ. This can be translated to an upper bound on the expected number
of pulls to arm k by setting δ = 1/T . The take-home message of this analysis is that the regret
of Algorithm 1 is driven by how fast the confidence sequence shrinks for each arm, which is
typically folk knowledge but, as far as we are aware, was never written in this form.

We now instantiate Theorem 1.33 to various statistical models under the expectation risk
measure, for which time-uniform confidence sequences are known.
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Corollary 1.34 (Sub-Gaussian UCB). Let R ∈ R⋆+ and assume that Fk = FG,R. For T → +∞,
Algorithm 1 with the time-uniform UCB of Corollary 1.21 satisfies

Eπ,ν⊗T
π

[
Nk
T

]
⩽

2R2

∆2
k

log
(4RT

∆k

)
+ 4R2

∆2
k

log log
(4RT

∆k

)
+ o

(
R2

∆2
k

log log T
)
. (1.52)

This matches (up to constants) the classical pseudo regret bound of UCB (see e.g. Lattimore
and Szepesvári (2020, Theorem 7.1)). In particular, it proves that Algorithm 1 is asymptotically
optimal (in the sense that it matches the lower bound of Theorem 1.6) in the Gaussian case
(KFN ,R

inf (νk;µ⋆) = ∆2
k/(2R2)) and order-optimal in the sub-Gaussian case (O(log T ) pseudo

regret). Note that pseudo regret optimality is achieved even though the concentration rate of
the confidence sequence is suboptimal (O(

√
log(t)/t) instead of O(

√
log log(t)/t)). In fact, we

show the iterated logarithm rate only impacts the higher order terms of the regret bound.

Corollary 1.35 (Iterated logarithm UCB). For k ∈ [K], let (Θ̂δ
k,n)n∈N a time-uniform confidence

sequence at level δ for µk such that |Θ̂δ
k,n| ⩽ C

√
log(log(n)/δ)/n for n large enough and C ∈ R⋆+.

For T → +∞, Algorithm 1 with these UCB satisfies

Eπ,ν⊗T
π

[
Nk
T

]
⩽
C2

∆2
k

log T + C2

∆2
k

log log
(
C2

∆2
k

log T
)

+ o(log log log T ) . (1.53)

As discussed in Section 1.4, the asymptotic order-optimal of confidence sequences achieving
the iterated logarithm rate often comes at the cost of higher leading constant C. However, in
the context of UCB algorithms, the constant C directly impacts the first order term, while the
additional log term only affects the higher order terms of the pseudo regret bound, which
makes for another argument in favour of the method of mixtures.

Interestingly, the pseudo regret lower bound for stochastic bandits sheds light on the
minimum time-uniform concentration rate that is achievable for a family of distributions F .
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Corollary 1.36 (Obstruction toO(
√

log(n)/n) concentration rate). LetF ⊆M+
1 (R) and ρ : F →

R a risk measure. Assume that for all ν ∈ F and ρ⋆ > ρ(ν), we have KF ,ρ
inf (ν; ρ⋆) = 0, and that

(Θ̂δ
n)n∈N is a time-uniform confidence sequence at level δ ∈ (0, 1) for ρ and F . Then for any δ ∈ (0, 1)

and α, β ∈ R⋆+ such that α ⩾ β, almost surely we have |Θ̂δ
n|nα log(n/δ)−β → +∞.

In particular, following Lemma 1.13, it is hopeless to seek fast shrinking time-uniform
confidence sequences that would hold for all probability distributions, or even distributions
with finite 1+ε-th moment (with no bound on saidmoment), light tailed distributions (with no
explicit control of their MGF), sub-Gaussian distributions (with no bound on the sub-Gaussian
parameter) or bounded distributions (with no prior knowledge of the support).

Going beyond the sub-Gaussian case, a consequence of Theorem 1.33 is that we may derive
an efficient algorithm for the bandit model (

⊗
k∈[K] νk,

⊗
k∈[K]Fk) as soon as we can build

time-uniform confidence sequences that are valid for the familiesFk with k ∈ [K]. We illustrate
this principle on two more examples, starting with the family of heavy tailed distributions
subject to a control of the 1 + ε-th moment.

Corollary 1.37 (Heavy tailed UCB). Let M, ε ∈ R⋆+ and assume that Fk = FM,ε, i.e.
EY∼νk [|Y |1+ε] ⩽ M . Let (Θ̂δ

k,n)n∈N a time-uniform confidence sequence at level δ for µk such
that |Θ̂δ

k,n| ⩽ CM1/(1+ε)(log(n/δ)/n)ε/(1+ε) for n large enough and C ∈ R⋆+. For T → +∞,
Algorithm 1 with these UCB satisfies

Eπ,ν⊗T
π

[
Nk
T

]
⩽M

1
ε

(
C

∆k

)1+ 1
ε

log
(
M

1
ε

(
C

∆k

)1+ 1
ε

T

)

+M
1
ε

(
C

∆k

)1+ 1
ε

log log
(
M

1
ε

(
C

∆k

)1+ 1
ε

T

)
+ o

(
M

1
ε

(
C

∆k

)1+ 1
ε

log log T
)
.

(1.54)

Such confidence sequences satisfying the concentration rate O(M1/(1+ε)(log(n/δ)/n)) can
be derived from Bubeck et al. (2013, Lemma 1, Lemma 2) (using the truncated mean and
median ofmeans estimators respectively), and Catoni (2012, Proposition 2.4) (using Catoni’sM-
estimator) — those provide fixed sample confidence sets, that can be turned into time-uniform
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confidene sequences up to horizon T by using δ/T instead of δ (union bound). Recently, Wang
and Ramdas (2023a) provided a Catoni-style confidence sequence (based on the predictable
weight construction detailed in Appendix A.3) that exhibits this concentration rate with high
probability. Of note, the regret guarantee of Corollary 1.37 matches that of Bubeck et al. (2013).

Finally, we illustrate the flexibility of this generic UCB analysis by applying it to a recent
heavy tailed bandit setting introduced by Basu et al. (2022), namely bandits corrupted by Nature.
In this setting, when pulling arm measure νk ∈ Fk, the agent collects a reward drawn from a
different distribution νηk such that δTV(νk, νηk ) ⩽ η ∈ [0, 1) (typically νηk = (1− η)νk + ην ′

k for
some ν ′

k ∈ M
+
1 (R), i.e. an outlier is generated with probability η). In the next corollary, we

consider a corrupted bandit measure νη =
⊗

k∈[K] ν
η
k and denote by P

π,νη⊗T
π

the probability
induced by a bandit policy π for T rounds when observing rewards drawn from νη.

Corollary 1.38 (Heavy tailed UCB corrupted by Nature). ¸Let κ, ε ∈ R⋆+ and assume that
Fk = F centred

κ,ε , i.e. EY∼νk [|Y − µk|1+ε] ⩽ κ. For δ ∈ (0, 1) and η ∈ [0, 1), let (Θ̂η,δ
k,n)n∈N a

nonincreasing sequence of subsets of R such that
(i) P

π,νη⊗T
π

(∀n ∈ N, µk ∈ Θ̂η,δ
k,n) ⩾ 1− δ,

(ii) P
π,νη⊗T

π
(|Θ̂η,δ

k,n| ⩽ Cκ1/(1+ε)ηε/(1+ε)) ⩾ 1 − δ′ for any n ⩾ log(4/(δδ′))/η, where C ∈ R⋆+
and δ′ ∈ (0, 1).

Assume that ∆k > Cκ1/(1+ε)ηε/(1+ε). For T → +∞, Algorithm 1 with these UCB satisfies

E
π,νη⊗T

π

[
Nk
T

]
⩽

2
η

log (2T ) + 5 . (1.55)

First, note that the assumption that the confidence sequences are nonincreasing is mild:
not only are they expected to shrink with increasing sample sizes, but as we have seen in
Section 1.4, time-uniform confidence sequences may be replaced at no further cost by their
running intersections, which are nonincreasing by definition. Furthermore, note that (Θ̂η,δ

k,n)n∈N

is a robust time-uniform confidence sequence, in the sense that it captures the expectation
µk of the true reward distribution νk from observations of the corrupted distributions νηk
(indicated by the use of the probabilitymeasureP

π,νη⊗T
π

). An example of such robust confidence
sequences is given in Wang and Ramdas (2023b) (the two conditions (i) and (ii) in the above
corollary correspond to Theorem 4 andTheorem 5 in this reference, provided that the corruption
parameter is small enough, i.e. η ⩽ ε/(7(1 + ε))). Note that this robustness comes at the cost
that the width of the confidence sequence may not shrink to zero; however, in this generic
UCB analyis, we only need |Θ̂η,δ

k,n| to become less than ∆k. In other words, if the gaps are large
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enough to be “detectable” by the robust confidence sequences (as we assume in Corollary 1.38),
the pseudo regret of Algorithm 1 scales as O(log T ). Of note, Basu et al. (2022) identified in
the finite variance setting (ε = 1) a similar phase transition, with two separate regimes: easily
distinguishable (low κ, high ∆k) versus hardly distinguishable (high κ, low ∆k), with detailed
logarithmic guarantees in both cases.

Remark 1.39 (Examples of corruption by Nature). This bandit setting typically represents situations
where rewards are subject to human errors. Basu et al. (2022) motivated this modelling approach with
an application in agriculture (manual counting of fallen mites after applying a treatment). In digital
health, potential use cases include remote consultations, self-assessments by patients, transcripts of
hanwritten medical files, etc. In all these scenarios, rewards are extracted from noisy, potentially faulty,
informations that are corrupted in a nonadversarial fashion.
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Chapter 2

Literature review and outline

Mais, se disait Durtal, du moment que l’on patauge dans l’inconnu,
[...] on peut aussi facilement admettre le « Credo quia absurdum »
de saint Augustin et se répéter, avec Tertullien, que si le surnaturel
était compréhensible, il ne serait pas le surnaturel et que c’est
justement parce qu’il outrepasse les facultés de l’homme qu’il est
divin. Ah ! et puis zut, à la fin du compte !

— Joris-Karl Huysmans, Là-bas

In this second introductory chapter, we review existing algorithms for stochastic bandits
and concentration bounds, highlighting their scope of applicability and limitations. We argue
that the current state of the art in these fields is somewhat ill-adapted for critical applications
under constraints of small samples, risk aversion and nonparametric model specifications,
such as healthcare. Motivated by this opportunity to make progress towards filling the
long-standing gap between theory and practice, we present our contributions, which we
develop in the rest of this thesis.

Contents
2.1 How do others play? Overview of bandit algorithms . . . . . . . . . . . . . . 41

2.2 How do others concentrate? Overview of confidence bounds . . . . . . . . . 48

2.3 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 How do others play? Overview of bandit algorithms

In this section, we review classical algorithms that implement bandit policies with sublinear
regret under various statistical models for the rewards. Any efficient learning strategy in a
setting with partial information must face the classical dilemma between exploration and
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exploitation; in bandits specifically, it needs to obtain enough information from arms that have
been scarcely sampled (exploration) to avoid missing the optimal arm, while also focusing on
arms that have already performed well in order to accumulate high rewards (exploitation).
Many algorithms have been proposed for stochastic bandits (see Lattimore and Szepesvári
(2020) for a recent textbook survey), and we propose here a (nonexhaustive) list of such
methods (summarised in Table 2.1), with a particular focus on recent advances in this field.

We recall from Chapter 1 that the quality of a multiarmed bandit policy π played on a
bandit model (ν,F) is measured by its pseudo regretRπ,νT , which grows at least logarithmically
in T , with optimal rate given by the extremal Kullback-Leibler operator KF

inf (Theorem 1.6)
(unless stated otherwise, algorithms presented here consider the expectation risk measure).
It is crucial to consider both the family F and the policy π simultaneously since the latter is
often specialised to operate under the specific setting defined by the former. In particular, we
recall that if a family F is “too large”, the KF

inf operator may vanish, which meaning that no
logarithmic instance-dependent pseudo regret is achievable (Lemma 1.13).

A generic template to implement bandit policies is the index policy algorithm, which (i)
computes for each arm an index equal to a given (possibly randomised) function of its reward
history and (ii) consequently plays the arms with the highest such index (Algorithm 2).

Algorithm 2 Index policy
Input: K arms, index function I : N× R(N) →M+

1 (R).
Initialisation: t = 1, ∀k ∈ [K], Yk = {}, Nk = 0.
while continue do

π ← argmaxk∈[K] It(Yk) ; ▷ Greedy with respect to the index function
Observe Y π

Nπ , Yπ ← Yπ ∪ {Y π
Nπ}, Nπ ← Nπ + 1, t← t+ 1 ; ▷ Update

Remark 2.1 (Initialisation and continuation). In practice, it is common to start bandit algorithms
with an arbitrary policy for a few rounds, e.g. play each of theK arms once for t = 1, . . . ,K. Moreover,
most of our algorithms are anytime, i.e. they run without the knowledge of a time horizon T , we thus
refer to the keyword continue to mean either t ⩽ T or a user-specified stopping criterion.

Greedy policy. A straightforward instance of such index policies is the greedy policy, for
which It(Ykt ) = µ̂kt (empirical mean of rewards in Ykt ) for any k ∈ [K] and t ∈ N. This policy
does not have sublinear regret guarantees. Indeed, imagine a simple two-armed uniform bandit
model ν = U([1, 2])⊗ U([0, 4]) with the expectation risk measure. Clearly, the second arm is
optimal (µ2 = 2 vs. µ1 = 3/2). Let us assume that each arm is played once at initialisation,
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collecting reward Y 1
1 and Y 2

1 respectively. Under the event {Y 2
1 ∈ [0, 1]}, which holds with

probability 1/4, the greedy policy will always play arm 1 since Y 1
t ⩾ Y 2

1 for all t ≥ 1 almost
surely, thus accumulating linear pseudo regret. This is typical case of failing to address the
exploration-exploitation tradeoff: an efficient agent must keep the possibility of exploring
seemingly suboptimal alternatives to compensate for the noisy bandit feedback.

Deterministic index policies. The simplest bandit policy to achieve sublinear regret is the
upper confidence bound (UCB) policy (Auer et al., 2002), which computes It(Ykt ) = µ̂kt +
R
√

2 log(1/δt)/Nk
t , where R ∈ R⋆+ and (δt)t∈N are chosen at initialisation. This is an instance

of the optimism in the face of uncertainty principle: under an R-sub-Gaussian model, It(Ykt )
corresponds to the upper bound of a δt-confidence interval around µk, i.e. the policy plays the
arm that has a plausible chance to be the best, rather than the empirical best according to past
observations. This policy was later extended to SPEF F = {νθ, θ ∈ Θ} (with identity feature
function) with better regret guarantees (Kinf -optimal) by kl-UCB (Cappé et al., 2013) using
It(Ykt ) = max{θ ∈ Θ, Nk

t BL(θ̂kt ; θ) ⩽ f(t))}where θ̂kt = (∇L)−1(µ̂kt ) and f is a slowly growing,
nondecreasing function, corresponding to a concentration rate for the KL divergence. Of note,
ISM-NORMAL (Cowan et al., 2017) circumvents the need for the prior knowledge of R for
Gaussian distributions by estimating the variance.

Other deterministic index policies were introduced for bounded distributions, such as
UCB-V (Audibert et al., 2009) (using empirical Bernstein inequalities rather than sub-Gaussian
concentration bounds) and empirical KL-UCB (Cappé et al., 2013) (exploiting the dual form of
the extremal Kullback-Leibler operator and empirical likelihood), and for upper bounded light
tailed distributions, IMED (Honda and Takemura, 2015), with a lower bound-inspired index
It(Ykt ) = −(Nk

t K
F(−∞,B]
inf (ν̂Ykt ; µ̂⋆t ) + logNk

t ), where µ̂⋆t = maxk∈[K] µ̂
k
t ; these last two algorithms

are Kinf -optimal. For heavy tailed distributions, we mention extensions of UCB (Bubeck et al.,
2013) and KL-UCB (Agrawal et al., 2021) under a known moment condition.

Note that these algorithms implement bandit policies π that are predictable with respect to
the bandit filtration (Gπt )t∈N (i.e. without introducing an independent filtration (G⊥

t )t∈N). In
particular, πt+1 is constant given Gπt , i.e. the same history of past decisions and rewards up to
time twould lead to a reproducible decision at time t+ 1.

Randomised policies. The policies described above ensure sufficient exploration by exploit-
ing the concentration of deterministic estimators of the mean for each arm. An alternative
way to induce exploration is to consider instead randomised estimators. The first example
of such policies, going back as far as Thompson (1933), is Thompson sampling (TS), where
It(Ykt ) ∼ p(µk | Ykt ) is the posterior distribution of µk after observing Ykt (for a given prior
p(µk)). This policy was proven Kinf -optimal for SPEF in Korda et al. (2013) and logarithmic
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for bounded distributions using a reduction to the Bernoulli case called the binarisation trick
(Agrawal and Goyal, 2012). Recently, it was further extended to multinomial and bounded
distributions by nonparametric Thompson sampling (NPTS) (Riou and Honda, 2020), with
It(Ykt ) =

∑Nk
t

i=1W
k,t
i Y k

i +W k,t

Nk
t +1B, where (W k,t

i )N
k
t +1

i=1 follows the Dirichlet distribution DNk
t +1,

and recently to heavy tailed distributions (Baudry et al., 2023). Other algorithms using boot-
strapping schemes have also been proposed (Osband and Roy, 2015; Kveton et al., 2019a,b;
Wang et al., 2020): they share the idea of computing a noisy mean for empirical samples,
enhanced by some exploration aid appropriately tuned to the statistical models they consider.

A different class of algorithms implement randomised policies that are not necessarily index
policies but instead sample arms at random according to a carefully tuned distribution. Such
algorithms are often designed primarily for adversarial bandits and draw inspiration from
optimisation techniques in online learning, see for instance the family of EXP algorithms and
its variants (Seldin et al., 2013; Seldin and Slivkins, 2014; Seldin and Lugosi, 2017). While robust
to adversarial attacks (with formal minimax regret guarantees), these policies often exhibit
poor performances in stochastic environments. Recently, Zimmert and Seldin (2021) combined
online mirror descent with Tsallis entropy regularisation to obtain policies with best-of-both
worlds guarantees for bounded rewards, i.e. O(log T ) and O(

√
T ) instance dependent and

minimax pseudo regrets respectively. Furthermore, inspired by the early works of Maillard
(2011); Honda and Takemura (2011), Bian and Jun (2022) used Boltzmann-like sampling
probabilities in the context of sub-Gaussian rewards, an approach calledMaillard sampling.

Finally, an altogether different approach based on subsampling was introduced in Baransi
et al. (2014) and later extended in Chan (2020); Baudry et al. (2020); in particular, this last
work established Kinf -optimality for all SPEF without having to know which family precisely (up to
possible forced exploration). The common design principle to these algorithms, which do not
implement index policies, it to simulate instead noisy estimators by artificially restricting the
amount of information used by the seemingly optimal arm. However, these proofs heavily rely
on tail properties of SPEF and are thus difficult to generalise beyond these parametric families.

Contrary to deterministic algorithms, these randomised policies π are predictable with
respect to the natural filtration induced by the bandit and the random variables used within the
algorithms. For instance in NPTS, we let G⊥

t = σ(W k,t
i , k ∈ [K], i ∈ {1, . . . , Nk

t + 1}) for t ∈ N
such that πt+1 = argmaxk∈K

∑Nk
t

i=1W
k,t
i Y k

i +W k,t

Nk
t +1B is measurable with respect to σ(Gπt ∪G⊥

t ).
In particular, given only Gπt , πt+1 remains a nondeterministic random variable, i.e. the same
history of decisions and rewards up to time t could lead to a different decision at time t+ 1.
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Remark 2.2 . Of note, several of these algorithms developed and rigorously analysed for multiarmed
bandits have recently been extended to the framework of Markov decision processes for reinforcement
learning, in particular UCB (Bourel et al., 2020) and IMED (Pesquerel and Maillard, 2022).

With so many existing algorithms, why look for more? While many algorithms achieve
optimal regret for bounded distributions with the sole knowledge of their supports (IMED,
NPTS, etc.), the assumptions needed for algorithms working with unbounded distributions
(e.g. SPEF, sub-Gaussian, subexponential) generally assume a known parametric model for the
tails. While such assumptions entail convenient theoretical properties, they may be ill-suited
for use by practitioners, for whom identifying the setting and parameters of interest may be
tedious or infeasible. Still, we believe that actionable, theoretically grounded algorithms for
generic unbounded distributions, or for bounded ones without precisely knowing the range,
would make for a significant step towards a broader adoption of sequential decision-making
methods. For instance, as seen in the foreword, a recommender system for health based on
the body mass index (BMI) may consider this variable to be bounded. Indeed, while class
III obesity is defined by a BMI exceeding 40 kg/m2, extreme BMI have been recorded (up to
204 kg/m2). An algorithm operating under the sole assumption that BMI lies in the range
[0, 204] would therefore likely be overly conservative; for instance, such an algorithm would be
designed to be efficient even for an absolutely unrealistic BMI distribution 1/2δ0 + 1/2δ204.

This raises the question of robustness with respect to model misspecification: on the one
hand, deploying recommendation algorithms in such challenging real-world settings calls for
efficient policies across a large spectrum of (possibly loosely defined) distributions; on the other
hand, Lemma 1.13 suggests that optimality is fundamentally incompatible with such weak
hypotheses. In this thesis, we argue that there exists a sweet spot between these two extremes
(rigid parametrisation versus virtually no assumption at all), albeit a scarcely investigated one.

A first step in this direction is the robust R-UCB algorithm of Ashutosh et al. (2021), that
trades off logarithmic regret for O (f(T ) log T ), where f is a slowly growing function replacing
the fixed sub-Gaussian parameter of the standard UCB, essentially tracking the possible mass
leakage at infinity. However, it inherits the typically suboptimal practical performances of UCB
and thus hardly constitutes a viable alternative for practitioners.

Linear bandit policies. The main index policies (UCB, TS) were also extended to contextual
linear bandits, resulting in LinUCB (Abbasi-Yadkori et al., 2011) and LinTS (Agrawal and
Goyal, 2013; Abeille and Lazaric, 2017). Moreover, instance-dependent optimal algorithms
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have recently been developed for finite action sets, such as Degenne et al. (2020) for sub-
Gaussian SPEF rewards (with identity feature function F ), which is inspired by saddle-point
problems in pure exploration (interestingly, its formulation is flexible enough to adapt to other
structured bandit models); Tirinzoni et al. (2020) for sub-Gaussian rewards using a primal-dual
approach to match the structured lower bound; also for sub-Gaussian rewards, Kirschner et al.
(2021), which couples information-directed sampling with a similar primal-dual analysis.

Risk-aware algorithms. Another hindrance to the adoption of existing recommendation
algorithms that real-world agents may have a preference for policies that do not maximise
average rewards but rather a different, risk-adjusted criterion. Besides the motivating example
in healthcare (see Foreword), we mention the recommendations of crop management practices
in agriculture, with specific risk-aversions to price fluctuations (market-oriented farmers) or
food insecurity (smallholder farmers in developing countries) (Gautron et al., 2022).

While mathematically convenient (linear, naturally expressed by Gaussian likelihood, etc.),
the expectation risk measure is known to equally weight large positive and negative outcomes,
possibly leading to risky policies unsuitable to critical applications, and is also sensitive to
outliers. In contrast, risk-aware measures emphasise different characteristics of the observed
reward distributions, e.g. by stressing out the impact of adverse outcomes (Dowd, 2007). Such
measures include the mean-variance (Markowitz, 1952), conditional Value-at-Risk (Rockafellar
and Uryasev, 2000), which is a special case of spectral risk measures (Acerbi, 2002), entropic
risk (Ahmadi-Javid, 2012) and the expectiles (Newey and Powell, 1987). These risk measures,
in particular the conditional value at risk (CVaR), have been studied as alternatives to the
expectation criterion in classical multiarmed bandits (Galichet et al., 2013; Gopalan et al.,
2017; Cassel et al., 2018; Tamkin et al., 2019; Prashanth et al., 2020; Pandey et al., 2021; Baudry
et al., 2021a); the latter in particular proposes an extension of NPTS that is optimal in the
sense of Theorem 1.6 for ρ = CVaR. We also refer to Maillard (2013) for the entropic risk. In
distributional reinforcement learning, quantile regression has been studied for DQN (Dabney
et al., 2018). However, the literature on risk aware contextual bandits is much sparser, see
e.g. Wirth et al. (2022) with mean-variance and CVaR bandit optimisation in the context
of vehicular communication. Despite promising empirical results, contributions outside of
multiarmed bandits are largely devoid of theoretical regret guarantees.
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Table 2.1 – Summary of classical bandit algorithms for the expectation risk measure and various
stationary bandit models. Elements listed as prior knowledge are used within the algorithm.
Algorithm Regret guarantees Algorithm prior knowledge
UCB1
Auer et al. (2002)

Kinf -optimal on FN ,σ

Logarithmic on FG,R
σ ∈ R⋆+ or R ∈ R⋆+

UCB-V
Audibert et al. (2009)

Logarithmic on F[B,B] B,B

kl-UCB
Cappé et al. (2013)

Kinf -optimal on FSPEF
h,F,L (θ, θ′) ∈ Θ2 7→ BL(θ′, θ)

Empirical KL-UCB
Cappé et al. (2013)

Kinf -optimal on F[B,B] B,B

IMED
Honda and Takemura (2015)

Kinf -optimal on F ℓ ∩ F(−∞,B] B

LB-SDA, RB-SDA
Baudry et al. (2020)

Kinf -optimal on FSPEF None
(may require forced exploration)

TS
Thompson (1933)
Korda et al. (2013)
Agrawal and Goyal (2012)

Kinf -optimal on FSPEF

Logarithmic on F[B,B]

Suitable SPEF conjugate prior
B, B (binarised)

NPTS
Riou and Honda (2020)

Kinf -optimal on F[B,B] B,B

Robust UCB
Bubeck et al. (2013)

Logarithmic on FM,ε M , ε

Kinf -UCB
Agrawal et al. (2021)

Kinf -optimal on FM,ε M , ε

h-NPTS
Baudry et al. (2023)

Kinf -optimal (η ∈ R⋆+) on
F centred
κ,ε

⋂( ⋃
M∈R⋆+

FM,1+2ε+η) κ, ε

R-UCB
Ashutosh et al. (2021)

O (log(T )f(T )) on Fℓ Slowly growing function f

Generic UCB
Chapter 1

Depends on the confidence bounds
Logarithmic on FG,R, FEF

h,F,L, FM,ε, etc.
Time-uniform confidence
sequence (see Table 2.3)

Dirichlet sampling
Chapter 6

Kinf -optimal on new settings
O (log(T ) log log(T )) on Fℓ (RDS)

New settings
None for RDS
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2.2 How do others concentrate? Overview of confidence bounds

Many learning tasks, and specifically bandits, require to estimate some characteristics of an
unknown distribution (typically the mean) solely based on observed samples. The theory of
concentration provides a natural way to control the magnitude of the estimation error. Besides
the background material of Chapter 1, we refer the interested reader to the monographs of
Boucheron et al. (2013); Raginsky et al. (2013); Dembo and Zeitouni (2009).

Fixed samples. In applied statistics, confidence sets and corresponding p-values are often
derived fromGaussian assumptions (e.g. the ubiquitous mean±1.96×standard deviation/√n
formula at 95% significance). However, these are typically only valid asymptotically (central
limit theorem) or for Gaussian distributions only (Student t-test), which is incompatible with
our aim towards small samples and nonparametric guarantees. Similarly, resampling methods
(bootstrap, jacknife, see Efron (1992)), although very flexible, lack finite sample guarantees.

Many concentration inequalities have been developed over the years to provide nonasymp-
totic confidence sets with provably high probability, most notably1 Chernoff (1952); Hoeffding
(1963) for sub-Gaussian or bounded distributions and Bernstein (1924); Bennett (1962) for
bounded distributions with specified variance, all derived from bounding the MGF (as in
Proposition 1.15), and later improved by Bentkus (2004) using tighter polynomial bounds. Mo-
tivated by practical applications, the variance specificationwas also replaced by data-dependent
estimators, giving rise to empirical bounds, see e.g. Maurer and Pontil (2009); Kuchibhotla
and Zheng (2021). While mathematically convenient, these simple inequalities are often quite
loose, resulting in much less statistical power compared to parametric tests. Of note, such
concentration bounds are nonetheless useful in other areas of statistical learning such as PAC
learning, with e.g. the recent unexpected Bernstein inequality of Mhammedi et al. (2019),
extended to CVaR generalisation bounds in Mhammedi et al. (2020). Recently, an altogether
different method for bounded distributions (Phan et al., 2021), building on Anderson’s bound,
provided numerically sharp confidence sets for small samples, which however lack closed-form
expressions and require Monte Carlo estimation to be calculated.

Outside the scope of bounded distributions, a vast corpus of the concentration literature has
studied self-normalised sums, drawing inspiration from Student’s t-statistic in the Gaussian case
(Bercu and Touati, 2008; Delyon, 2009; Peña et al., 2009). The latest developments in this field
provide deviation bounds under the sole assumption of known and finite variance (Bercu and
Touati, 2019, Theorem 2.6); to our knowledge, no empirical extension of this self-normalised
bound has been derived, thus again limiting the potential for practical applications.

1Like many other areas of science, the literature on the concentration of measure is no stranger to Stigler’s law of
eponymy. Many standard bounds can be traced back to the seminal work of Sergei Bernstein in the 1920s and 1930s,
and then rediscovered several decades later. For ease of reference, we use the most common names.

48



2.2 How do others concentrate? Overview of confidence bounds

Anytime-valid statistics The challenge of bridging the gap between theory and practice in
bandits is all the more arduous as it requires more sophisticated concentration tools than those
presented above. Although any fixed sample confidence set can be made uniformly valid over
a finite horizon (union bound, known as Bonferonni correction in multiple testing), this comes
at the cost of dramatically decreasing the power of the associated statistical tests. A better
approach is to combine supermartingale techniques with such union arguments over geometric
time grids, a technique known as time peeling (or stitching) — see Bubeck (2010); Cappé
et al. (2013) for early uses in bandits, Garivier (2013), and more recently Maillard (2019b);
see also Howard et al. (2020, 2021) for a recent, complementary survey of the history of this
field. These peeling-based confidence sequences are able to match the O(

√
log log(t)/t) lower

bound prescribed by the law of iterated logarithm (Proposition 1.28); however, as argued in
Chapter 1, a subtlety of time-uniform statistics is that such asymptotically optimal rates are
often associated with wide confidence sets for small samples, which is undesirable in practice.

Another approach, which we favour in the thesis, is the method of mixtures, initiated by
Robbins and Pitman (1949); Robbins (1970) and popularised further in Peña et al. (2009). It
constitutes a powerful alternative to peeling for developing anytime-valid confidence sequences
with explicit expressions and tight practical performances. It was originally developed for
(sub-)Gaussian families, and has seen widespread use in bandits after the seminal work of
Abbasi-Yadkori et al. (2011). Still, generalising this method beyond the sub-Gaussian case, for
which natural conjugate mixing measures exist, has been a challenging issue. Kaufmann and
Koolen (2021) applied an ad hoc discrete mixture construction to SPEF, with explicit bounds
restricted to Gaussian and Gamma distributions (known variance and shape).

Finally, a fairly different capital process construction, has been recently developed in Shafer
and Vovk (2019), in relation to the notion of e-processes mentioned in Chapter 1. It has been
further analysed for bounded distributions inWaudby-Smith and Ramdas (2023), leading to so-
called hedged capital confidence sequenceswith predictablemixtures, with sharp concentration
with the sole knowledge of the distribution support.

With somany existing confidence bounds, why look formore? First, given theirwidespread
use in statistical modelling, in particular in bandits, it is perhaps surprising that no cromulent
anytime-valid confidence sequence was developed for generic exponential families. Moreover,
following our discussion on extending nonparametric bandit algorithms to more practitioner-
friendly settings, we believe it is worthwhile to investigate concentration tools for alternative
specifications, for instance unbounded distributions with no prior information on the variance
nor the sub-Gaussian parameter (in a similar fashion to empirical Bernstein inequalities).
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Table 2.2 – Summary of nonasymptotic, fixed sample confidence sets for the mean. The dependency on
the confidence level δ ∈ (0, 1) is typically O(

√
log(1/δ)).

Confidence set Concentration rate Prior knowledge
Chernoff, Hoeffding
Chernoff (1952)
Hoeffding (1963)

O
(
R√
t

)
on FG,R and F[B,B] R = B−B

2

Bernstein, Bennett
Bernstein (1924)
Bennett (1962)

O
(
σ√
t

+ B−B
t

)
on F[B,B] ∩ F

centred
σ,1 σ,B, B

Bentkus, Pinelis
Bentkus (2004)
Pinelis (2006)

O
(
σ√
t

+ B−B
t

)
on F[B,B] ∩ F

centred
σ,ε

(tighter)
σ, ε ⩾ 1, B, B

Bercu-Touati
Bercu and Touati (2019)

Self-normalised, F centred
σ,ε σ, ε ⩾ 1

Student
Student (1908)

O
(
σ̂t√
t

)
on FN Gaussian

Empirical Bernstein
Maurer and Pontil (2009)

O
(
σ̂t√
t

+ B−B
t

)
on F[B,B] B, B

Empirical Bentkus
Kuchibhotla and Zheng (2021)

O
(
σ̂t√
t

+ B−B
t

)
on F[B,B]

(tighter)
B, B

Anderson-Phan
Phan et al. (2021)

Simulated, F[B,B]
(very tight for small samples)

B, B

Hedged capital
Waudby-Smith and Ramdas (2023)

O
(
B−B√

t

)
on F[B,B]

(implicit bound, quite tight)
B, B

Bregman deviations
Chapter 3 O

(
1√
t

)
on FEF

h,F,L Generic EF

Empirical Chernoff
Chapter 4

≈ O
(
σ̂t
ρ
√
t

)
(second order sub-Gaussian)

ρ ∈ (0, 1]
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Table 2.3 – Summary of nonasymptotic, time-uniform confidence sequences for the mean. The depen-
dency on the confidence level δ ∈ (0, 1) is typically O(

√
log(1/δ)).

Confidence sequence Concentration rate Prior knowledge

Union bound over any
T fixed sample bounds

O
(√

log T
t

)
at most

(usually very slow)
Depends on the bound

Horizon T

Geometric time-peeling O
(
R
√

log log t
t

)
(usually slow for small samples)

Depends on the bound

Method of mixtures
(sub-Gaussian) O

(
R
√

log
√
t

t

)
on FG,R R

Inverted stitching
Howard et al. (2021)

O
(
R
√

log log t
t

)
on FG,R R

Kaufmann-Koolen
Kaufmann and Koolen (2021)

O
(√

log log t
t

)
on FSPEF

h,F,L
Gaussian (known variance)
Gamma (known shape)

Hedged capital
Waudby-Smith and Ramdas (2023)

O
((
B −B

)√
log log t

t

)
on F[B,B]

(implicit bound, quite tight)
B, B

Bregman deviations
Chapter 3 O

(√
log

√
t

t

)
on FEF

h,F,L Generic EF

Empirical Chernoff
Chapter 4

≈ O
(
σ̂t
ρ

√
log

√
t

t

)
(second order sub-Gaussian)

ρ ∈ (0, 1]

2.3 Outline and contributions

In these two preliminary chapters, we have introduced a statistical toolbox (stochastic bandits,
concentration) to formally analyse statistical sequential decision-making problems. The main
goal of this thesis is to adapt these well-known tools to the specific context of healthcare
recommendations, which raises several new and difficult challenges compared to current use
cases of such methods.

First, although we live in the era of big data, heralded with the large-scale use of internet,
many fields of applications, among which healthcare is a prominent example, work with small,
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highly specialised datasets. To put it simply, what constitutes big data for a medical professional
that has carefully monitored a cohort of patients over several years for a clinical trial is orders
of magnitude lower than what is available for prediction and recommendation in an online
marketplace, streaming platforms, advertisement company, etc.

• In Chapter 3, we adapt the method of mixtures, primarily designed for (sub)-Gaussian
distributions, to the broader setting of generic exponential families. While these are
parametric models, we believe these new concentration inequalities fill an important gap
in the literature and provide practitioners with more extensive modelling tools. With
applicability in mind, we instantiate our novel bound to many classical families and
illustrate a use case in change point detection.

• In Chapter 4, we introduce the notion of second order sub-Gaussian distributions, a
refinement on the classical notion of sub-Gaussian tail control that allows for empirical
concentration inequalities without the need for a prior bound on the variance or on the
support. We derive implementable confidence sets using special functions (LambertW ,
confluent hypergeometric functions), both in fixed samples and time-uniform. We believe
this new class of nonparametric distributions offer an appealing modelling alternative
for practitioners, more flexible than rigid parametric specifications à la Gaussian, but
sharper than many other nonparametric families (e.g. bounded distributions).

Second, it is noteworthy than the majority of the sequential decision-making literature
considers only the expectation risk measure. Besides the fact that it makes for a convenient
mathematical setting, we believe this is also driven by the current industrial applications of
such methods, since most online recommender systems aim to maximise clickthrough rate,
i.e. the expected frequency of visits to given ads, movies, purchasable items, etc. Although
some risk-aware algorithms have been analysed for the simple multiarmed bandit problem,
more sophisticated models such as contextual bandits have been almost exclusively studied in
risk-neutral settings, barring a few mostly empirical studies.

• In Chapter 5, we revisit the LinUCB algorithm for linear bandits to optimise certain risk
measures of the reward distributions, generalising beyond the standard mean criterion.
We consider risk measures that are elicitable by convex loss functions, extending the
classical sequential ridge regression to a broader class of empirical risk minimisation
problems. Under a bounded curvature assumption of the loss, we are able to derive
pseudo regret upper bounds based on a variant of the multivariate method of mixtures,
that naturally extend the guarantees of the standard LinUCB.

Third, we study an alternative approach to deterministic UCB-style algorithms based on
randomisation, continuing our effort towards more flexible, nonparametric models.
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• In Chapter 6, we introduceDirichlet sampling, a resampling scheme formultiarmed bandits
with a generic exploration incentive structure that can be adapted to different, original
settings. In particular, we obtain optimal guarantees for two new families of distributions,
namely bounded under a detectability assumption alone (without knowing the bounds),
and semiboundeddistributionswith a quantile condition. We also derive near-logarithmic
pseudo regret for the class of all light tailed distributions, with competitive performances
on a vast range of experiments.

• In Chapter 7, we extend the Dirichlet sampling scheme to contextual linear bandits (in
the generic elicitable risk framework of Chapter 5) using weighted bootstrap regression.
We propose a heuristic regret analysis, backed by the theory of strong approximation of
empirical processes, revealing a connection betweenDirichlet sampling for nonparametric
statistical models and the linear Gaussian Thompson sampling. We also show substantial
improvements on numerical experiments compared to optimistic algorithms.

These first three parts offer different approaches to improve the current state of sequential
recommendation algorithms and help bridge the gap between theory and practice. However, we
believe that in order to truly contribute to applications beyond the scope of machine learning
and mathematics, here in healthcare, it is essential to collaborate conjointly with medical
practitioners and work with real patient data on clinically relevant issues. The last part of this
thesis illustrates this commitment to such an interdisciplinary approach.

As mentioned earlier, this thesis is part of a broader, long-term collaboration between
machine learning researchers at Inria Scool and medical surgeons and researchers at Lille
UniversityHospital, aiming to developdata-driven recommendations for bariatric postoperative
follow-up. We identified early on that a first step towards this ambitious goal was to predict
with reasonable accuracy the expected weight trajectories of patients living with severe obesity.
Indeed, long-term weight loss is the primary outcome of this type of surgical procedures, and
irregular weight trajectories are often associated with complications, the early detection and
prevention of which being the main concern of postoperative follow-up. In this part, we focus
on more traditional machine learning methods than bandits, however we hope this paves a
way to build further towards personalised prospective recommendations for patients.

• In Chapter 8, we report the development of a white box prediction model for weight
trajectories, and its validation on a large international cohort. Starting on a rich dataset
of patients who underwent surgery in Lille, we extract a subset of predictive covariates
using LASSO feature selection, which we further use to train a set of decision trees to
predict weight loss. This simple method is highly interpretable even by non-specialists,
such as primary care providers. The prediction model, as well as a graphical overlay to
display smooth weight trajectories, is embedded in a freely available website.
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Finally, we acknowledge that this thesis is rather long. To help readers navigate it, we
suggest a reading order, indicated by the following symbols.

ç For readers with a background in statistics and probability interested in concentration
bounds: start with Chapters 3 and Chapters 4.

� For readers interested in stochastic bandits: start with Chapters 5, 6 and 7.

� For readerswith amedical background interested in bariatric surgery, start with Chapter 8.
Furthermore, readers may find in appendix technical results and complementary discus-

sions. Appendix sections that we believe may be skipped at first reading and that are available
in a similar form in published articles are indicated by the symbol y.
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Safe, anytime-valid and efficient
concentration

or how to play smart with few data





Chapter 3

Bregman deviations of generic
exponential families (ç)

I mention his talk about angles because it suggests something
Wilcox had told me of his awful dreams. He had said that the
geometry of the dream-place he saw was abnormal, non-Euclidean,
and loathsomely redolent of spheres and dimensions apart from ours.

—H.P. Lovecraft, The Call of Cthulhu

The content of this chapter was published at the 2023 Conference On Learning Theory
(COLT) (Chowdhury et al., 2023), and was presented at the 2022 Probability PhD Day at the
University of Lille, the 2022 Safe, Anytime-Valid Inference (SAVI) workshop, and the 2023
Machine Learning and Massive Data Analysis (MLMDA) seminar at ENS Paris-Saclay. Compared
to the article, we report here in the main text (i) the proofs of the time-uniform (Theorem 3.3)
and doubly time-uniform (Theorem 3.8) confidence sequences, highlighting connections with
the classical method of mixtures presented in Chapter 1, and (ii) additional numerical
experiments, especially for the GLR change point test. The instantiation of our novel bound to
classical families is summarised in Table 3.1 and is available off-the-shelf in the
concentration-lib Python module. To avoid cluttering, the complete derivation of these bounds,
which amounts to simple but tedious algebra, is deferred to Appendix B .

Contents
3.1 Preliminary: Bregman tail and duality properties . . . . . . . . . . . . . . . . 58
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Bregman deviations of generic exponential families (ç)

Outline and contributions

In this chapter, we revisit themethod ofmixtures for parametric exponential families of arbitrary
dimension, expressing deviations in the natural (Bregman) divergence of the family. The setting
of exponential families is convenient for integration in a Bayesian setup, thanks to the notion of
conjugate prior that enables us to reduce computation of tedious integrals to simple parameter
updates. Here, we exploit this property to obtain explicit mixtures of martingales, following the
principle outlined in Theorem 1.20. Exponential families are largely used in modern machine
learning, yet concentration tools available to the practitioner are comparatively scarce — the
only previous work on exponential families (Kaufmann and Koolen, 2021) used a discrete
mixture construction limited to SPEF,with numerical implementation only forGaussian (known
variance) and Gamma (known shape) distributions. To help close this gap, we obtain both
sharp and computationally tractable confidence sets, especially in the small sample regime.

In Section 3.1, we first recall some background material on exponential families and their
associated Bregman divergences. Section 3.2 states our main result (Theorem 3.3): a time-
uniform concentration inequality for exponential families. Specifically, we control the Bregman
deviations associated with the log-partition function of the family using a novel information-
theoretic quantity, the Bregman information gain. On a high level, this quantifies the information
gain about the parameter of a distribution in a given family after observing i.i.d. samples from
it, which is measured in terms of the natural Bregman divergence of the family. To illustrate
the utility of this general result, we detail in Section 3.3 how the Bregman information gain
and deviation inequalities specialise for well-known exponential families, resulting in fully
explicit confidence sets (Table 3.1). To the best of our knowledge, this is the first explicit time-
uniform inequality for two-parameter Gaussian (i.e. both mean and variance are unknown),
Chi-square, Weibull, Pareto, and Poisson distributions. In Section 3.4, we numerically evaluate
the high-probability confidence sets built from our method for classical families, and achieve
state-of-the-art time-uniform bounds. Finally, in Section 3.5, we generalise Theorem 3.3 to obtain
a doubly time-uniform concentration inequality for generic exponential families (Theorem 3.8).
We present an application of both these results in controlling the type I error of the generalised
likelihood ratio (GLR) test, used for change point detection in exponential family models.

3.1 Preliminary: Bregman tail and duality properties

We start by introducing classical properties of Bregman divergences which are central to our
confidence sequence construction. We consider an exponential family FEF

h,F,L = {pθ, θ ∈ Θ}
over a set Y , parametrised by an open set Θ ⊆ Rd (see Section 1.3 in Chapter 1). We recall the
expression of the density and the Bregman divergence associated with the (finite, invertible)
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convex mapping L : Θ→ R:

pθ : Y −→ R+ and BL : Θ×Θ −→ R+

y 7−→ h(y)e⟨θ,F (y)⟩−L(θ) (θ′, θ) 7−→ L(θ′)− L(θ)−
〈
θ′ − θ,∇L(θ)

〉
. (3.1)

The first property links the Bregman divergence BL to the moment generating function of
the random variable F (Y ) where Y ∼ pθ and θ ∈ Θ, which makes Bregman divergences well
suited to control the tail behaviour of random variables appearing in concentration inequalities.
The second one highlights duality properties that enables convenient algebraic manipulations.
To this end, we let Λθ = {λ ∈ Rd, λ+ θ ∈ Θ} and define the function

BL,θ : Λθ −→ R

λ 7−→ BL(θ + λ, θ) = L(θ + λ)− L(θ)− ⟨λ,∇L(θ)⟩ . (3.2)

We also introduce its Legendre-Fenchel dual B⋆L,θ : x 7→ supλ∈Λθ⟨λ, x⟩ −G(λ).

Lemma 3.1 (Properties of Bregman divergences). Let θ ∈ Θ and λ ∈ Λθ. The following equality
holds:

logEθ [exp (⟨λ, F (Y )− Eθ[F (Y )]⟩)] = BL,θ(λ) . (3.3)

Furthermore, if ∇L is one-to-one, the following Bregman duality relations hold for any parameters
θ, θ′ ∈ Θ:

BL(θ′, θ) = B⋆L,θ′(∇L(θ)−∇L(θ′)) = BL⋆(∇L(θ),∇L(θ′)) . (3.4)

More generally, the following holds for any α ∈ [0, 1] :

B⋆L,θ′
(
α(∇L(θ)−∇L(θ′))

)
= BL

(
θ′, θα

)
, (3.5)

where

θα = ∇L−1(α∇L(θ) + (1− α)∇L(θ′)
)
. (3.6)

The second half of this technical lemma is essentially a change of variable formula to move
back and forth between two representations of an exponential family: in natural parameters

59



Bregman deviations of generic exponential families (ç)

(measured by the Bregman divergence between θ′ and θ) and in expectation parametrisa-
tion (measured by the dual Bregman divergence between ∇L(θ) = Eθ[F (Y )] and ∇L(θ′) =
Eθ′ [F (Y )] ). For more background on this, which forms the basis of the information geometry
field, we refer to Amari (2016, Sections 2.1 and 2.7). This result is at the root of the martingale
construction behind Theorem 3.3 in the next section.

Proof of Lemma 3.1. The first equality is immediate, since Eθ[F (Y )] = ∇L(θ) and

logEθ [exp(⟨λ, F (Y )⟩)] = log
∫

exp(⟨λ, F (y)⟩+ ⟨θ, F (y)⟩ − L(θ))dy (3.7)

= L(λ+ θ)− L(θ) . (3.8)

We now turn to the duality formula. Using the definition of each terms, we have

B⋆L,θ′(∇L(θ)−∇L(θ′)) = sup
λ∈Λθ
⟨λ,∇L(θ)−∇L(θ′)⟩ −

[
L(θ′ + λ)− L(θ′)− ⟨λ,∇L(θ′)⟩

] (3.9)

= sup
λ∈Λθ
⟨λ,∇L(θ)⟩ − L(θ′ + λ) + L(θ′) . (3.10)

An optimal λ must satisfy ∇L(θ) = ∇L(θ′ + λ). Hence, provided that ∇L is invertible, this
means λ = θ − θ′. Plugin-in this value, we obtain

B⋆L,θ′(∇L(θ)−∇L(θ′)) = ⟨θ − θ′,∇L(θ)⟩ − L(θ) + L(θ′) = BL(θ′, θ) . (3.11)

The remaining equality BL(θ′, θ) = BL⋆(∇L(θ),∇L(θ′)) is a standard result. Finally, regarding
the generalisation, we note that

B⋆L,θ′
(
α(∇L(θ)−∇L(θ′))

)
= sup

λ∈Λθ
⟨λ, α∇L(θ) + (1− α)∇L(θ′)⟩ − L(θ′ + λ) + L(θ′) . (3.12)

Hence, an optimal λmust now satisfy α∇L(θ)+(1−α)∇L(θ′) = ∇L(θ′ +λ), that is λ = θα−θ′.
This further yields

B⋆L,θ′
(
α(∇L(θ)−∇L(θ′))

)
= ⟨θα − θ′,∇L(θα)⟩ − L(θα) + L(θ′) = BL(θ′, θα) . (3.13)

■

3.2 Time-uniform Bregman concentration

In this section, we are interested in controlling the deviation between a fixed parameter θ⋆ ∈ Θ
and its estimate θ̂t built from t observations from distribution pθ⋆ . We naturally measure this
deviation in terms of the canonical Bregman divergence of the family. As in Section 1.4 in
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Chapter 1, we would like to control this deviation not only for a single sample size t, but
simultaneously for all t ∈ N. Namely, we would like to upper bound quantities of the form
P
(
∃t ∈ N : BL(θ⋆, θ̂t) ⩾ . . .

)
. We recall that such controls are paramount when observations

are gathered sequentially (either actively or otherwise), especially when the number of obser-
vations is unknown beforehand, as in stochastic bandits or reinforcement learning.

Bregman information gain

We first introduce a quantity that measures a form of information gain about θ⋆ after observing t
samples, but expressed in terms of the natural Bregman divergence.

Definition 3.2 (Bregman information gain). Let (Ys)ts=1 be i.i.d. samples drawn from pθ⋆ , where
θ⋆ ∈ Θ ⊂ ΘI , and let θ0 ∈ Θ be a reference parameter. For any constant c > 0, the Bregman
information gain about θ⋆ from θ0 after observing (Ys)ts=1 is defined as

γt,c(θ0) = log

 ∫
Θ exp (−cBL(θ′, θ0)) dθ′∫

Θ exp
(
−(t+ c)BL(θ′, θ̂t,c(θ0))

)
dθ′

 , (3.14)

where we defined the regularised parameter estimate of θ⋆ by

θ̂t,c(θ0) = (∇L)−1


t∑

s=1
F (Ys) + c∇L(θ0)

t+ c

 . (3.15)

Parameter estimate. To gain intuition, we observe that θ̂t,c(θ0) is essentially a maximum a
posteriori (MAP) estimate. Indeed, the likelihood of a sample (Ys)ts=1 drawn from pθ is given by
p
(
(Ys)ts=1 | θ

)
∝ exp

(
⟨θ,
∑t
s=1 F (Ys)⟩ − tL(θ)

)
. Now, given a reference point θ0 ∈ Θ, consider

the prior p (θ) ∝ exp (⟨θ,∇L(θ0)− cL(θ)), that involves the log-partition of the family at hand.
Then the posterior over θ given the sample (Ys)ts=1 takes the form

p
(
θ | (Ys)ts=1

)
∝ exp

(〈
θ,

t∑
s=1

F (Ys) + c∇L(θ0)
〉
− (t+ c)L(θ)

)
. (3.16)

In particular, p(θ) is a conjugate prior in the Bayesian sense as the posterior distribution takes the
same form as the prior distribution, with updated parameters. The MAP estimator θ̂MAP

t,c (θ0) =
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argmaxθ∈Θ p
(
θ | (Ys)ts=1

) can be derived by differentiating the exponentiated term (assuming
mild regularity conditions as noted above in Section 1.3), resulting in θ̂MAP

t,c (θ0) = θ̂t,c(θ0).
To better interpret c, we examine the specific case of Bernoulli distributions, i.e. Θ = (0, 1),

pθ(y) = θy(1 − θ)1−y for y ∈ {0, 1} (density with respect to the counting measure). The
conjugate prior to pθ is given by the Beta(a, b) distribution with a, b ∈ R⋆+, leading to the
posterior distribution Beta(a+ St, b+ (t− St)) with St =

∑t
s=1 Yt. The MAP estimator is then

θ̂t,a,b = (St + a)/(a+ b+ t). For integer values of a and b, this corresponds to the maximum
likelihood estimator (MLE) after observing a success and b failures in addition to the t Bernoulli
trials (Ys)ts=1. Anticipating on the sequel (see Appendix B.2), the regularised parameter
estimate of Definition 3.2 with reference point θ0 ∈ Θ takes the form θ̂t,c(θ0) = (St+cθ0)/(t+c),
which corresponds to the MAP with parameters a = cθ0 and b = c(1− θ0). Therefore, c can be
interpreted as a virtual number of prior samples drawn from the reference distribution pθ0 .

Dependence on θ0 and example. The acute reader can note that the considered parameter
estimate θ̂t,c(θ0) and Bregman information gain γt,c(θ0) involve a reference parameter θ0. It
makes sense to have such a local reference point since the Bregman divergence is typically
linked to metrics with local (non-constant) curvature. Hence, the (information) geometry seen
from the perspective of different points θ0 may vary, unlike in the Gaussian case. Specifically,
for a Gaussian N (µ, σ2) with known variance σ2, the Bregman information gain with respect
to a reference point µ0 reads

γN
t,c(µ0) = 1

2 log 2πσ2

c
− 1

2 log 2πσ2

t+ c
= 1

2 log t+ c

c
. (3.17)

It is independent of the reference parameter µ0, which is a consequence of the fact that the
Bregman divergence in this case is proportional to the squared Euclidean distance; in other
words, Gaussian distributions with known variance exhibit invariant geometry. However,
for other exponential families, the geometries are inherently different, and hence Bregman
information gain depend explicitly on local reference points (see Section 3.3 for details). For
reference, the classical Gaussian information gain, i.e. the mutual information between a
prior µ ∼ N (µ0, σ

2) and the average of an i.i.d. sample (Ys)ts=1 drawn from N (µ, cσ2) is
1
2 log((t+ c)/c), which matches the Bregman information gain.

Method of mixtures for generic exponential families

We now present the main result of this chapter — a time uniform confidence bound connecting
the Bregman geometry of the exponential family with its Bregman information gain.
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Theorem 3.3 (Method of mixtures for generic exponential families). Let δ ∈ (0, 1] and t ∈ N.
Under the assumptions of Definition 3.2 and assuming the Bregman information gain is well-defined,
consider the set

Θ̂δ
t,c =

{
θ0 ∈ Θ : (t+ c)BL

(
θ0, θ̂t,c(θ0)

)
⩽ log 1

δ
+ γt,c(θ0)

}
. (3.18)

Then
(
Θ̂δ
t,c

)
t∈N

is a time-uniform confidence sequence at level δ for θ⋆, i.e.

Pθ⋆
(
∀t ∈ N, θ⋆ ∈ Θ̂δ

t,c

)
⩾ 1− δ , (3.19)

or equivalently, for any random time τ in N,

Pθ⋆
(
θ⋆ ∈ Θ̂δ

τ,c

)
⩾ 1− δ . (3.20)

Note the implicit definition of the confidence set Θ̂δ
t,c, where the parameter of interest θ0 appears

in both arguments of the Bregman divergence, and also in the Bregman information gain γt,c(θ0).
Because of this, computing this confidence set from the equation in Theorem 3.3 may seem
nontrivial at first glance. However, we show in Section 3.3 how these sets simplify for many
classical families, revealing how the computation can be made efficiently. Moreover, we observe
that these confidence sets are actually tighter than those of prior work, and as such are especially
well suited to be used when t is small (for large t, most methods produce essentially equivalent
confidence sets).

Proof of Theorem 3.3. We adapt here the method of mixtures, leveraging properties of Breg-
man divergences recalled in Lemma 3.1 to build suitable exponential martingales and mixing
measures. Let (Yt)t∈N denote an i.i.d. sequence drawn from pθ⋆ ∈ FEF

h,F,L.

Martingale andmixturemartingale construction. Let us note that Eθ⋆ [F (Y1)] = ∇L(θ⋆) and
logEθ⋆ [exp⟨λ, F (Y1)⟩] = L(θ⋆ + λ)− L(θ⋆). Hence, we deduce that

logEθ⋆ [exp⟨λ, F (Y1)− Eθ⋆ [F (Y1)]⟩] = BL,θ⋆(λ)L(θ⋆ + λ)− L(θ⋆)− ⟨λ,∇L(θ⋆)⟩ . (3.21)
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Now, for t ∈ N, we let µ̂t = 1
t

∑t
s=1 F (Ys) and µ = Eθ⋆ [F (Y1)]. For any λ ∈ Rd, the following

quantity

Mλ
t = exp (⟨λ, t(µ̂t − µ)⟩ − tBL,θ⋆(λ)) (3.22)

thus defines a nonnegative martingale such that Eθ⋆ [Mλ
t ] = 1.

We now introduce the distribution q(θ|α, β) = H(α, β) exp(⟨θ, α⟩ − βL(θ)) over θ ∈ Θ,
where H is the normalisation term. We further introduce the following quantity

Mt =
∫

Λθ⋆
Mλ
t q(θ⋆ + λ|α, β)dλ , (3.23)

where we recall that Λθ⋆ = {λ ∈ Rd, θ⋆ + λ ∈ Θ}. This also satisfies Eθ⋆ [Mt] = 1. Further, we
have the rewriting

Mt = H(α, β)
∫

Λθ⋆
exp (⟨λ, t(µ̂t − µ)⟩ − tBL,θ⋆(λ) + ⟨λ+ θ⋆, α⟩ − βL(θ⋆ + λ)) dλ . (3.24)

Choice of parameters and duality properties. Setting α = c∇L(θ⋆) and β = c, we obtain

Mt = H(c∇L(θ⋆), c)
∫

Λθ⋆
exp (⟨λ, t(µ̂t − µ)⟩ − tBL,θ⋆(λ) + c⟨λ+ θ⋆,∇L(θ⋆)⟩ − cL(θ⋆ + λ)) dλ

= G(θ⋆, c)
∫

Λθ⋆
exp (⟨λ, t(µ̂t − µ)⟩ − (t+ c)BL,θ⋆(λ)) dλ , (3.25)

where we introduce the following quantity

G(θ⋆, c) = H(c∇L(θ⋆), c) exp (c⟨θ,∇L(θ⋆)⟩ − cL(θ⋆)) = exp (c⟨θ⋆,∇L(θ⋆)⟩ − cL(θ⋆))∫
Θ exp (c⟨θ′,∇L(θ⋆)⟩ − cL(θ′)) dθ′

=
[∫

Θ
exp

(
−cBL(θ′, θ⋆)

)
dθ′
]−1

.

(3.26)

At this point, let us introduce x = t
t+c(µ̂t − µ). We also consider the Legendre-Fenchel dual

function B⋆L,θ(x) = maxλ⟨λ, x⟩ − BL,θ⋆(λ) and denote λ⋆x its maximal point. Now, we note that
x+∇L(θ⋆) = ∇L(θ⋆ + λ⋆x) and thus

⟨λ, x⟩ − BL,θ⋆(λ)− ⟨λ⋆x, x⟩+ BL,θ⋆(λ⋆x) = ⟨λ− λ⋆x, x+∇L(θ⋆)⟩+ L(θ⋆ + λ⋆x)− L(θ⋆ + λ)

= ⟨λ− λ⋆x,∇L(θ⋆ + λ⋆x)⟩+ L(θ⋆ + λ⋆x)− L(θ⋆ + λ) .
(3.27)

Also, sincewe have the equalityx = t
t+c(µ̂t−∇L(θ⋆)), the quantityx+∇L(θ⋆) = ∇L(θ⋆+λ⋆x)

rewrites t
t+c µ̂t+

c
t+c∇L(θ⋆) = ∇L(θ⋆+λ⋆x), which justifies to introduce the following regularised
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parameter estimate:

θ̂t,c(θ⋆) = (∇L)−1
(

t

t+ c
µ̂t + c

t+ c
∇L(θ⋆)

)
. (3.28)

Martingale rewriting and conclusion. Using this property, we note that

Mt = exp
(
(t+ c)B⋆L,θ⋆(x)

)
G(θ⋆, c)

×
∫

Λθ⋆
exp ((t+ c) [⟨λ− λ⋆x,∇L(θ⋆ + λ⋆x)⟩ − L(θ⋆ + λ) + L(θ⋆ + λ⋆x)]) dλ

= exp
(
(t+ c)B⋆L,θ⋆(x)

)
G(θ⋆, c)

×
∫

Λθ⋆
exp (⟨λ+ θ⋆, (t+ c)∇L(θ⋆ + λ⋆x)⟩ − (t+ c)L(θ⋆ + λ)) dλ

× exp (−(t+ c)⟨λ⋆x + θ⋆,∇L(θ⋆ + λ⋆x) + (t+ c)L(θ⋆ + λ⋆x)⟩)

= exp
(
(t+ c)B⋆L,θ⋆(x)

) G(θ⋆, c)
G(θ⋆ + λ⋆x, t+ c) = exp

(
(t+ c)B⋆L,θ⋆(x)

) G(θ⋆, c)
G(θ̂t,c(θ⋆), n+ c)

.

(3.29)

Using Theorem 1.20, we obtain the following inequality for any random time τ in N:

∀δ ∈ (0, 1], Pθ⋆
(
B⋆L,θ⋆

(
τ

τ + c
(µ̂τ − µ)

)
⩾

1
τ + c

log
(
G(θ̂τ,c(θ⋆), τ + c)

G(θ⋆, c)
1
δ

))
⩽ δ. (3.30)

To conclude, we use the duality property of the Bregman divergence (Lemma 3.1), considering
that ∇L is invertible. Indeed, letting α = τ/(τ + c), and θ̂τ = (∇L)−1(µ̂τ ), we obtain

B⋆L,θ⋆ (α(µ̂τ − µ)) = BL (θ⋆, θα) (3.31)

where θα satisfies the equation

θα = ∇L−1(α∇L(θτ ) + (1− α)∇L(θ⋆)
)

= θ̂τ,c(θ⋆) . (3.32)

We conclude by the equivalence between time-uniform, stopping times and random times
concentration (Remark 1.18). ■

Interestingly, this proof shows that the parameter c, introduced as a local regularisation
term in Definition 3.2 and interpreted as a virtual number of prior samples, is also a mixing
parameter in the method of mixtures, in the same spirit as α in the sub-Gaussian setting
(Corollary 1.21).
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Remark 3.4 . We provide in Appendix B.1 a complementary result (Corollary B.2) using a Legendre
function L0 instead of the mixing parameter c, which eschews the use of a local reference θ0. However,
we argue that such a global regularisation is actually less convenient to use except for univariate
and multivariate Gaussian distributions that anyway exhibit invariant geometry. Furthermore, in
Theorem B.1, we prove a more general result that handles the case of a sequence (Yt)t∈N of random
variables that are not independent, and having possibly different distributions from each other, which
we apply to build confidence sets in linear bandits (see Appendix B.1).

Comparison with prior work. Similar to Theorem 3.3, Kaufmann and Koolen (2021) extend
the method of mixtures technique to derive time-uniform concentration bounds for exponential
families. However, their proof technique is fairly different, relying instead on discrete mixtures
and stitching, which only works for single parameter families, and involves case-specific
calculations that are difficult to generalise beyondGaussian (with known variance) andGamma
(with known shape). In contrast, our method applies to generic exponential families, including
distributions with more than one parameter such as Gaussian when both mean and variance
are unknown. Moreover, their discrete prior construction leads to technical constants seemingly
unrelated to the exponential family model. Our prior is naturally induced by the exponential
family, leveraging key properties of Bregman divergences, yields more intrinsic quantities
(Bregman information gain) and perhaps a more elegant and shorter proof. Hence, our results
are not only more general, but also of fundamental interest.

Asymptotic behavior. The asymptotic width of Θ̂δ
t,c depends on the behavior of γt,c(θ0) as

t→ +∞. Standard arguments show that θ̂t,c(θ0)→ θ⋆ and the Taylor expansion of the mapping
θ′ 7→ BL(θ′, θ⋆) around θ′ = θ⋆ is BL(θ′, θ⋆) = 1

2(θ′ − θ⋆)⊤∇2L(θ⋆)(θ′ − θ⋆) + o
(
∥θ′ − θ⋆∥2

)
(∇2L(θ⋆) is positive definite by assumption). Laplace’s method for integrals (chapter 20 in
Lattimore and Szepesvári (2020), Shun and McCullagh (1995)) gives the following estimate:∫

Θ
exp

(
−(t+ c)BL(θ′, θ̂t,c(θ0))

)
dθ′ ≈

∫
Rd

exp
(
− t+ c

2 (θ⋆ − θ′)⊤∇2L(θ⋆)(θ⋆ − θ′)
)
dθ′ ,

(3.33)

which is a simple Gaussian integral, and thus γt,c(θ0) = d
2 log(1 + t/c) +O(1). This asymptotic

scaling is worse than the log log t rate prescribed by the law of iterated logarithm. However,
this is a standard feature of the method of mixtures (see Section 1.4 in Chapter 1), which is
compensated by its improved nonasymptotic sharpness, as evidenced in Section 3.4.
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Dependency on the parameter c. In the Gaussian case, the parameter c corresponds to the
mixing parameter α of the sub-Gaussian method of mixtures (Corollary 1.21), and as such
can be tuned to c = γδt0 to tighten the confidence bound around t = t0, with e.g. γδ ≈ 0.12
for δ = 0.05 (Lemma 1.23). It is however insightful to study its influence for other families.
We provide in Section 3.4 a detailed study of this parameter, concluding that the confidence
bounds are not significantly altered over a large range of values, and that c = γδt0 remains a
valid heuristic for non-Gaussian families. Note that similarly to the sub-Gaussian method of
mixtures, choosing a variable c changing with t is not allowed by the theory, as this would break
the martingale property used in the proof and would be incompatible with the time-uniform
lower bound |Θ̂δ

t,c| = Ω(
√

log log t/t) provided by the law of iterated logarithm (see Section 1.4
in Chapter 1). Indeed, the Bregman information gain with ct ∝ t would be asymptotically
γt,ct(θ0) = d

2 log(1 +O(1)) +O(1) = O(1), leading to |Θ̂δ
t,c| = O(1/

√
t) when t→ +∞.

Application to bandits

One can apply the technique developed in Theorem 3.3 to build confidence sets in standard
multiarmed bandit problems. Indeed, consider the bandit model ν =

⊗
k∈[K] pθ⋆k ∈

⊗
k∈[K]Fk,

where Fk is a generic exponential family (e.g. Gaussian) for each arm k ∈ [K] and (θ⋆k)k∈[K] ∈∏
k∈[K] Θk ⊆ RK . As seen in Chapter 1, this setting is standard to analyse optimal bandit

algorithms (Cappé et al., 2013; Korda et al., 2013; Baudry et al., 2020). We recall that, at each
time t ∈ N, we choose an arm πt ∈ [K] based on past observations, and draw a sample reward
Y πt
t from its distribution pθ⋆πt . The samples are then used to update knowledge about the

parameters (θ⋆k)k∈[K] by building confidence sets for each of them. Let Nk
t =

∑t
s=1 1πs=k be

the number of pulls to arm k up to time t, and θ̂k,Nk
t ,c

(θ0) and γk,Nk
t ,c

(θ0) be the parameter
estimate and Bregman information gain for arm k, respectively (similarly to Definition 3.2 with
t replaced by Nk

t and samples taken from pθ⋆
k
— we recall that this construction is well-defined

thanks to Doob’s optional skipping). We construct the confidence set for arm k at time t as

Θ̂δ
k,Nk

t ,c
=
{
θ0 ∈ Θk, (Nk

t + c)BL
(
θ0, θ̂k,Nk

t ,c
(θ0)

)
⩽ log 1

δ
+ γk,Nk

t ,c
(θ0)

}
. (3.34)

Then, similarly to Theorem 3.3, the true parameter θ⋆k lies in the set Θ̂δ
k,Nk

t ,c
for all time steps t ∈ N

with probability at least 1− δ. Finally, we take a union bound over k ∈ [K] to obtain confidence
sets for all arms (withwidths inflated by an additive logK factor). Such construction is standard
and is used in Abbasi-Yadkori et al. (2011) for (sub)-Gaussian families. Possible applications
include UCB algorithms for regret minimisation (see Section 1.2 in Chapter 1) and designing
GLR stopping rules for tracking algorithms in pure exploration (Garivier and Kaufmann, 2016)
in the context of generic exponential families (see also Section 3.5 for another application of
GLR tests using the parameter estimate θ̂t,c(θ0)). For regret minimisation specifically, we extend
the generic UCB framework of Theorem 1.33 to generic exponential families.
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Proposition 3.5 (EF-Bregman-UCB). Let Θ ⊆ Rd, K ∈ N, (θk)k∈[K] ∈ ΘK and a bandit model
(
⊗

k∈[K] pθk , (FEF
h,F,L)⊗K). For a given mapping φ : Rd → R, we consider the risk measure on FEF

h,F,L
defined as ρ : θ ∈ Θ 7→ φ(Eθ[F (Y )]) = φ(∇L(θ)). Assume that
(i) the curvature of the log-partition function is uniformly bounded, i.e. there existsm,M ∈ R⋆+

such thatmId ≼ ∇2L(θ) ≼MId for all θ ∈ Θ;

(ii) φ is L-Lipschitz with respect to the Euclidean norm ∥·∥.
Let c ∈ R⋆+. Then for T → +∞, Algorithm 1 with the risk measure ρ and UCB given by (ρ(Θ̂δ

k,n,c))n∈N

satisfies, for all suboptimal arm k ∈ [K] \ {k⋆},

Eπ,ν⊗T
π

[
Nk
T

]
⩽

2L2M2

m∆2
k

log
(4LMT√

m∆k

)
+ o

(
L2M2

m∆2
k

log T
)
, (3.35)

where ∆k is the suboptimality gap for arm k.

This shows that Algorithm 1 provides an example of an order-optimal deterministic algo-
rithm for generic exponential families. The proof is deferred to Appendix B.4.

For the family FN ,σ of Gaussian with known variance σ2 ∈ R⋆+, the log-partition function is
quadratic, i.e. L(θ) = θ2/(2σ2), and thus has a constant curvature ∇2L(θ) = 1/σ2 for all θ ∈ R.
The expectation risk measure corresponds to φ : η ∈ R 7→ 2σ2η, and therefore the proposition
above applies with m = M = 1/σ2 and L = 2σ2. Consequently, we recover the classical
(sub-)Gaussian UCB regret. Beyond the SPEF case, this paves a way to analyse Gaussian
bandits with unknown variance under risk measures that depend on both mean and variance.

Remark 3.6 . The regret bound of Proposition 3.5 is by no mean optimal and is intended to illustrate
applications of the time-uniform confidence sequence of Theorem 3.3. We anticipate that a more refined
algorithm and analysis in the spirit of kl-UCB (Cappé et al., 2013) could yield asymptotically optimal
UCB algorithms for generic exponential families.

� In Chapter 5, we analyse a more general framework for contextual bandits under a vast class of risk
measures, with similar curvature assumptions as in Proposition 3.5.

68



3.3 Specification to classical families

3.3 Specification to classical families

In this section, we specify the result of Theorem 3.3 to some classical exponential families.
Interestingly, the literature on time-uniform concentration bounds outside of random variables
that are bounded, gamma with fixed shape or Gaussian with known variance is significantly
scarce, even though many more distributions are commonly used in machine learning models.
We derive below explicit confidence sets for a range of distributions, which we believe will
be of interest for the wider machine learning and statistics community. For instance, consider
active learning in bandit problems (Carpentier et al., 2011), where one targets upper confidence
bounds on the variance (rather than the mean); in the Gaussian case, this can be achieved with
Chi-square concentration. Hao et al. (2019) studies the classical UCB algorithm for bandits
under a weaker assumption that sub-Gaussianity, involving the Weibull concentration. In
differential privacy, concentration of Laplace distribution (symmetrised exponential) is often
used to study the utility of differentially private mechanisms (Dwork et al., 2014). Finally,
heavy-tailed distributions such as Pareto have recently been of interest to study risk-averse or
corruption in bandit problems (Holland and Haress, 2021; Basu et al., 2022).

We now make explicit the Bregman information gains and confidence sets for some illustra-
tive families (more examples and full derivations are provided in Appendix B.2).

Gaussian (unknown mean and variance). Let Y ∼ N (µ, σ2). Given samples (Ys)ts=1, we
define St =

∑t
s=1 Ys and µ̂t = St/t. Further, for µ, σ ∈ R× R+, we define the normalised sum

of squares Zt(µ, σ) = 1
σ2
∑t
s=1(Ys − µ)2. Then, for reference parameters µ0 ∈ R, σ0 ∈ R+, c > 0,

the Bregman information gain reads

γN
t,c(µ0, σ0) = 3

2 log
(

t

t+ c
Zt(µ̂t, σ0) + c

t+ c
Zt(µ0, σ0) + c

)
+ ft,c , (3.36)

where ft,c =
(
t+c+1

2

)
log (t+ c)−

(
c
2 + 2

)
log c− t

2(1 + log 2) + log Γ
(
c+3

2

)
− log Γ

(
t+c+3

2

)
.

Bernoulli. Let Y ∼ B(µ), with unknown mean µ ∈ [0, 1]. Define, for reference parameter
µ0 ∈ R, c > 0, the estimate µt,c(µ0) = St+cµ0

t+c . Then, the Bregman information gain is given by

γB
t,c(µ0) = cHB(µ0)− (t+ c)HB(µt,c(µ0)) + log B(cµ0, c(1− µ0))

B((t+ c)µt,c(µ0), (t+ c)(1− µt,c(µ0)) ,

(3.37)

where HB(µ) = −(1 − µ) log(1 − µ) − µ logµ denotes the Bernoulli entropy function and
B(α, β) =

∫ 1
0 u

α−1(1− u)β−1du is the Beta function.
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Exponential. Let Y ∼ E(1/µ), with unknownmean µ > 0. For reference parameters µ0, c > 0,
the Bregman information gain reads

γE
t,c(µ0) = log (St/µ0 + c) + log Γ(c)

Γ(t+ c) + (t+ c− 1) log(t+ c)− c log c− t . (3.38)

Pareto. Let Y ∼ Pareto (α), with unknown shape α > 0. Define Lt =
∑t
s=1 log Ys. Then, for

reference parameters α0, c > 0, the Bregman information gain is given by

γParetot,c (α0) = log (α0Lt + c) + log Γ(c)
Γ(t+ c) + (t+ c− 1) log(t+ c)− c log c− t . (3.39)

Poisson. Let Y ∼ P(λ), where λ > 0. For reference parameters λ0, c > 0, the Bregman
information gain can be expressed as

γP
t,c(λ0) = (St + cλ0) log St + cλ0

t+ c
− St − cλ0 log λ0

+ log I (c, cλ0)− log I (t+ c, St + cλ0) , (3.40)

where I(a, b) =
∫+∞

−∞ e−aeθ+bθdθ. Although, to the best of our knowledge, the integral I(a, b)
does not have a closed-form expression, it can be numerically estimated up to arbitrary precision.

Chi-square. Let Y ∼ χ2(k), where k ∈ N is unknown. DefineKt =
∑t
s=1 log Ys

2 . For reference
points k0 ∈ N, c > 0, introduce an estimate kt,c(k0) satisfying ψ0

(
kt,c(k0)

2

)
= Kt+c ψ0

(
k0
2

)
t+c . In

this case, the Bregman information gain is given by

γχ
2

t,c (k0) = kt,c(k0)
2

(
Kt + cψ0

(
k0
2

))
− (t+ c) log Γ

(
kt,c(k0)

2

)
+ c log Γ

(
k0
2

)
− c k0

2 ψ0

(
k0
2

)
+ log

J(c, cψ0(k0
2 ))

J(t+ c,Kt + cψ0(k0
2 ))

. (3.41)

where J(a, b) =
∞∑
k′=1

exp
(
−a log Γ

(
k′

2

)
+ bk

′

2

)
. This integral can be estimated using numerical

methods (see Section 3.4). This paves a way to build high-probability confidence sets for
chi-square distributions which have not been adequately captured in prior work. The sums
over k′ above derive from the martingale construction of Theorem 3.3 with discrete mixture
(i.e. with respect to the counting measure). A continuous (i.e. with respect to the Lebesgue
measure) mixture is also possible, as detailed in Remark B.3 in the appendix.

Explicit confidence sets. We now illustrate the confidence sets for the exponential families
above, obtained by specifying the generic form and simplifying the resulting expression, in
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Table 3.1. The technical details of the derivation of the specific forms for each illustrative
family is postponed to Appendix B.2. In particular, we note that the confidence sequence with
regularisation parameter c for the SPEF of Gaussian distributions with fixed variance σ2 is
equivalent to the time-uniform bound of Corollary 1.21 for R-sub-Gaussian distributions (with
R = σ and α = c).
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Table 3.1 – Summary of Bregman confidence sets given by Theorem 3.3 for representative families.
Throughout, the following notations are used:
St =

t∑
s=1

Ys, µ̂t = St
t
, Qt(µ) =

t∑
s=1

(Ys − µ)2, Zt(µ, σ) = Qt(µ)
σ2 ,

S
(k)
t =

t∑
s=1

Y k
s , Lt =

t∑
s=1

log Ys, Kt =
t∑

s=1
log Ys

2 ,

I(a, b) =
∫ +∞

−∞ e−aeθ+bθdθ,
J(a, b) =

∫∞
0 exp

(
−a log Γ

(
k
2

)
+ bk

2

)
dk (dk is the Lebesguemeasure if k ∈ R+ and the countingmeasure if k ∈ N).

Name Parameters Formula
Gaussian µ ∈ R 1

t+c
(St−tµ)2

2σ2 ⩽ log 1
δ + 1

2 log t+c
c

Gaussian σ ∈ R+

Qt(µ)
2σ2 −

(
t+c

2 +1
)

log
(
Qt(µ)+c

2σ2

)
⩽ log 1

δ +log Γ( c2+2)
Γ( t+c2 +2)−

t
2 log 2−( c2 +1) log c+( t+c2 +1) log(t+c)

Gaussian µ ∈ R
σ ∈ R+

1
2Zt(µ, σ)− t+c+3

2 log
(
t
t+cZt(µ̂t, σ) + c

t+cZt(µ, σ) + c
)

⩽ log 1
δ −

t
2 log 2−

(
c
2 +2

)
log c+ 1

2 log (t+c)
+ log Γ

(
c+3
2

)
− log Γ

(
t+c+3

2

)

Bernoulli µ ∈ [0, 1]
St log 1

µ+(t−St) log 1
1−µ+log Γ(St+cµ)Γ(t−St+c(1−µ))

Γ(cµ)Γ(c(1−µ))
⩽ log 1

δ +log Γ(t+c)
Γ(c)

Exponential µ ∈ R+

St
µ −(t+c+1) log

(
St
µ + c

)
⩽ log 1

δ +log Γ(c)
Γ(t+c)−log(t+ c)−c log c

Gamma λ ∈ R+

St
λ −((t+c)k+1) log

(
St
λ + ck

)
⩽ log 1

δ +log Γ(ck)
Γ((t+c)k)−log((t+c)k)− ck log ck

Weibull λ ∈ R+

S
(k)
t

λk
− (t+ c+ 1) log

(
S

(k)
t

λk
+ c

)
⩽ log 1

δ + log Γ(c)
Γ(t+c) − log(t+ c)− c log c

Pareto α ∈ R
αLn − (t+c+1) log (αLt + c)

⩽ log 1
δ + log Γ(c)

Γ(t+c) − log(t+ c)− c log c

Poisson λ ∈ R+
tλ−St log λ
⩽ log 1

δ +log I (c, cλ)− log I (t+c, St+cλ)

Chi-square k ∈ N
or k ∈ R+

t log Γ
(
k
2

)
− k

2Kt−log J
(
c, cψ0

(
k
2

))
+ log J

(
t+c,Ktt+cψ0

(
k
2

))
⩽ log 1

δ
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We now provide a set of illustrative numerical experiments to display the confidence
envelopes resulting from Theorem 3.3 in the case of classical exponential families. We plot
for a given value of the confidence level δ and regularisation parameter c the convex sets
t 7→

⋂
s⩽t Θ̂δ

s,c (running intersection, see Section 1.4 in Chapter 1). In dimension d = 1, we
report the extremal points of these intervals, which we call the upper and lower envelopes
respectively (taking the running intersection ensures that these are respectively nonincreasing
and nondecreasing, as explained in Remark 1.22). We refer to Figure 3.1 for Pareto, Chi-square
and Gaussian (with unknown µ, σ) and Appendix B.3 for many other families. Because we
exploit the Bregman geometry, our bounds capture a larger setting than typical mean estimation;
for instance, we are able to concentrate around the exponent α of a Pareto distribution even
when the distribution is not integrable (α < 1). Furthermore, for two-parameter Gaussian,
apart form being anytime, our confidence sets are convex and bounded in contrast to the one
based on Chi-square quantiles with a crude union bound (see Appendix B.3).
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(a) Gaussian (mean and variance).
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(b) Bernoulli.
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(c) Pareto.
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(d) Chi-square.

Figure 3.1 – Example of Gaussian time-uniform joint confidence sets for (µ, σ) = (1, 1) with sample
sizes t ∈ {10, 25, 50, 100} observations (smaller confidence sets correspond to larger sample sizes), and
examples of time-uniform confidence envelopes for B(0.8), Pareto(0.5) and χ2(5) on several realisations
as a function of the number of observations t. Thick lines indicate median curves over 1000 replicates.

3.4 Numerical experiments

In this section, we provide illustrative numerical results to show the resulting confidence
bands built from Theorem 3.3 are promising alternatives to existing competitors (detailed in
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3.4 Numerical experiments

Appendix B.3). All the confidence sets presented here are implemented in the open source
concentration-lib Python package. 1

Comparison. We plot our confidence envelopes for Gaussian, exponential, Bernoulli and
Chi-square distributions in Figure 3.2 and compare them to state-of-the-art time-uniform
bounds, except for the Chi-square distribution, for which no prior benchmark existed; we report
instead the confidence envelopes under two different mixture constructions (see Remark B.3 in
Appendix B.2 for more details). Numerical experiments for other, less common distributions,
with a similar scarcity of existing time-uniform bounds, are deferred to Appendix B.3. We fix
δ = 0.05 (note that all bounds exhibit the typical log 1/δ dependency) and c = 1.

Interestingly, our upper and lower envelopes are not necessarily symmetric, and in the
Bernoulli case, they fit within the supports of the distributions without clipping, contrary
to most other methods, thus adapting to the local geometry of the family. Our bounds are
comparable to those of Kaufmann and Koolen (2021), if slightly tighter; however, we emphasise
again that our scope is wider and captures more distributions.

1https://pypi.org/project/concentration-lib.
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(a) Gaussian. (b) Exponential.

(c) Bernoulli. (d) Chi-square.

Figure 3.2 – Comparison of median confidence envelopes around the mean forN (0, 1), E(1), B(0.8) and
χ2(5), as a function of the sample size t, over 1000 independent replicates. Grey lines are trajectories of
empirical means µ̂t.

Numerical complexity. Some of our formulas (Poisson, Chi-square) require the evaluation
of integrals for which no closed-form expression exist. However, these can be estimated up
to arbitrary precision by numerical routines, see Remarks B.4 and B.5 for details. Similarly,
the use of special functions (digamma, ratio of Gamma) may lead to numerical instabilities or
overflows for large t; we recommend instead to use the log-Gamma function and an efficient
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3.4 Numerical experiments

implementation of the log-sum-exp operator. We report results for t⩽200 as we believe the
small sample regime is where our bounds shine (most reasonable methods produce similar
confidence sets for large t). Finally, most confidence sets reported in Figure 3.2 are implicitly
defined (after reorganizing terms) as level sets {F (θ) ⩽ 0} for some function F . For one-
dimensional families, we use a root search routine for a fast estimation of the boundaries of
such sets; in higher dimension, we evaluate F on a uniform grid (e.g. in Figure 3.1a, we use a
1024×1024 grid over [−2, 4]×[0.1, 4]).

Influence of the local regularisation parameter c. We also performed additional experiments
to get more insights on the tuning of c. Specifically, for varying values of t0 ∈ N, cwas chosen to
minimise the width of the confidence interval at sample size t = t0, i.e. ct0 = minc>0|Θ̂t0,c (δ)|.
We report in Figure 3.3 the resulting plots in the case of Bernoulli, Gaussian, exponential
and Chi-square distributions. The resulting optimal choice c⋆t = argminc|Θ̂t,c (δ)| exhibits a
linear trend c⋆t ≈ 0.12t, which seems consistent across the tested distributions. Of note, the
constant 0.12 is reminiscent of the optimal tuning of the sub-Gaussian method of mixtures
(Lemma 1.23). This is in line with the observation in Section 3.2 that the confidence width
|Θ̂t,c (δ)| is equivalent to the Gaussian confidence width when t → +∞, which implies that
asymptotic tuning of c⋆t should be similar for all distributions. The experiments in Figure 3.3
thus confirms that this tuning is also near optimal for nonasymptotic, small sample sizes.

Furthermore, we report in Figure 3.4 the confidence envelopes for c varying between 0.1
and 30. We find that in practice, for small samples, c has a rather limited influence on the
width of the confidence interval. We also report the heuristic ct ≈ 0.12t, which indeed provides
the tightest envelope. However, we restate that such a sample size-dependent regularisation
parameter c is not supported by the theory (as it would violate the martingale construction and
the law of iterated logarithms). With this in mind, it is however possible to choose a specific
horizon of interest t0 and set t = 0.12t0 to promote sharpness around t = t0.
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(a) Gaussian.
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(b) Exponential.
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(c) Bernoulli.
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(d) Chi-square.

Figure 3.3 – Optimal (smallest confidence interval diameter) local regularisation parameter c⋆
t =

argminc|Θ̂t,c (δ)| with δ = 5% for N (0, 1), E(1), B(0.8) and χ2(5). Note the apparent common linear
trend c⋆

t ≈ 0.12t. Results are averaged over 1000 independent simulations.
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(a) Gaussian. (b) Exponential.

(c) Bernoulli. (d) Chi-square.

Figure 3.4 – Comparison of the time-uniform Bregman confidence envelopes for N (0, 1), E(1), B(0.5)
and χ2(5), and varying mixing parameter c ∈ [0.1, 20], as a function of the sample size t, over 1000
independent replicates. Grey lines are trajectories of empirical means µ̂t. Thick black dashed line: µ.
Dotted black line: heuristic ct ≈ 0.12t.

3.5 GLR test in exponential families and change point detection

In this section, we apply our result to control the false alarm rate (type I error) of generalised
likelihood ratio (GLR) tests when detecting a change of measure from a sequence of observa-
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tions. More precisely, we consider a sequence of observations (Yt)t∈N such that for all t ∈ N,
Yt ∼ pθ⋆(t) and θ⋆(t) ∈ Θ is a (possibly time-varying) parameter describing an exponential
family F . We consider the composite null hypothesis that this sequence is stationary, i.e.

H0 = ∃θ⋆ ∈ Θ, ∀t ∈ N, θ⋆(t) = θ⋆ , (3.42)

and we aim to test it against the composite alternative that there is a change point at time t⋆ in
the distribution of the sequence, i.e.

H1 = ∃t⋆ ∈ N, θ⋆0, θ⋆1 ∈ Θ, ∀t ∈ N, θ⋆(t) = θ⋆01t⩽t⋆ + θ⋆11t>t⋆ . (3.43)

The GLR test in the exponential family model F is defined, for a threshold α > 0, as

τ(α;F) = min{t ∈ N, max
s∈[0,t)

GF
1:s:t ⩾ α}, (3.44)

where the GLR is defined to be GF
1:s:t = infθ′ supθ0,θ1 log

(∏s

r=1 pθ0 (Yr)
∏t

r=s+1 pθ1 (Yr)∏t

r=1 pθ′ (Yr)

)
. Then, the

false alarm rate of the GLR test (i.e. the probability that a change is detected under the null,
also known as the type I error) can be bounded using

Pθ⋆ (τ(α;F) <∞) = Pθ⋆
(
∃t ∈ N, ∃s < t, GF

1:s:t ⩾ α
)
. (3.45)

Observe that solving for the inner supremums in the expression of GLR, we obtain

GF
1:s:t = inf

θ′
sBL(θ′, θ̂s) + (t− s)BL(θ′, θ̂s+1:t), (3.46)

where we introduce parameter estimates θ̂s and θ̂s+1:t such that ∇L(θ̂s) = 1
s

∑s
r=1 F (Yr) and

∇L(θ̂s+1:t) = 1
t−s

∑t
r=s+1 F (Yr), respectively. Hence, the false alarm rate can be controlled as

Pθ⋆(τ(α;F) <∞) ⩽ Pθ⋆
(
∃s ∈ N, sBL(θ⋆, θ̂s) ⩾ α1

)
+ Pθ⋆

(
∃t ∈ N, ∃s < t, (t− s)BL(θ⋆, θ̂s+1:t) ⩾ α2

)
(3.47)

for appropriate terms α1, α2 such that α = α1 +α2. The control of the first term comes naturally
from our time-uniform deviation result (Theorem 3.3) using a regularised version of the
estimate θ̂s. For the second term, we need to study the concentration of BL(θ, θ̂s+1:t) uniformly
over s and t.
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Doubly time-uniform concentration. For any s < t, c > 0 and reference parameter θ0 ∈ Θ,
we define the regularised estimate

θ̂s+1:t,c(θ0) = (∇L)−1
(

1
t− s+ c

(
t∑

r=s+1
F (Yr) + c∇L(θ0)

))
, (3.48)

built from (t− s) observations (Yr)tr=s+1. Similarly, we introduce the corresponding Bregman
information gain γs+1:t,c(θ0) as in Definition 3.2. The following result extends the time-uniform
bound of Theorem 3.3 to control the Bregman deviation of θ̂s+1:t,c(θ0) around θ0.

Theorem 3.8 (Doubly time-uniform concentration). Let δ ∈ (0, 1] and g : N → R∗
+ such that∑∞

t=1 1/g(t) ⩽ 1 (e.g. g(t) = κ(1 + t) log2(1 + t) where κ = 2.10975). Under the assumptions of
Definition 3.2, consider the set

Θ̂δ
s+1:t,c =

{
θ0 ∈ Θ : (t− s+ c)BL(θ0, θ̂s+1:t,c(θ0)) ⩽ log g(t)

δ
+ γs+1:t,c(θ0)

}
. (3.49)

Then
(
Θ̂δ
s+1:t,c

)
t∈N,s<t

is a doubly time-uniform confidence sequence at level δ for θ⋆, i.e.

Pθ⋆
(
∀t ∈ N, ∀s < t, θ⋆ ∈ Θ̂δ

s+1:t,c

)
⩾ 1− δ . (3.50)

Remark 3.9 . Maillard (2019a) proves a doubly uniform concentration inequality for means of (sub)-
Gaussian random variables and conjectures that it could be extended to other types of changes, such as
changes of variance in a Gaussian family. Theorem 3.8 can be seen as a generalisation of this result to
generic exponential families. Again. this extension naturally comes with additional challenges due to
the intrinsic local geometry of exponential families.

Proof of Theorem 3.8. The proof follows a similar strategy based on exponential martingales as
in Theorem 3.3.

Assume that the null hypothesis holds, i.e. that all the (Yt)t∈N come froma single distribution
belonging to an exponential family model F with parameter θ⋆ ∈ N and let t ∈ N and s ∈
{0, . . . , t− 1}. We introduce the scan mean µ̂s+1:t = 1

t−s
∑t
r=s+1 F (Yr) and its expectation, i.e.
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the true mean µ = ∇L(θ⋆). We define as in the proof of Theorem 3.3, for each λ the martingale

Mλ
s+1:t = exp (⟨λ, (t− s)(µ̂s+1:t − µ)⟩ − (t− s)BL,θ⋆(λ)) . (3.51)

Then, applying the method of mixtures and replacing each term with its scan version from
s+ 1 to t, we introduce the quantity

Ms+1,t = exp
(
(t− s+ c)B⋆L,θ⋆(x)

) G(θ⋆, c)
G(θ̂s+1:t,c(θ⋆), t− s+ c)

(3.52)

where x = t−s
t−s+c(µs+1:t − ∇L(θ⋆)) and θ̂s+1:t,c(θ⋆) is the regularised estimate from the scan

samples

θ̂s+1:t,c(θ⋆) = (∇L)−1


t∑

r=s+1
F (Yr) + c∇L(θ⋆)

t− s+ c

 . (3.53)

Remarking that Eθ⋆ [Mt,t] ⩽ Eθ⋆ [Mt+1,t] = 1 and that (Ms+1,t)s is a nonnegative super-
martingale, we can now control its doubly-time uniform deviations following the proof of
Maillard (2019b)[Theorem 3.2]. More precisely, for any non-decreasing function g, we show
below that the following peeling-like result holds:

Pθ
(
∃t ∈ N,∃s < t : Ms+1,t ⩾

g(t)
δ

)
⩽ δEθ⋆

[
max
t∈N

max
s<t

Ms+1:t
g(t)

]
⩽ δ

∞∑
t=1

1
g(t) . (3.54)

Rewriting the terms thanks to the duality formulas, yields

Pθ⋆
(
∃t ∈ N,∃s < t : (t−s−c)BL(θ⋆, θ̂s+1:t,c(θ⋆)) ⩾ log

(
g(t)
δ

)
+ γs+1:t,c(θ⋆)

)
⩽ δ

∞∑
t=1

1
g(t) .

(3.55)

Doubly time-uniform control of supermartingale sequences. For completeness, we repro-
duce below the derivation from Maillard (2019b)[Theorem 3.2], applied to our setup. First, let
us note that

Pθ⋆
(
∃t ∈ N, ∃s < t, Ms+1:t ⩾

g(t)
δ

)
= Pθ⋆

(
max
t∈N

max
s<t

Ms+1:t
g(t) ⩾

1
δ

)
⩽ δEθ⋆

[
max
t∈N

max
s<t

Ms+1:t
g(t)

]
. (3.56)

Let us also denote τ the random stopping time corresponding to the first occurrence t of the event
maxs∈[0,t−1]

Ms+1:t
g(t) ⩾ 1

δ . It is convenient to introduce the quantityM t = 1
g(t)

∑
s∈{0,...,t−1}Ms+1,t
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for each t ∈ N. Since eachMs+1,t and g(t) is nonnegative, we first get that for every random
stopping time τ ∈ N, the following inequality holds:

Eθ⋆
[maxs<τ Ms+1,τ

g(τ)

]
⩽ Eθ⋆

[
M τ

]
= Eθ⋆

[
M1 +

∞∑
t=1

(M t+1 −M t)1τ>t

]
. (3.57)

Furthermore, we note that, conveniently,

M t+1 −M t = Mt+1,t+1
g(t+ 1) +

t−1∑
s=0

(
Ms+1,t+1
g(t+ 1) −

Ms+1,t
g(t)

)
. (3.58)

Next, by assumption, we note that Eθ⋆ [Ms+1,t+1 | Ft] ⩽ Ms+1,t. Thus, since 1τ>t ∈ Ft, we
deduce that

Eθ⋆
[maxs<τ Ms+1,τ

g(τ)

]
⩽ Eθ⋆

[
M1

]
+

∞∑
t=1

Eθ⋆ [Mt+1,t+1]
g(t+ 1) +

∞∑
t=1

∑
s<t

Eθ⋆
[( 1
g(t+ 1) −

1
g(t)

)
Ms+1,t1τ>t

]

= Eθ⋆
[
M1

]
+

∞∑
t=1

Eθ⋆ [Mt+1,t+1]
g(t+ 1) +

∞∑
t=1

∑
s<t

( 1
g(t+ 1) −

1
g(t)

)
Eθ⋆ [Ms+1,t1τ>t]︸ ︷︷ ︸

⩾0

. (3.59)

Hence, the assumption that g is non-decreasing ensures that the last sum is upper bounded by
0. Since on the other hand Eθ⋆ [Mt+1,t+1] ⩽ 1 holds for all t (and thus Eθ⋆

[
M1

]
⩽ 1/g(1)), we

deduce that the following inequality holds:

Eθ⋆
[maxs<τ Ms+1,τ

g(τ)

]
⩽

1
g(1) +

∞∑
t=1

1
g(t+ 1) =

∞∑
t=1

1
g(t) ⩽ 1 . (3.60)

■

A regularised GLR test. For a given false alarm (i.e. false positive) probability δ ∈ (0, 1] and
parameter c > 0, we define the regularised GLR test τ δc (F) as follows:

Θ̂δ
s,c =

θ0 ∈ Θ : (s+ c)BL(θ0, θ̂s,c(θ0)) ⩽ log 1
δ

+ γs,c(θ0)︸ ︷︷ ︸
α1

 , (3.61)

Θ̂δ
s+1:t,c =

θ0 ∈ Θ : (t− s+ c)BL(θ0, θ̂s+1:t,c(θ0)) ⩽ log g(t)
δ

+ γs+1:t,c(θ0)︸ ︷︷ ︸
α2

 , (3.62)

τ δc (F) = min
{
t ∈ N : ∃s < t, Θ̂δ/2

s,c ∩ Θ̂δ/2
s+1:t,c = ∅

}
, (3.63)
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Note that, under the measure Pθ⋆ , the event θ⋆ ∈ Θ̂δ/2
s,c holds with probability at least 1− δ/2

by time-uniform concentration over s (Theorem 3.3), and θ ∈ Θ̂δ/2
s+1:t,c holds with probability

at least 1−δ/2 by doubly time-uniform concentration over both s and t (Theorem 3.8). Then,
by a union bound, this test is guaranteed to have a false alarm probability controlled by δ.
The factor g(t) is essentially a function growing slightly faster than linearly that inflates the
width of the confidence set in the doubly time-uniform bound to allow for the peeling-like
construction above. It can be tuned to satisfy ∑+∞

t=1 1/g(t) ⩽ 1, thus controlling the above
deviation probability by atmost δ (ideally,∑+∞

t=1 1/g(t) should be close to 1 to avoid overinflating
the confidence width, which would decrease the statistical power of change point test). A
natural choice for this is g(t) = κ(1 + t) log2(1 + t) where κ = 2.10974 ⩾

∑∞
t=1

1
(1+t) log2(1+t) (for

completeness, we derive in Appendix B.4 an elementary way to compute suitable values for κ);
other common choices include g(t) ∝ tη for some η > 1, though it leads to a looser bound due to
the faster growth. Furthermore, if one is interested in detecting changes up to a known horizon
T , one can replace the function g(t) by the slightly tighter factor g(t) = κ(1 + t) log2(1 + t) with
κ=

∑T
t=1 1/g(t) and still guarantee a false alarm rate under δ.

Experiments on changepoint detection forGaussianwith unknownvariance. We illustrate
the change point GLR test above in a numerical experiment as follows. We consider the one-
dimensional exponential family of centered Gaussian distributions with unknown variance
F =

{
N (0, σ2), σ > 0

}. A sequence of independent random variables (Yt)t∈N is drawn from
N (0, σ2

0) if t ⩽ t⋆ and from Yt ∼ N (0, σ2
1) if t > t⋆, where t⋆ = 50 and σ0 = 1 and σ1 ∈ [1, 2, 3, 4].

Of note, this setting corresponds to an open question in Maillard (2019a), which studies GLR
tests in sub-Gaussian families, which are adapted to the detection of changing means but
not variances. Detection times are reported as min(τ δc (F), T ) with T = 100, and τ δc (F) > T

is interpreted as no change being detected. For the doubly time-uniform confidence set in
the definition of the regularised GLR test, we use the factor g(t) = κ(1+ t) log2(1+ t) with
κ = 2.10974.

An example of practical motivation for this setting is the design of remote health monitoring
devices. In the case of diabetes for instance, for which there exists such wearable devices,
it is important to control not only the average level of blood glucose but also its intraday
variability, to ensure the metabolism adequately responds to the antidiabetic medication; if not,
the concentration of glucose in the haemoglobin may exhibit a steady average but an increased
variance, which should be detected as early as possible.

In Figure 3.5, we report the histograms of detection times across 1000 independent sim-
ulations for increasingly abrupt changes of variance (σ1 ∈ {1, 2, 3, 4}). As expected, the
distribution of detection times shifts closer to the actual change point t⋆ when σ1 increases, i.e.
more obvious changes are detected earlier. This is confirmed in Figure 3.6, where we report the
median and interquartile range of detection times for σ1 ∈ [1, 4].
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We empirically validate in Figure 3.5a the control of the false positive probability by at
most δ = 5%. However, the actual false positive rate appears much lower (0.2%), which is
a consequence of the looseness of the union bound involving the factor g(t) in the doubly
time-uniform confidence set. Following Maillard (2019a), a sharper approach would involve
a direct concentration result on the pair

(
θ̂s,c, θ̂s+1:t,c

)
(i.e. in the terminology of Maillard

(2019a), a joint bound, as opposed to the current disjoint one). This is a nontrivial result which
we leave for future work. Finally, note that the high false negative rate of Figure 3.5b (27.6%)
is an artifact of thresholding the detection time at T = 100; increasing T would enable later
detections, thus reducing the number of observed false negatives, at the cost of increasing the
average detection delay (as well as the computational burden of the experiment).
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Figure 3.5 – Histograms of detection times τ δ
c (F) in the Gaussian setting described in Section 3.5. Green:

correct detection (negative in (a), positive in (b), (c) and (d)). Blue: incorrect detection (positive in
(a), negative in (b), (c) and (d)). Black dashed line: change point t⋆.
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Figure 3.6 – Detection time τ δ
c (F) in the Gaussian setting described in Section 3.5. Solid line: median

detection time. Shaded area: interquartile range of detection times (25th and 75th percentiles). Black
dashed line: change point t⋆.

Conclusion

We adapted the method of mixtures to derive a time-uniform deviation inequality for generic
parametric exponential families expressed in terms of their Bregman divergences, highlighting
the role of a quantity, the Bregman information gain, that is related to the geometry of the
family. We specialised this general result to build confidence sets for classical examples. Our
method compared favourably to the state-of-the art for Gaussian, Bernoulli and exponential
distributions, and extends to other families like Chi-square, Pareto and two-parameter Gaussian,
where no known time-uniform bound existed. Our method is also general enough to design
GLR tests for change detection. An interesting direction for future work would be to consider
the case where the log-partition function (and thus the Bregman divergence) is misspecified or
unknown and has to be learned alongside the parameter.
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Chapter 4

Empirical Chernoff concentration:
beyond bounded distributions (ç)

Des crépuscules blancs tiédissent sous mon crâne
Qu’un cercle de fer serre ainsi qu’un vieux tombeau
Et triste, j’erre après un rêve vague et beau,
Par les champs où la sève immense se pavane.

— Stéphane Mallarmé, Renouveau

The content of this chapter is new and has not been previously published. This work was
initially inspired by modelling questions in agriculture, a domain that presents similar
modelling challenges to healthcare, in particular small data samples and the need for adaptive
nonparametric methods. As a tribute to this, we illustrate our novel concentration bounds on
real and simulated agricultural data, showcasing the new second order sub-Gaussian
condition as an alternative modelling option for practitioners. We defer to Appendix C.1
proofs and numerical evidence that certain classical distributions satisfy this condition, which
amounts to checking simple but tedious inequalities.
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Outline and contributions

In this chapter, we introduce a subclass of the family of sub-Gaussian distributions, called second
order sub-Gaussian, that satisfies an additional cumulant condition, extending the standard
Chi-square setting, and spans a vast range of nonparametric families, including Gaussian,
Bernoulli, uniform, triangular and (presumably) Beta. This alternative model specification
enables to substitute the prior knowledge of the sub-Gaussian parameter in the standard
Cramér-Chernoff bound (Corollary 1.16) and method of mixtures (Corollary 1.21) with a
data-dependent estimate, eschewing the need for a known bounded support as in previous em-
pirical approaches. We detail the new concentration inequalities in Section 4.3, both in the fixed
sample (Theorem 4.8) and time-uniform (Theorem 4.10) settings. We further instantiate these
results in Section 4.4 to construct implicitly defined confidence sets for the mean, which can be
easily implemented with a root search routine (Corollary 4.14). Building on an alternative sym-
metrised cumulant control, we also provide fully explicit confidence intervals (Corollary 4.17).
We conclude by conducting a range of numerical experiments to (i) illustrate properties of the
new mixture measure used to derive the time-uniform bounds, and (ii) compare these new
bounds to state-of-the-art competitors on several illustrative examples, including a real-world
field experiment in Canada, highlighting their merits in the small sample regime.

4.1 Concentration of the mean without knowing the variance

We consider the same setting as in Section 1.4 in Chapter 1, i.e. we observe an i.i.d. sequence
(Yt)t∈N drawn from a distribution ν ∈ L1(R) and we seek to construct a sequence (Θδ

t )t∈N of
(random) subsets of R, such that either P(µ ∈ Θδ

t ) ⩾ 1 − δ for all t ∈ N (fixed sample) or
P(∀t ∈ N, µ ∈ Θδ

t ) ⩾ 1− δ (time-uniform) for any δ ∈ (0, 1).
In some cases where ν belongs to a known parametric family, such confidence sets may

be computed exactly. For instance, in the fixed sample setting, if ν is a Gaussian measure, the
statistic Tt defined as

Tt =
√
t (µ̂t − µ) /σ̂t, with µ̂t = 1

t

t∑
s=1

Ys and σ̂2
t = 1

t(t− 1)
∑

1⩽s<s′⩽t

(Ys − Ys′)2 ,

(4.1)

follows the Student distribution with (t− 1) degrees of freedom, and therefore

Θ̂δ
t =

[
µ̂t ±

σ̂t√
t
qStudent(t−1)

(1
2 ±

1− δ
2

)]
(4.2)
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is a confidence set at level δ and sample size t for µ, where qStudent(t−1) denotes the quantile
function of the distribution of Tt. In practical settings however, this Gaussian assumption is
often an imperfect idealisation of the observed distributions. Moreover, even though such
confidence sets are valid in an asymptotic sense as long as the underlying distribution is square
integrable (thanks to the central limit theorem), they are not theorically valid for small samples.

A weaker assumption, at the heart of the Cramér-Chernoff method (Proposition 1.15), is to
control the cumulant generating function (CGF) of ν, defined as λ 7→ logEY∼ν

[
eλ(Y−µ)

]
, typi-

cally by bounding it from above by the cumulant generating function of a reference distribution
such as N (0, R2) (these distributions form the family of R-sub-Gaussian distributions FG,R).

Knowing the parameter R is of utmost importance in order to build actionable confidence
intervals, as larger R correspond to larger intervals and thus more uncertainty around the
estimation of µ. Assuming the support of ν is bounded, i.e. ν ∈ F[B,B], Hoeffding’s lemma
(Hoeffding, 1963) suggests R = (B −B) /2 as a valid choice for the sub-Gaussian parameter.
However, this value is obtained through a worst case analysis that is only tight for Bernoulli-like
distributions, and therefore likely to be rather loose for most other distributions that share the
same support. Using a subexponential control under the same boundedness assumption and a
bound on the variance paves the way for Bernstein inequalities (Hoeffding, 1963); for instance,

Θ̂δ
t =

µ̂t ±
R

√
2 log 2

δ

t
+

(B −B) log 2
δ

3t

 (4.3)

is a confidence set at level δ and sample size t for µ and the family F[B,B] ∩ F
centred
R2,1 . In this

example, the dependency on R may be lifted, giving rise to the so-called empirical Bernstein
bounds; for instance, Maurer and Pontil (2009, Theorem 4) shows that

Θ̂δ
t =

µ̂t ±
σ̂t

√
2 log 3

δ

t
+

7(B −B) log 3
δ

3(t− 1)

 (4.4)

is a confidence set at level δ and sample size t for µ and the family ⋃
R∈R⋆+

F[B,B]∩F
centred
R2,1 = F[B,B].

To motivate our setting and the need to move beyond boundedness, let us consider the
toy example of a Beta (α/ε, α/ε) distribution with α ∈ R⋆+ and ε ∈ (0, 1) a small parameter.
Intuitively, the confidence interval (4.2) should nearly apply since this distribution is close
to being Gaussian (precisely, ε−1/2(Beta (α/ε, α/ε) − 1/2) → N (0, 1/(8α)) in distribution).
However, if the only information at hand is the support, one would pay an extra O (1/t) in the
Maurer-Pontil bound, and although this term decays faster with t than the variance contribution
O
(
σ/
√
t
)
, it may considerably widen the confidence interval in the small sample regime.
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Anticipating on the rest of this chapter, we illustrate this phenomenon in Figure 4.1, where
we provide an empirical comparison of several bounds, including other confidence intervals for
bounded distributions (we refer to Table 2.2 for an overview), and the novel empirical Chernoff
confidence sets we introduce in Section 4.4. We observe that our bounds appear to adapt to
the small variance of the Beta distribution, thus outperforming other methods for bounded
distributions, even the state-of-the-art hedged capital bounds (Proposition A.5). We also report
Student’s confidence interval (4.2), which we recall is not a priori valid for non-Gaussian
distributions; indeed, at level δ = 5%, the boundary crossing rate (i.e. the frequency of the
event µ /∈ Θ̂δ

t) for small samples is around 8% for this last bound, whereas a valid confidence
set would cap this rate to at most δ = 5%.

Figure 4.1 – Comparison of median fixed sample confidence bounds around the mean for a Beta (50, 50)
distribution, as a function of the sample size t, over 1000 independent replicates. Grey lines are trajectories
of empirical means µ̂t.

4.2 Second order sub-Gaussian distributions

Motivating example. The goal of empirical concentration is to replace the prior knowledge of
a parameterR controlling the size of the resulting confidence sets by a data-dependent estimate.
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When this parameter is related to the variance of a distribution ν ∈ F[B,B], the empirical variance
process (σ̂2

t )t∈N itself is bounded, which allows to similarly control its deviations around the
true variance. Of course, doing so bluntly would require the knowledge of a parameter related
to the variance of σ̂2

t itself, typically a bound on the kurtosis of ν. Interestingly, Lattimore
(2017) analysed such concentration in the context of multiarmed bandits; however for empirical
concentration, this merely shifts the required prior knowledge to higher moments, which may
not be convenient in practice. Alternatively, we may exploit solely the boundedness to control
all further moments (Maurer and Pontil, 2009; Kuchibhotla and Zheng, 2021).

In the unbounded case however, additional assumptions are required to derive a confidence
set for R. To build intuition, let us consider a Gaussian random variable Y ∼ N (µ,R2) for
which we seek to establish a deviation bound around µ ∈ R independent of R ∈ R⋆+. As seen
in equation (4.2), Student’s statistic provides a way to achieve this goal, however this approach
is specific to the Gaussian and hardly generalisable; we apply instead the Cramér-Chernoff
method (Proposition 1.15). The cumulant generating function (CGF) of the distribution of Y is
K : λ ∈ R 7→ logEY∼ν [exp(λ(Y −µ))] = R2λ2/2, leading to a deviation bound ofR√2t log(1/δ)
(Corollary 1.16). On the other hand, (Y − µ)2 /R2 follows a Chi-square distribution with a
single degree of freedom, for which we denote the CGF as K2 : λ 7→ −1/2 log (1− 2λ), defined
for λ < 1/2. Applying the Cramér-Chernoff method a second time with K2(λ) for λ < 0, we
establish after some simple algebra that:

P

R ⩽

√√√√√ 1
t

∑t
s=1 (Ys − µ)2

(K⋆,−2 )−1
(

1
t log 1

δ

)
 ⩾ 1− δ , (4.5)

where K⋆,−2 : u ∈ R+ 7→ supλ∈R− λu−K2(λ) is the Fenchel-Legendre transform of the second
order CGFK2. Finally, combiningwith a union bound the above equationwith the sub-Gaussian
bound obtained earlier enables to factor out R, resulting in a deviation bound on∑t

s=1(Ys − µ)
controlled only by∑t

s=1(Ys − µ)2, δ and t, i.e.

P

 t∑
s=1

Ys − µ ⩾

√√√√√ 2 log 2
δ

(K⋆,−2 )−1
(

1
t log 2

δ

) t∑
s=1

(Xs − µ)2

 ⩽ δ . (4.6)

Second order sub-Gaussian distributions. Drawing inspiration from this simple example,
we generalise this approach to distributions other than Gaussian by bounding their second
order cumulant by that of a Chi-square distribution.
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Definition 4.1 (Second order sub-Gaussian). Let ν be a distribution on R with expectation µ. We
define the second order (centred) cumulant generating function (CGF) of ν as

K2 : R −→ R ∪ {+∞}

λ 7−→ logEY∼ν
[
eλ(Y−µ)2]

. (4.7)

Let ρ,R ∈ R⋆+. We define the family of (ρ,R)-second order sub-Gaussian distributions as

F2
G,ρ,R =

{
∀λ ∈

(
−∞, 1

2R2

)
, K2(λ) ⩽ −1

2 log
(
1− 2R2 ((ρ− 1)1λ<0 + 1)2 λ

)}
. (4.8)

Moreover, we define the family of ρ-second order sub-Gaussian (SOSG) as

F2
G,ρ =

⋃
R∈R⋆+

F2
G,ρ,R . (4.9)

Let us clarify this definition. The second order CGF of a (ρ,R)-second order sub-Gaussian
distribution ν is controlled on its right tail (λ ∈ [0, 1/(2R2))) by the second order CGF of the
square of a Gaussian random variable with variance R2, and on its left tail (λ ∈ R⋆−) by that of
Gaussian random variable with variance (ρR)2, i.e.

K2(λ) ⩽

−
1
2 log

(
1− 2R2λ

) if λ ∈ [0, 1
2R2 )

−1
2 log

(
1− 2(ρR)2λ

) if λ ∈ R⋆−
(4.10)

Properties of second order sub-Gaussian distributions

Interestingly, the right tail control shows that this definition is a special case of the classical
notion of R-sub-Gaussian distributions, which we summarise in the lemma below.
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Lemma 4.2 (Second order sub-Gaussian distributions and other families). Let ρ,R ∈ R⋆. Then
we have

F2
G,ρ,R ⊂ FG,R and FN ,R ⊂ F2

G,1,R . (4.11)

Proof of Lemma 4.2. The first inclusion is a direct consequence of Wainwright (2019, Theo-
rem 2.6), which shows that the (first order)R-sub-Gaussian controlEY∼ν [eλ(Y−µ)] ⩽ eλ

2R2/2 for
λ ∈ R is equivalent to the second order control K(λ) ⩽ −1/2 log(1− 2R2λ) for λ ∈ [0, 1/(2R2)).
The second follows immediately from the expression of the CGF of the Chi-square distribution
(in particular, the CGF control is tight for Gaussian distributions). ■

More generally, the case ρ = 1 means that both tails of the CGF K2 are controlled by the
same scale parameter R. In general however, they may exhibit different scaling, which is why
we explicitly introduce ρ as the ratio of the left and right tail scaling parameters. The case ρ = 1
is actually a limiting case, as shown in the next lemma.

Lemma 4.3 (Lower bound on the variance). Let ρ,R ∈ R⋆+ and ν ∈ F2
G,ρ,R. Then we have the

inequalities (ρR)2 ⩽ VY∼ν [Y ] ⩽ R2. In particular, ρ ∈ (0, 1], and if ρ = 1 then R2 = VY∼ν [Y ].

Proof. Since ν ∈ FG,R (Lemma 4.2), the upper bound VY∼ν [Y ] ⩽ R2 follows from Lemma 1.12.
The reverse bound is obtained from the left tail CGF control of Definition 4.1. Indeed, let µ ∈ R
and γ : λ ∈ R⋆+ 7→ EY∼ν [exp(−λ(Y − µ)2)] − (1 + 2(ρR)2λ)−1/2. By definition, γ(λ) ⩽ 0 for
λ ∈ R⋆+ and a first order expansion around λ = 0 yields γ(λ) = λ((ρR)2−EY∼ν [(Y −µ)2])+o(λ).
Since the dominating term must be nonpositive (and λ > 0), we obtain VY∼ν [Y ] ⩾ (ρR)2. ■

Arbel et al. (2020) introduced a unifying framework to study strictly sub-Gaussian distri-
butions, for which the sub-Gaussian parameter R2 is exactly the variance (rather than just an
upper bound). In particular, they show that for some classical families (uniform, triangular,
Bernoulli, Beta, etc.), only the symmetric distributions are strictly sub-Gaussian (e.g. B(1/2)).
A consequence of Lemma 4.3 is that SOSG distributions with ρ = 1 are special instances of
strictly sub-Gaussian distributions. We extend their approach in the next proposition, which
provides conditions for a sub-Gaussian distribution (ν ∈ FG,R) to be SOSG (ν ∈ F2

G,ρ).
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Proposition 4.4 . Let R ∈ R⋆+ and ρ ∈ (0, 1]. For a distribution ν ∈ L2(R) with expectation µ and
variance σ2, we recall that K : λ ∈ R 7→ logEY∼ν [exp(λ(Y − µ))] is the first order CGF of ν and we
define the following mappings:

H : R⋆ −→ R and H2 : R⋆− −→ R

λ 7−→ 2K(λ)
λ2 λ 7−→ 1− e−2K2(λ)

2λ , (4.12)

which we extend by continuity asH(0) = H2(0) = σ2. Then the following results hold.
(i) ν ∈ FG,R if and only if supλ∈RH(λ) ⩽ R2, and if so, ν ∈ F2

G,ρ,R if and only if infλ∈R− H2(λ) ⩾
(ρR)2.

(ii) ν ∈ F2
G,1 if and only if supλ∈RH(λ) = infλ∈R− H2(λ).

(iii) If ν ∈ FG,σ and (1 + 2λdK2/dλ(λ)) exp(−2K2(λ)) ⩽ 1 for all λ ∈ R⋆−, then ν ∈ F2
G,1.

Proof of Proposition 4.4. The first result is simply a rewriting of the CGF control of sub-Gaussian
and second order sub-Gaussian distributions with the mappingsH andH2, i.e.

∀λ ∈ R, K(λ) ⩽ sup
R
Hλ

2

2 and ∀λ ∈ R−, K2(λ) ⩽ −1
2 log

(
1− 2 inf

R−
H2λ

)
. (4.13)

The second result is also a straightforward consequence of the above expressions as long as
supλ∈RH(λ) and infλ∈R− H2(λ) are respectively finite and strictly positive. If these quantities
are equal, we have that supλ∈RH(λ) ⩽ H2(0) = σ2 < +∞ and infλ∈R− H2(λ) ⩾ H(0) = σ2 > 0,
which shows that ν is SOSG with the same scale parameter R = σ on both tails, i.e. ρ = 1.

Finally, for λ ∈ R⋆−, we have

dH2
dλ (λ) =

−1 +
(
1 + 2λdK2

dλ (λ)
)
e−2K(λ)

2λ2 . (4.14)

Therefore, the condition (iii) shows that H2 is nonincreasing, and therefore we have the
equalities σ2 = H(0) = infλ∈R− H2(λ). By assumption, ν ∈ FG,σ, hence supλ∈RH(λ) = σ2, so it
follows from (ii) that ν ∈ F2

G,1. ■

Using this characterisation, we now provide several examples of classical distributions
that are second order sub-Gaussian (the proof, although elementary, involves quite lengthy
calculations, which we defer to Appendix C.1).
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4.2 Second order sub-Gaussian distributions

Proposition 4.5 (Examples). The following distributions are second order sub-Gaussian.
(i) Gaussian. For µ ∈ R, σ ∈ R⋆+, we have N (µ, σ2) ∈ F2

G,1,σ.

(ii) Bernoulli. For B,B ∈ R, p ∈ [0, 1] and q = 1− p, we have pδB + qδB ∈ F
2
G,ρp,Rp with

Rp =
(
B −B

)
√√√√√ 1

2 − p ∧ q
log

(
p∨q
p∧q

)1p ̸= 1
2

+ 1
21p= 1

2

 and ρp = p ∧ q

√√√√√ log
(
p∨q
p∧q

)
1
2 − p ∧ q

1p ̸= 1
2

+ 1p= 1
2
.

(4.15)

In particular, B(p)F2
G,1 if and only if p = 1/2.

(iii) Uniform. For B,B ∈ R, we have U([B,B]) ∈ F2
G,1,σ with σ2 = (B −B)2/12.

(iv) Symmetric triangular. For B,B ∈ R, U([B,B]) ∈ F2
G,1, the distribution with p.d.f. p : y ∈

R 7→ 4/(B − B)2((y − B)1y∈[B,(B+B)/2] + (B − y)1y∈((B+B)/2,B]) is in F2
G,ρ,σ with σ2 =

(B −B)2/24 and ρ =
√

3/π ≈ 0.977.

(v) Gaussian mixture. For µ0, µ1 ∈ R and σ0, σ1 ∈ R⋆+, p ∈ (0, 1) and q = 1− p, the mixture of
N (µ0, σ

2
0) and N (µ1, σ

2
1) with weights p and q is F2

G,ρp,Rp with

cp = q − p
4(log q − log p)1p̸= 1

2
+ 1

81p= 1
2
, (4.16)

Rp =
√
σ2

0 ∨ σ2
1 + 2cp and ρp = σ0 ∧ σ1√

σ2
0 ∨ σ2

1 + 2cp
. (4.17)

Rather than providing an exhaustive list, this last proposition intents to show that many
common distributions are indeed SOSG. For all examples except the Gaussian mixtures, the
ratio ρ is tight, as it results from a direct calculation. In this last case, what we provide is only
a lower bound on the optimal ratio ρ, which is likely not tight. This is not directly due to a
limitation of our approach but it is rather a consequence of the challenging problem of finding
sharp sub-Gaussian control for general mixture distributions. In particular, the bound reported
in Chafai and Malrieu (2010) and used in the proof, which to the best of our knowledge is the
sharpest in the literature, depends only on the maximum variance of the mixture components,
regardless of their respective weights in the mixture.

We acknowledge that computing the exact ratio ρ often involves intricate formal calculations.
For symmetric Beta distributions, we only conjecture that the optimal ratio is ρ = 1, which is
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consistent with their strict sub-Gaussianity. Nonetheless, this claim is supported with accurate
empirical evidence, which we provide in Appendix C.1.

Conjecture 4.6 (Symmetric Beta distributions are second order sub-Gaussian). Let α ∈ R⋆+.
Then Beta (α, α) ∈ F2

G,1,σ with σ = 1/(4(2α+ 1)).

In the light of these examples, it is tempting to assume that the case ρ = 1, is related
to the symmetry of the distributions at hand. Arbel et al. (2020) disproved this for strictly
sub-Gaussian distributions, by exhibiting examples of sub-Gaussian distributions that were
respectively symmetric but not strictly sub-Gaussian, and asymmetric and yet strictly sub-
Gaussian. However, these counterexamples involved rather specific combinations of Dirac
distributions, so we believe our notion of second order sub-Gaussian distributions capture a
vast, nonparametric range of natural distributions.

Remark 4.7 (Link with log-concavity).An alternative nonparametric specification for statistical
estimation is that of shape-constrained distributions, which imposes e.g. log-concave density functions.
Hillion et al. (2019) showed that the only strongly log-concave distribution with strong log-concavity
parameter equal to its variance is the corresponding Gaussian measure. A direct consequence of
this is that the only SOSG distributions with ρ = 1 and strongly log-concave densities with respect
to the Lebesgue measure on R are the Gaussian distributions. However, as illustrated above, the
SOSG definition covers many other distributions, in particular ones with compact supports, which is
incompatible with the strong log-concavity.

In the next section, we derive closed-form concentration bounds for the family of (ρ,R)-
second order sub-Gaussian but also for the larger family F2

G,ρ, that is independently of the
actual value of the scale parameter R (the same way empirical Bernstein inequalities extend
the classical Bernstein inequalities for bounded distributions). In this sense, ρ can be seen as a
measure of how much the concentration of Y 2 “leaks” to the concentration of Y .

4.3 Empirical Chernoff concentration

We first state concentration bounds for fixed samples, which extend those of Corollary 1.16, as
we believe the novel framework of second order sub-Gaussian distributions may offer appealing

98



4.3 Empirical Chernoff concentration

modelling alternatives even for classical statistics. We then derive time-uniform bounds, which
extends those of Corollary 1.21. We also detail the resulting confidence sets, which are described
by implicit inequalities. Finally, we introduce a variant of the second order sub-Gaussian control
that allows for fully explicit confidence sets.

Fixed sample concentration

As seen in the Gaussian example in Section 4.2, the Cramér-Chernoff method in the context of
the second order CGF control of Definition 4.1 involves computing the inverse of the Fenchel-
Legendre transform of the CGF of a Chi-square distribution. This can be obtained in closed form
using the LambertW function, which we have already encountered in the tuning of the mixing
parameter for the sub-Gaussian method of mixtures (Lemma 1.23) and the analysis of generic
UCB algorithms (Corollary 1.34). It is a multivalued function over the complex plane defined
implicitly as the solutions in variable ω ∈ C of the equation ωeω = z for a given z ∈ C. For our
use case, we only consider the principal branchW0 and the first negative branchW−1, which
give the unique two real solutions for z ∈ (−1

e , 0), with W0(z) > −1 and W−1(z) < −1. In
addition, both branches are joining at z = −1/e, i.e. limz→−1/eW0(z) = limz→−1/eW−1(z) = 1.

Theorem 4.8 (Empirical Chernoff concentration). Let ρ ∈ (0, 1], R ∈ R⋆+, t ∈ N and (Ys)ts=1 a
sequence of i.i.d. random variables drawn from ν with expectation µ ∈ R. Let δ ∈ (0, 1) and

St =
t∑

s=1
Ys − µ and Qt =

t∑
s=1

(Ys − µ)2 . (4.18)

(i) Second order bounds. If ν ∈ F2
G,ρ,R then

P
(
Qt ⩽ −W0

(
−δ

2
t

e

)
(ρR)2 t

)
⩽ δ and P

(
Qt ⩾ −W−1

(
−δ

2
t

e

)
R2t

)
⩽ δ , .

(4.19)

(ii) Self-normalised bound. If ν ∈ F2
G,ρ then

P

 St√
Qt

⩾
1
ρ

√√√√√√ 2 log 2
δ

−W0

(
−(δ/2)

2
t

e

)
 ⩽ δ . (4.20)
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Proof of Theorem 4.8. Let ν ∈ F2
G,ρ,R. The second order sub-Gaussian condition satisfied by ν

coincides with the CGF control of the generic Cramér-Chernoff bound of Proposition 1.15
applied to (i) the process (Qs/(ρR)2)ts=1 with ψ(λ) = −1/2 log(1− 2λ) if λ ∈ I− = R⋆− and (ii)
the process (Qs/R2)ts=1 with ψ(λ) = −1/2 log(1− 2R2λ) if λ ∈ I+ = (0, 1/2). Hence, to prove
the second order bounds, we need to compute the inverses of the Fenchel-Legendre transforms
ψ⋆,−(u) = supλ∈I− λu− ψ(λ) and ψ⋆,+(u) = supλ∈I+ λu− ψ(λ) for some u ∈ R.

Left tail control. For λ ∈ I−, let g(λ) = λu+ 1/2 log(1− 2λ), which defines a differentiable
function satisfying dg/dλ(λ) = u−1/(1−2λ). Setting this derivative to zero yields λ⋆ = 1/2(1−
1/u), which is indeed in I− provided that u ∈ (0, 1) and thus ψ⋆,−(u) = 1/2(u− 1)− 1/2 log(u).
Solving ψ⋆,−(u) = y in y ∈ R⋆+ yields, after simple algebra −ue−u = −e−(2y+1) ∈ (−1/e, 0).
Since we have −uu > −1, the solution is given by the principal branch of the Lambert W
function, i.e. u = −W0(−e−(2y+1)). We conclude by letting y = 1/t log(1/δ) for δ ∈ (0, 1).

Right tail control. For λ ∈ I+, we define g(λ) = λu + 1/2 log(1 − 2λ). Similarly to the left
tail control, setting the derivative of g to zero yields λ⋆ = 1/2(1 − 1/u), which belongs to
I+ provided that u > 1. Solving ψ⋆,+(u) = y yields a similar equation −ue−u = −e−(2y+1).
However, this time we have −u < −1, and hence u = −W−1(−e−(2y+1)).

Self-normalised bound. Thanks to Lemma 4.2, ν is also R-sub-Gaussian, and therefore the
event Eδ1 = {St ⩾ R

√
2t log(1/δ)} holds with probability at most δ (Corollary 1.16). We lety

R̂δt = 1
ρ

√√√√√ Qt

−tW0

(
−(δ)

2
t

e

) and Eδ2 =
{
R ⩾ R̂δt

}
. (4.21)

The left tail control implies that the event Eδ2 holds with probability at most δ. By a simple union
bound argument, the intersection of the complement events Eδ/2

1 ∩ Eδ/2
2 holds with probability

at least 1− δ. We conclude by noting that Eδ/2
1 ∩ Eδ/2

2 ⊂ {St ⩽ R̂δt
√

2t log(1/δ)}. ■

The second order bounds are reminiscent of Bernstein-like inequalities in Birgé andMassart
(1998, Lemma 8), Laurent and Massart (2000, Lemma 1) and Maillard (2019b, Lemma 2.5).
However, these bounds relied on relaxations of the Chi-square CGF to obtain easier expressions
instead of the tighter control by the LambertW function. In the limit of large samples t→ +∞,
δ2/t goes to 1 and thus −Wk(−δ2/t/e)→ 1 for k ∈ {−1, 0}. Furthermore, Corless et al. (1996)
gives the following asymptotic expansion Wk(z) = −1 + εk

√
2(ez + 1) + o(

√
z + 1

e ) when
z → −1

e (from above) and ε0 = 1, ε−1 = −1. Using the Taylor expansion δ2/t = exp(2
t log δ) =
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1− 2/t log(1/δ) + o(1/t), we obtain the following asymptotic bounds:

P
(
Qt ⩽ (ρR)2 t

(
1− 2

√
1
t

log 1
δ

)
+ o(1)

)
⩽ δ (4.22)

P
(
Qt ⩾ R2t

(
1 + 2

√
1
t

log 1
δ

)
+ o(1)

)
⩽ δ . (4.23)

The self-normalised bound does not depend on R, which is instead replaced by a data-
dependent estimator R̂δt proportional to

√
Qt/t, and thus represents an empirical extension of

the classical Cramér-Chernoff bound for SOSG distributions. The price to pay for dropping the
dependency on R comes in the form of 1/ρ, which measures the tightness of the estimation of
R using the quadratic sum Qt.

Time-uniform concentration

We now turn to the extension of Corollary 1.21 to the family of SOSG distributions. Similarly to
Theorem 4.8, we provide two second order bounds and a self-normalised bound that combines
the first and second order sub-Gaussian properties. Before we state this result, we recall the
definition of two special functions known as the confluent hypergeometric functions (Magnus
et al. (1953), Abramowitz and Stegun (1968, Chapter 13)).

Definition 4.9 (Confluent hypergeometric functions). Consider the half space of R2 defined by
H = {(b, c) ∈ R2, b < c}. We define Tricomi’s confluent hypergeometric function as

U : H× R⋆+ −→ R⋆+

(b, c; z) 7−→ 1
Γ(b)

∫ +∞

0
ub−1(1 + u)c−b−1e−zudu , (4.24)

and Kummer’s confluent hypergeometric function as

M : H× R⋆+ −→ R⋆+

(b, c; z) 7−→ Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
ub−1(1− u)c−b−1ezudu . (4.25)

Fast numerical approximations of these special functions are implemented inmany scientific
libraries, e.g. in Python scipy.special.hyperu (Tricomi) and scipy.special.hyp1f1 (Kummer).
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For β, γ, ζ ∈ R⋆+ such that β < γ, we define the auxiliary functions

GT
β,γ,ζ,t : R⋆+ −→ R⋆+ and GK

β,γ,ζ,t : R⋆+ −→ R⋆+

z 7−→
U
(
β, γ + t

2 ; ζ + z
2
)

U(β, γ; ζ) z 7−→
M
(
β, γ + t

2 ; ζ + z
2
)

M(β, γ; ζ) . (4.26)

Note thatGT
β,γ,ζ,t andGK

β,γ,ζ,t are respectively decreasing and increasing, and for a fixed z ∈ R⋆+,
t 7→ GT

β,γ,ζ,t(z) and t 7→ GK
β,γ,ζ,t(z) are respectively increasing and decreasing. Moreover, we

observe the following boundary conditions:

GT
β,γ,ζ,0(0) = 1 , lim

z→+∞
GT
β,γ,ζ,t(z) = 0 and lim

t→+∞
GT
β,γ,ζ,t(z) = +∞ , (4.27)

GK
β,γ,ζ,0(0) = 1 , lim

z→+∞
GK
β,γ,ζ,t(z) = +∞ and lim

t→+∞
GK
β,γ,ζ,t(z) = 0 . (4.28)

Theorem 4.10 (Empirical Chernoff time-uniform concentration). Let ρ ∈ (0, 1], R ∈ R⋆+
and (Yt)t∈N be a sequence of i.i.d. random variables drawn from ν with expectation µ ∈ R. Let
α, β, γ, ζ ∈ R⋆+ such that β < γ, t0 ∈ N, δ ∈ (0, 1) and

(St)t∈N =
(

t∑
s=1

Ys − µ
)
t∈N

and (Qt)t∈N =
(

t∑
s=1

(Ys − µ)2
)
t∈N

. (4.29)

(i) Second order bounds. If ν ∈ F2
G,ρ,R and GT

β,γ,ζ,t0
(0) > 1/δ then

P
(
∃t ⩾ t0, Qt ⩽ (ρR)2

(
GT
β,γ,ζ,t

)−1
(1
δ

))
⩽ δ , (4.30)

and if GK
β,γ,ζ,t0

(0) < 1/δ then

P
(
∃t ⩾ t0, Qt ⩾ R2

(
GK
β,γ,ζ,t

)−1
(1
δ

))
⩽ δ . (4.31)

(ii) Self-normalised bound. If ν ∈ F2
G,ρ and GT

β,γ,ζ,t0
(0) > 2/δ then

P

∃t ⩾ t0,
St√
Qt

⩾
1
ρ

√√√√√√2(t+ α) log
(

2
δ

√
1 + t

α

)
(
GT
β,γ,ζ,t

)−1 (2
δ

)
 ⩽ δ . (4.32)

Proof of Theorem 4.10. Let ν ∈ F2
G,ρ,R. We will use the CGF control of Definition 4.1 to construct

suitable nonnegative supermartingale via the method of mixtures.
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Left tail control. For λ ∈ R⋆− and t ∈ N, we letMλ
t = (1− 2λ)t/2 exp(λQt) (the general case

with scaling parameter ρR can be deduced by considering Qt/(ρR)2 instead). The process
(Qt)t∈N is measurable with respect to the natural filtration of (Yt)t∈N, denoted by (Gt)t∈N,
integrable and

E
[
Mλ
t+1

∣∣∣ Gt] = E

(1− 2λ)
t
2 eλQt︸ ︷︷ ︸

Gt-measurable

√
1− 2λeλY 2

t+1︸ ︷︷ ︸
Gt-independent

∣∣∣∣∣∣∣ Gt
 = Mλ

t E
[√

1− 2λeλY 2
t+1
]

︸ ︷︷ ︸
⩽1

⩽Mλ
t . (4.33)

Therefore (Mλ
t )t∈N is a nonnegative supermartingale. It is convenient to use the change of

variable u = −2λ ∈ R⋆+ before the mixing construction, i.e. we letMu
t = (1+u)t/2 exp(−u/2Qt).

For β, γ, ζ ∈ R⋆+, we consider the distribution with the following density (with respect to the
Lebesgue measure):

p : R⋆+ −→ R⋆+

u 7−→ uβ−1 (1 + u)γ−β−1 e−ζu

Γ(β)U (β, γ; ζ) , (4.34)

which satisfies ∫+∞
0 p(u)du = 1 (Definition 4.9). As in the proof of Corollary 1.21, the mixture

process (Mt)t∈N = (
∫+∞

0 Mu
t p(u)du)t∈N remains a nonnegative supermartingale and is related

to the quadratic process (Qt)t∈N by the identityMt = GT
β,γ,ζ,t(Qt) for all t ∈ N. Theorem 1.20

shows that we may obtain a time-uniform bound on (Qt)t∈N by invertingGT
β,γ,ζ,t. Since (t, z) 7→

GT
β,γ,ζ,t(z) is decreasing in z (to 0) and increasing in t (to +∞), it is enough to find t0 ∈ N such

that GT
β,γ,ζ,t0

(0) > 1/δ to guarantee the existence of (GT
β,γ,ζ,t)−1(1/δ) for all t ⩾ t0.

Right tail control. For λ ∈ (0, 1/2) and t ∈ N, we letMλ
t = (1− 2λ)t/2 exp(λQt) (again, the

general case with scaling parameter R can be deduced by considering Qt/R2 instead). The
process (Mλ

t )t∈N still defines a nonnegative supermartingale. However we now consider the
change of variable u = 2λ ∈ (0, 1),Mu

t = (1− u)t/2 exp(u/2Qt) and the density defined as

p : (0, 1) −→ R⋆+

u 7−→ Γ(γ)uβ−1 (1− u)γ−β−1 eζu

Γ(β)Γ(γ − β)M (β, γ; ζ) , (4.35)

with ∫ 1
0 p(u)du = 1 by definition of Kummer’s function M . Again, the mixture process

(Mt)t∈N = (
∫ 1

0 M
u
t p(u)du)t∈N is still a nonnegative supermartingale and satisfies the iden-

tityMt = GK
β,γ,ζ,t(Qt). Since (t, z) 7→ GK

β,γ,ζ,t(z) is increasing in z (to +∞) and decreasing in
t (to 0), it is enough to find t0 ∈ N such that GK

β,γ,ζ,t0
(0) < 1/δ to guarantee the existence of

(GK
β,γ,ζ,t)−1(1/δ) for all t ⩾ t0.
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Self-normalised bound. Let α ∈ R⋆+. By Lemma 4.2, ν is also R-sub-Gaussian, and therefore
the event Eδ1 = {∃t ⩾ t0, St ⩾ R

√
2(t+ α) log(

√
1 + t/α/δ)} holds with probability at most δ

(Corollary 1.21). We let

R̂δt = 1
ρ

√√√√ Qt(
GT
β,γ,ζ,t

)−1 (1
δ

) and Eδ2 =
{
∃t ⩾ t0, R ⩾ R̂δt

}
. (4.36)

The left tail control implies that the event Eδ2 holds with probability at most δ. By a simple
union bound argument, the intersection of the complement events Eδ/2

1 ∩ Eδ/2
2 holds with

probability at least 1 − δ. Finally, we conclude by noting that the following inclusion holds:
Eδ/2

1 ∩ Eδ/2
2 ⊂ {∃t ⩾ t0, St ⩽ R̂δt

√
2(t+ α) log(

√
1 + t/α/δ)}. ■

Remark 4.11 . Note the similarity with the fixed sample case (Theorem 4.8), where the lower and
upper second order bounds involve different branches of the LambertW function; here, Tricomi’s U and
Kummer’sM functions are two linearly independent solutions of a second order differential equation
known as Kummer’s equation. In fact, theW function and the hypergeometric functions are related
(Rathie and Ozelim, 2022), suggesting a deeper connection between the two bounds.

Mixing parameters tuning. Compared to the first order sub-Gaussian mixture, our second
order construction depends on three mixing parameters β, γ and ζ, for which we now suggest
a natural tuning. We recall that the mixing measure for the first order sub-Gaussian bound
is Λ ∼ N (0, 1/α) for some α ∈ R⋆+, and thus Λ2 follows a Gamma(1/2, 2/α) distribution, the
density of which is p : u ∈ R⋆+ 7→

√
α/(2π)u−1/2e−αu/2. This is precisely the mixing density

used in for the second order mixture with β = 1/2, γ = 3/2 and ζ = α/2. We suggest these
particular values, with either the standard default choice α = 1 or α ≈ 0.12t0 for some t0 ∈ N
as in the tuning of the first order bound. In Section 4.5, we further support this heuristic with
empirical evidence.

Initial condition t0. Apractical differencewith the first ordermixture bound is that the results
of Theorem 4.10 are valid uniformly for all t larger than an initial condition t0 ∈ N such that
GT
β,γ,ζ,t0

(0) > 1/δ, rather than for all t ∈ N. In particular, this prevents the choice t0 = 0 since
GT
β,γ,ζ,0(0) = 1. However, we argue that this restriction is quite mild in practice. First, notice

that limt0→+∞GT
β,γ,ζ,t0

(0) = +∞, so a large enough t0 is bound to satisfy the desired inequality.
Moreover, for z → 0+, we have U(b, c; z) ∼ Γ(c− 1)/Γ(b)z1−c for c > 1 and b < c (Abramowitz
and Stegun, 1968, Chapter 13.5), and thus GT

β,γ,ζ,t0
(0) ∼ Γ(γ + t0/2− 1)/Γ(γ − 1)ζ−t0/2, which
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4.3 Empirical Chernoff concentration

is rapidly growing with t0 (a similar argument holds for the upper bound and the condition
GK
β,γ,ζ,t0

(0) < 1/δ). In practice, only small values of t0 (typically less than 5) are necessary,
therefore this additional requirement does not constitute an impediment.

Asymptotic behaviour of GT
β,γ,ζ,t. Finally, we highlight that the large sample behaviour of

the second order term (GT
β,γ,ζ,t)−1, despite its rather intricate definition, is actually quite simple.

Lemma 4.12 . Let β, γ, ζ ∈ R⋆+ such that β < γ. Then (GT
β,γ,ζ,t)−1(1/δ) ∼ t + 2(δ/U(β, γ; ζ))2

when t→ +∞ and δ → 0. In particular if δ = 1/t, we have (GT
β,γ,ζ,t)−1(t) ∼ t.

The proof is quite direct but amounts to asymptotic expansions of yet more special functions,
which we defer to Appendix C.1 to avoid cluttering. As an elegant interpretation when δ is
small, we may think of the time-uniform empirical Chernoff bound as

P

∃t ⩾ t0, St ≳
σ̂t(µ)
ρ

√√√√2 (t+ α) log
(

2
δ

√
1 + t

α

) ⩽ δ , (4.37)

which is clearly reminiscent of the classical sub-Gaussian bound where the sub-Gaussian
parameter R is swapped for σ̂t(µ)/ρ, with σ̂2

t (µ) = 1/t
∑t
s=1(Ys − µ)2.

Extension to multivariate distributions. Although this chapter focuses on one-dimensional
estimation, we briefly highlight that the second order sub-Gaussian technique we introduced
here easily extends to concentration bounds obtained by vector-valued supermartingales,
mirroring Proposition 1.26. Again, the added value compared to classical sub-Gaussian bounds
is to eschew the prior knowledge of the variance-related parameter R.
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Proposition 4.13 (Multivariate empirical Chernoff time-uniform concentration). Let d ∈ N,
ρ ∈ (0, 1]. We consider two stochastic processes, (Xt)t∈N in Rd and (ηt)t∈N in R, and an adapted
filtration (Gt)t∈N such that (ηt)t∈N is a conditionally ρ-SOSG, i.e. there existsR ∈ R⋆+ such that for all
λ ∈ (−∞, 1/(2R2)) and t ∈ N, we have logE[exp(λη2

t+1) | Gt] ⩽ −1/2 log(1− 2R2((ρ− 1)1λ<0 +
1)2λ). For any (α, β, γ, ζ) ∈ (R⋆+)4 such that γ > β, we consider the Rd-valued process (St)t∈N, the
R+-valued process (Qt)t∈N and the S++

d (R)-valued process (V α
t )t∈N defined as

(St)t∈N =
(
t−1∑
s=1

ηsXs

)
t∈N

, (Qt)t∈N =
(
t−1∑
s=1

η2
s

)
t∈N

, and (V α
t )t∈N =

(
t−1∑
s=1

XsX
⊤
s + αId

)
t∈N

.

(4.38)

Then for any δ ∈ (0, 1), if GT
β,γ,ζ,t0

(0) > 2/δ, we have the following inequality:

P

∃t ⩾ t0,
1
Qt
∥St∥2(V αt )−1 ⩾

2 log 2
δ + log detV αt

αd

ρ2
(
GT
β,γ,ζ,t

)−1 (2
δ

)
 . (4.39)

Proof of Proposition 4.13. This follows from the classical multivariate bound of Proposition 1.26,
i.e. P(∃t ∈ N, ∥St∥2(V αt )−1 ⩾ R2(2 log 1/δ + log(detV α

t /α
d)) ⩽ δ for some R ∈ R⋆+, combined

with the high probability time-uniform lower bound on R derived from Theorem 4.10 above
(in particular, even though (ηt)t∈N may not be a sum of i.i.d. squared random variables, the
assumption that it is conditionally SOSG allows for the same supermartingale construction). ■

4.4 Implicit and explicit empirical Chernoff confidence sets

We now instantiate the deviation bounds of the previous section to build confidence sets for
the mean of SOSG distributions. First, a straightforward application yields implicit sets, which
are slightly computationally cumbersome. At the cost of extending the definition of second
order sub-Gaussian control, we also present explicit confidence intervals.

Implicit empirical confidence intervals

The first result is a direct application of the bounds derived in the previous section.
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4.4 Implicit and explicit empirical Chernoff confidence sets

Corollary 4.14 (Empirical Chernoff implicit confidence sets). Let ρ ∈ (0, 1] and (Yt)t∈N be a
sequence of i.i.d. random variables drawn from ν with expectation µ ∈ R. Assume that ν ∈ F2

G,ρ. For
t ∈ N, we consider the empirical mean estimator and the empirical variance mapping defined as

µ̂t = 1
t

t∑
s=1

Ys and σ̂2
t : R −→ R+

m 7−→ 1
t

t∑
s=1

(Ys −m)2 . (4.40)

(i) Fixed sample confidence set.

Θ̂δ
t,ρ =

m ∈ R, m ∈

µ̂t ± 1
ρ

√√√√√√ 2σ̂2
t (m) log 3

δ

−tW0

(
−(δ/3)

2
t

e

)

 (4.41)

is a confidence set at level δ for µ, i.e. P(µ ∈ Θ̂δ
t,ρ) ⩾ 1− δ.

(ii) Time-uniform confidence sequence. Let c = (α, β, γ, ζ) ∈ (R⋆+)4 such that β < γ and
t0 ∈ N such that GT

β,γ,ζ,t0
(0) > 3/δ.

(
Θ̂δ
t,ρ,c

)
t⩾t0

=


m ∈ R, m ∈

µ̂t ± 1
ρ

√√√√√√2σ̂2
t (m)(1 + α

t ) log
(

3
δ

√
1 + t

α

)
(
GT
β,γ,ζ,t

)−1 (2
δ

)



t∈N
(4.42)

is a time-uniform confidence sequence at level δ for µ, i.e.

P
(
∀t ⩾ t0, µ ∈ Θ̂δ

t,ρ,c

)
⩾ 1− δ , (4.43)

or equivalently for any adapted random time τ in N such that τ ⩾ t0 almost surely,

P
(
µ ∈ Θ̂δ

τ,ρ,c

)
⩾ 1− δ . (4.44)

Proof of Corollary 4.14. This is a straightforward consequence of the self-normalised bounds of
Theorems 4.8 and 4.10 respectively. In both cases, we invoke a union argument over three events
(the upper and lower first order deviation bounds coming from the sub-Gaussian control and
the upper bound onR derived from the second order left tail control), hence the factor 3/δ. ■
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Numerical implementation. The confidence sets of equations (4.41) and (4.42) are implicitly
defined as level sets of functions ofm (i.e. m is constrained by inequalities that also depend
onm). An important consideration for practical implementation is whether these are convex
subsets of R, i.e. intervals, in which case upper and lower boundaries can be found with the
help of a simple root search. We address this issue in the following technical lemma.

Lemma 4.15 (Convexity of implicit confidence sets). Let t ∈ N, (ξs)ts=1 ∈ Rt a deterministic
sequence and ω ∈ (0, 1). Then the set

Θt =

m ∈ R, m ∈

1
t

t∑
s=1

ξs ± ω

√√√√1
t

t∑
s=1

(ξs −m)2

 (4.45)

is a convex subset of R, i.e. an interval.

Proof of Lemma 4.15. This set can be written as the intersection of the level sets of the two
following mappings, where we use the shorthand ξ̂t = 1/t

∑t
s=1 ξs:

f : R −→ R and g : R −→ R

m 7−→ −m+ ξ̂t − ω

√√√√1
t

t∑
s=1

(ξs −m)2 m 7−→ m− ξ̂t − ω

√√√√1
t

t∑
s=1

(ξs −m)2 ,

(4.46)

i.e. we haveΘt = f−1 (R−)∩g−1 (R−). Weprove thatwhenω ⩽ 1, f and g have themonotonicity
of their linear terms −m and +m respectively. Indeed, these functions are differentiable and
form ∈ R we have df/dm(m) = −1 + ωε(m) and dg/dm(m) = 1 + ωε(m) with

ε(m) =
∑t
s=1 ξs −m√

t
∑t
s=1 (ξs −m)2

. (4.47)

We deduce from the Cauchy-Schwarz inequality that ε(m) ∈ [−1, 1] for allm ∈ R, and hence
f and g are respectively nonincreasing and nondecreasing if ω ⩽ 1. In particular, f−1 (R−)
and g−1 (R−) are convex sets (semibounded intervals). Finally, convexity is stable under
intersection, hence Θt is convex. ■

108



4.4 Implicit and explicit empirical Chernoff confidence sets

In particular, applying this lemma to the sequence (Ys)ts=1, we see that the self-normalised
fixed sample and time-uniform confidence sets are indeed convex as soon as

1
ρ

√√√√√ 2 log 3
δ

−tW0
(

−(δ/3)2/t

e

) ⩽ 1 and 1
ρ

√√√√√2(1 + α
t ) log

(
3
δ

√
1 + t

α

)
G−1
β,t(3/δ)

⩽ 1 (4.48)

respectively. Note that the denominators of the left-hand sides typically grow with t, so these
confidence sets are guaranteed to be intervals after collecting enough samples. These two
conditions are straightforward to check as they involve only quantities known to the modeller;
for instance with ρ = 1 and δ = 0.05, the fixed sample set is convex after t = 23 samples,
and with the standard tuning (α, β, γ, ζ) = (1, 1/2, 3/2, 1/2), the time-uniform set is convex
after 32 samples. In our opinion, this problem of convexity has often been overlooked in the
self-normalised concentration literature, which may have hindered their adoption by statistical
practitioners. Interestingly, several recent works in this field have started to study similar
considerations, see e.g. Waudby-Smith and Ramdas (2023) for bounded distributions and
Wang and Ramdas (2023a) for heavy tailed distributions.

Explicit empirical confidence intervals

Although the above confidence sets are provably convex, we would ideally prefer to lift the
above sample size requirement and directly derive explicit confidence intervals. To circumvent
this issue, it is tempting to replace the quadratic term σ̂2

t (m) by the empirical variance σ̂2
t =

1
t(t−1)

∑
1⩽s<s′⩽t (Xs −Xs′)2, which substitutes themean estimatemwith symmetric differences

between independent random variables. In order to formalise this, we introduce an alternative,
complementary definition of second order sub-Gaussianity.
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Definition 4.16 (Symmetrised second order sub-Gaussian). Let ν be a distribution on R with
expectation µ. We define the symmetrised second order cumulant generating function of ν as

K̊2 : R −→ R ∪ {+∞}

λ 7−→ logEY⊥⊥Y ′

[
e
λ
2 (Y−Y ′)2]

, (4.49)

where Y ⊥⊥ Y ′ ∼ ν denotes two i.i.d. random variables drawn from ν. Let ρ,R ∈ R⋆+. We define the
family of (ρ,R)-symmetrised second order sub-Gaussian distributions as

F̊2
G,ρ,R = FG,R ∩

{
∀λ ∈ R⋆−, K̊2(λ) ⩽ −1

2 log
(
1− 2 (ρR)2

)}
. (4.50)

Moreover, we define the family of ρ-symmetrised second order sub-Gaussian (SSOSG) as

F2
G,ρ =

⋃
R∈R⋆+

F2
G,ρ,R . (4.51)

Examples of SSOSG distributions can be easily deduced from examples of SOSG distri-
butions. First, if Y ⊥⊥ Y ′ are R-sub-Gaussian, then Z = (Y − Y ′)/2 is also R-sub-Gaussian.
The symmetrised second order condition is thus equivalent to requiring the distribution of Z
to be ρ-SOSG. Examples of such distributions include (i) the Gaussian distributions N (µ, σ2)
(Z ∼ N (0, σ2)) and (ii) the uniform distributions (Z follows a symmetric triangular distribu-
tion around zero). Again, this list is not meant to be exhaustive but rather suggests that the
SSOSG offers a natural nonparametric alternative to other classical statistical models.

Technical detour: U-statistics. In order to study the deviations of σ̂2
t , as we did earlier for the

quadratic sumQt, it is natural to introduce the random variable exp(λσ̂2
t ) for λ ∈ R⋆−. However,

the definition above does not immediately provide a control on this quantity because σ̂2
t is not

a sum of i.i.d. random variables (each of the Y1, . . . , Yt appears multiple times in the sum that
defines σ̂2

t . It is however possible to disentangle these multiple dependencies and decompose
the empirical variance into a sum of U-statistics (Hoeffding, 1992), which are themselves sums
of independent random variables. Indeed, for t ∈ N and π ∈ St a permutation of {1, . . . , t}, we
define the U-statistics as

V π
t = 1

⌊t/2⌋

⌊t/2⌋∑
s=1

(Zπs )2 , where for s ∈ {1, . . . , ⌊t/2⌋}, Zπs =
Yπ(2s) − Yπ(2s−1)√

2
. (4.52)
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By construction, the sequence (Zπs )s=1,...,⌊t/2⌋ is i.i.d., and the V π
t are identically distributed

for π ∈ St. In particular, if we denote by I the identity permutation, V I
t = 1

⌊t/2⌋
∑⌊t/2⌋
s=1 (X2s −

X2s−1)2/2 defines an adapted process to the natural filtration defined by Gt = σ(Ys, s ⩽ t).
Moreover, the empirical variance can be recovered by averaging over all U-statistics, i.e. we
have

σ̂2
t = 1

t!
∑
π∈St

V π
t . (4.53)

This allows to derive the following explicit confidence sets, mirroring those of Corollary 4.14.

Corollary 4.17 (Empirical Chernoff explicit confidence sets). Let ρ ∈ (0, 1] and (Yt)t∈N be a
sequence of i.i.d. random variables drawn from ν with expectation µ ∈ R. Assume that ν ∈ F̊2

G,ρ.
(i) Fixed sample confidence set.

Θ̂δ
t,ρ =

µ̂t ±
σ̂t
ρ

√√√√√√√
2 log 3

δ

−tW0

(
−(δ/3)

2
⌊t/2⌋

e

)
 (4.54)

is a confidence set at level δ for µ, i.e. P(µ ∈ Θ̂δ
t,ρ) ⩾ 1− δ.

(ii) Time-uniform confidence sequence. Let c = (α, β, γ, ζ) ∈ (R⋆+)4 such that β < γ and
t0 ∈ N such that GT

β,γ,ζ,⌊t0/2⌋(0) > 3/δ.

(
Θ̂δ
t,ρ,c

)
t⩾t0

=


µ̂t ± 1

ρ

√√√√√√2⌊t/2⌋V I
⌊t/2⌋(1 + α

t ) log
(

3
δ

√
1 + t

α

)
t
(
GT
β,γ,ζ,⌊t/2⌋

)−1 (3
δ

)


t∈N

(4.55)

is a time-uniform confidence sequence at level δ for µ, i.e.

P
(
∀t ⩾ t0, µ ∈ Θ̂δ

t,ρ,c

)
⩾ 1− δ , (4.56)

or equivalently for any adapted random time τ in N such that τ ⩾ t0 almost surely,

P
(
µ ∈ Θ̂δ

τ,ρ,c

)
⩾ 1− δ . (4.57)
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Proof of Corollary 4.17. The general strategy here is to derive high probability upper bounds
for R in the new definition of SSOSG distributions (the first order sub-Gaussian bounds are
unchanged). From there, a simple union argument as in the proof of Corollary 4.14 yields the
expression of the confidence sets. We now prove these two deviation bounds.

Fixed sample. Let u ∈ R⋆+ and λ ∈ R⋆−. The function z ∈ R 7→ exp(λz) is nonincreasing.
Combining this with Markov’s inequality yields

P
(
σ̂2
t ⩽ u

)
= P

(
eλσ̂

2
t ⩾ eλu

)
⩽ e−λuE

[
eλσ̂

2
t

]
. (4.58)

Moreover, this function is also convex and satisfies the inequality 1z>0 ⩽ exp(λz) for all z ∈ R,
so by Jensen’s inequality we have

P
(
σ̂2
t ⩽ u

)
= E

[
1σ̂2

t−u>0

]
⩽ E

[
eλ(σ̂2

t−u)] ⩽ e−λuE

 1
t!
∑
π∈St

eλV
π
t

 = e−λu

t!
∑
π∈St

E
[
eλV

π
t

]
= e−λuE

[
eλV

I
t

]
, (4.59)

where the last line comes from the fact that all V π
t are identically distributed. Now we may

simply apply the Cramér-Chernoff method on the right-hand side by noting that ⌊t/2⌋V I
t

is a sum of ⌊t/2⌋ i.i.d. random variables (ZIs )⌊t/2⌋
s=1 satisfying the second order CGF control

logE[exp(λZIs )] ⩽ −1/2 log(1 − 2(ρR)2λ) thanks to the SSOSG condition of Definition 4.16.
Therefore, we obtain the inequality

P

σ̂2
t ⩽ −W0

−δ 2
⌊t/2⌋

e

 (ρR)2

 ⩽ δ . (4.60)

Time-uniform. We consider the adapted process defined as

(
Mλ
t

)
=
(

(1− 2λ)
⌊t/2⌋

2 e
λ

⌊t/2⌋V It
(ρR)2

)
t∈N

. (4.61)

By Definition 4.16, this is a nonnegative supermartingale. By using the same mixture construc-
tion as in the proof of Theorem 4.10, ifGT

β,γ,ζ,⌊t0/2⌋(0) > 1/δ, we obtain

P
(
∃t ⩾ t0, ⌊t/2⌋V I

t ⩽ (ρR)2
(
GT
β,γ,ζ,,⌊t/2⌋

)−1
(1
δ

))
⩽ δ . (4.62)

■
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Remark 4.18 . The supermartingale construction behind the time-uniform bound prevents the use
of the process (σ̂2

t )t∈N as it is not adapted to the natural filtration, which is why we used the (less
efficient) estimator (V I

t )t∈N instead. Note that it is also possible to fix any permutation π of N and
consider (V π

t )t∈N; however, this introduces a dependency on the ordering of the observations (Yt)t∈N, a
phenomenon also observed in Waudby-Smith and Ramdas (2023) (for different reasons).

We conclude the theoretical part of this chapter by mentioning a direct consequence for
multiarmed bandits, following the generic UCB analysis developed in Chapter 1.

Corollary 4.19 (Empirical Chernoff UCB). Let ρ ∈ (0, 1],K ∈ N, (ρk)k∈[K] ∈ (0, 1]K and a bandit
model (

⊗
k∈[K] νk,

⊗
k∈[K]F2

G,ρk) or (
⊗

k∈[K] νk,
⊗

k∈[K] F̊2
G,ρk). Let c = (α, β, γ, ζ) ∈ (R⋆+)4 such

that β < γ, and for any δ ∈ (0, 1), we consider the K time-uniform empirical Chernoff confidence
sequences (Θ̂δ

k,n,ρk,c
)n∈N built from either Corollary 4.14 or Corollary 4.17 and i.i.d. observations

from νk. Then for T → +∞, Algorithm 1 with the expectation risk measure and UCB given by
(Θ̂δ

k,n,ρk,c
)n∈N satisfies, for all suboptimal arm k ∈ [K] \ {k⋆},

Eπ,ν⊗T
pi

[
Nk
T

]
⩽

2σ2
k

ρ2
k∆2

k

log
(4σkT
ρk∆k

)
+ o

(
σ2
k

ρ2
k∆2

k

log T
)
, (4.63)

where σ2
k is the variance of νk and ∆k its suboptimality gap.

The proof is essentially that of the R-sub-Gaussian UCB of Corollary 1.34 coupled with
the asymptotic expansion of GT

β,γ,ζ,t developed in Lemma 4.12; we postpone the details to
Appendix C.1. This shows that logarithmic pseudo regret is achievable for the (symmetrised)
second order sub-Gaussian distributions. Note that the variances (σ2

k)k∈[K]\{k⋆} appear in the
pseudo regret bound but not in algorithm itself. In particular, this provides a logarithmic bandit
policy for the class of all Gaussian distributions (without knowing their variances) and all
uniform distributions (without knowing their supports) simultaneously.
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4.5 Numerical experiments

We now report experiments to support the theoretical insights of the previous sections and
compare the empirical Chernoff confidence sets with standard benchmarks. All the confidence
sets presented here are implemented in the open source concentration-lib Python package. 1

Sensitivity of the second order lower bound onR. We start by investigating the influence of
the Tricomimixing parameters β, γ, ζ in the second order bound of Theorem 4.10. In Figure 4.2a,
we report confidence envelopes for the parameter R, i.e. running intersections of the intervals√√√√ Qt(

GK
β,γ,ζ,t

)−1 (2
δ

) ,√√√√ Qt(
GT
β,γ,ζ,t

)−1 (2
δ

)
 with Qt =

t∑
s=1

(Ys − µ)2 and t ∈ N . (4.64)

We consider samples from the standard Gaussian distribution N (µ,R) with µ = 0 and R = 1
(results are similar for other distributions). We focus on the upper bound (i.e. the Tricomi
rather than the Kummer mixtures) as it is the one of interest for empirical Chernoff confidence
sequences. Results are displayed in Figures 4.2b, 4.2c and 4.2d. We conclude that these
parameters have a moderate influence on the actual width of the confidence envelopes, and
that the suggested tuning β = 1/2, γ = 3/2 and ζ = α/2 is a reasonable default choice.

1https://pypi.org/project/concentration-lib.
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4.5 Numerical experiments

(a) β = 1/2, γ = 3/2, ζ = 1/2. (b) Varying β, γ = β + 1, ζ = 1/2.

(c) β = γ − 1, varying γ, ζ = 1/2. (d) β = 1/2, γ = 3/2, varying ζ.

Figure 4.2 – Top left: examples of time-uniform confidence envelopes for R on several realisations of
N (0, R) with R = 1, ρ = 1 as a function of the number of observations t. Thick lines indicate median
curves over 1000 replicates. Other three figures: tuning of the three Tricomi mixing parameters β < γ
and ζ, also over 1000 independent replicates. Grey lines are trajectories of empirical second moments√
Qt/t, drawn for N (0, R) with R = 1, ρ = 1. Thick black dashed line: R.

Estimation of the asymptotic behaviour of (GT
β,γ,ζ,t)−1. To further support the asymptotic

analysis of Lemma 4.12, that showed that (GT
β,γ,ζ,t)−1(1/δ) ∼ t when t → +∞, we compute

this inverse mapping (using a simple Brent root search) for increasing values of t and report
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the results in Figure 4.3. First, for both ranges t ∈ [1, 200] and t ∈ [1, 105], we see that a simple
straight line provides a good fit to the curve t 7→ (GT

β,γ,ζ,t)−1(t). Furthermore, we notice that
the fitted slope increases when we consider a longer range, and seemingly converges to 1. We
interpret this as the cost of small sample concentration: if (GT

β,γ,ζ,t)−1(1/δ) ≈ cttwith ct ∈ (0, 1],
the empirical Chernoff time-uniform confidence sequence has the approximate width

2σ̂t(µ)
ρ

√√√√ 2
ctt

(
1 + α

t

)
log

(
3
δ

√
1 + t

α

)
. (4.65)

For large t, ct ≈ 1 so we essentially recover the R-sub-Gaussian width with R ≈ σ̂t(µ)/ρ.
However, for smaller sample sizes, the term 1/√ct > 1 inflates the confidence set, representing
the cost of learning an estimator for R jointly with the confidence sequence for µ.

Figure 4.3 – Inverse Tricomi mapping t 7→ (GT
β,γ,ζ,t)−1(1/δ) for δ = 1/t, β = 1/2, γ = 3/2 and ζ = 1/2

(blue) and linear fit (green). Left: t ∈ [1, 200]. Right: t ∈ [1, 105]. The linear fit is performed on the last
30% of the range for t to account for the asymptotic effect.

Fixed sample variance estimation on a real-world small sample. We now show the merits
of the SOSG condition for practical modelling. We consider a 23-year maize field experiment
on the research farm of McGill University in Sainte-Anne-de-Bellevue, Québec, Canada (Joshi
et al., 2017).2 Every year of the experiment, after harvest, the actual crop yield (i.e. the weight
of harvested dry grain per hectare) was measured and compared to the yield predicted by a
physical model taking as inputs the environment (precipitation, average temperatures through-
out the year, etc.) and the crop management policy (fertilisation, planting dates, etc.). Leaving

2We thank Chandra A. Madramootooe, Nitin Joshi, and especially Romain Gautron for their help collecting and
interpreting this dataset.
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aside two years with missing values, this resulted in a set of 21 data points {e1, . . . , e21}, which
we interpret as realisations of a random variable E. We call these measurements calibration
errors as they are used downstream to calibrate a stochastic crop yield simulator (DSSAT, which
we also mention below and in Chapter 6). Because the physical model builds on years of
agricultural engineering expertise and in vivo validation, we assume that E[E] = 0, i.e. the
prediction model is unbiased. However, given the limited sample size, this calibration error
introduces an additional incompressible uncertainty in the downstream simulation, in the sense
that collecting more data to improve calibration is not feasible (the modeller would have to wait
for another harvest). The goal here is to estimate a fixed sample, nonasymptotic confidence
interval for the standard deviation σ =

√
V[E].

Common assumptions in the literature available to the modeller are (i) E is Gaussian, in
which case a confidence interval for σ follows from the quantiles of the Chi-square distribution,
and (ii) E is bounded. For the latter, expert knowledge suggests that the yield potential (i.e.
the maximum attainable yield) for this farm is 20,000 kg/ha, i.e. E ∈ [0, 2× 104]. In this case,
confidence intervals may be deduced from either Maurer-Pontil (Maurer and Pontil, 2009)
or Bentkus (Kuchibhotla and Zheng, 2021) variance bound (note that these are the heart of
respectively empirical Bernstein and Bentkus bounds, as recalled in Table 2.2). Alternatively,
we may use the second order bound of Theorem 4.8 to obtain a confidence interval for σ under
the assumption that E is (ρ,R)-SOSG and strictly sub-Gaussian (i.e. R = σ). As seen in
Proposition 4.5, this model specification encompasses Gaussian and many standard bounded
distributions, and is thus a compromise between the two previous modelling assumptions.

We report the results in Figure 4.4 with ρ = 1 for the Empirical Chernoff bound. Both
Maurer-Pontil and Bentkus bounds provide very loose estimations (with the former yielding
only a trivial negative lower bound even after 21 years). Of all bounds, the Chi-square one
is the tightest but also the one that relies on the most stringent assumptions. By contrast, the
empirical Chernoff method appears as a relaxation of the parametric Gaussian hypothesis
without significantly widening the resulting confidence intervals. We hope this example may
inspire practitioners to consider SOSG as an alternative to standard modelling assumptions.
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Figure 4.4 – Estimation of the standard deviation σ from 23 yearly measurements of crop yield prediction
errors in the maize field experiment in Sainte-Anne-de-Bellevue, Québec, Canada. Left: confidence
bounds as a function the sample size (number of years). Right: confidence bars after 21 years, ranked
by increasing width.

Comparison of time-uniform confidence sequences. Finally, we report the implicit and ex-
plicit confidence sequences of Corollaries 4.14 and 4.17 on example distributions and compare
them with state-of-the-art benchmarks (note that we consider time-uniform bounds here, as
opposed to the fixed sample introductory example of Figure 4.1).

In Figure 4.5a, we compare our bounds with the sub-Gaussian method of mixtures on
N (0, 1). With R = 1, which corresponds to having prior knowledge of the variance, the classi-
cal mixture bound is the tightest (note that in the Gaussian specifically, the supermartingale
construction of the method of mixtures is actually a martingale), although the gap with the
empirical Chernoff envelopes is quickly vanishing. However, assuming an imperfect, conser-
vative prior knowledge, materialised here by R = 2, the sub-Gaussian bound is significantly
outperformed by our bounds, showcasing their ability to adapt to the actual variance. Similarly,
they are able to adapt to the support and variance of uniform distributions, although the benefit
is less clear here as we compare ourselves to hedged capital, which yields very sharp bounds
in practice (and is also somewhat adaptive to the true variance thanks to the definition of its
predictable weights, see Proposition A.5).
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(a) Gaussian. (b) Uniform.

Figure 4.5 – Comparison of median confidence envelopes around the mean for N (0, 1) (ρ = 1) and
U([−1, 1]) (ρ = 1 and ρ =

√
3/π for the implicit and explicit bounds respectively), as a function of the

sample size t, over 1000 independent replicates. Grey lines are trajectories of empirical means µ̂t.

Building on this initial experiment, we test our confidence bound on a crop yield distri-
bution simulated by DSSAT (Hoogenboom et al., 2019), represented in Figure 4.6a. Samples
are generated by specifying a crop management policy (e.g. a planting date) and drawing
environmental conditions (e.g. weather) from a stochastic model. We estimate the true mean
crop yield from 106 samples, resulting in µ = 4217kg/ha. We defer to Section 6.4 in Chapter 6 a
more in-depth description of the DSSAT experimental setting. Note that this particular instance
of the simulator has been calibrated using the field experiment described above for the variance
estimation problem. Since the maize crop yields are bounded (in this case by a yield potential
of 20,000 kg/ha), we compare our bounds to hedged capital, see Figure 4.6b.

Contrary to the uniform case, we notice that the yield distribution is localised on a narrow
region of the support. The empirical Chernoff approach is able to discover and exploit this
information to produce sharp confidence sequences, while the hedged capital ones is hindered
by the sole prior knowledge of the support.
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(a) DSSAT-simulated maize yield distribution. (b) Time-uniform confidence sequences.

Figure 4.6 – Comparison of median confidence envelopes around the mean for a DSSAT-simulated
distribution, as a function of the sample size t, over 1000 independent replicates. We used ρ = 1 for the
empirical Chernoff bounds. Grey lines are trajectories of empirical means µ̂t.

Conclusion

We have introduced a refinement of the sub-Gaussian condition that substitutes the knowledge
of the sub-Gaussian parameter with a data-dependent estimator, at the cost of an alternative pa-
rameter ρ. We believe an interesting direction for future research would be to better understand
the role of ρ and have a finer characterisation of second order sub-Gaussian distributions.
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Take-home message:

�A vast range of both parametric and non-
parametric model specifications are avail-
able to study anytime-valid statistics.

We have extended the existing literature on concentration bounds to cover:
• generic exponential families (Gaussian with unknown variance, Chi-square, Poisson,

Pareto, etc.);

• second order sub-Gaussian distributions (nonparametric specification, variance-
adaptive without prior knowledge of a bounded support).

These confidence sequences are sharp in practice even for in the regime of small data and are
available either in closed form or via a simple root search.

Beyond their theoretical interest, these bounds were designed to appeal to practition-
ers, especially for critical applications concerned with safety with respect to sampling (to
avoid false discovery or p-hacking) and constrained by small samples.

As a side result, they also provide deterministic UCB algorithms with logarithmic
pseudo regret guarantees for new settings.
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Part III

Risk awareness in contextual bandits
or how to play safe





Chapter 5

Risk-aware linear bandits with
elicitable risk measures (�)

I take risks, sometimes patients die. But not
taking risks causes more patients to die.

— “Detox”, House, M.D.

The content of this chapter was presented at the 2022 European Workshop on Reinforcement
Learning (EWRL) (Saux andMaillard, 2022) and published at the 2023 International Conference on
Artificial Intelligence and Statistics (AISTATS) (Saux andMaillard, 2023). Compared to that article,
we here report in the main text (i) the proofs the multivariate method of mixtures for empirical
risk minimisation (Proposition 5.12), generalising the standard bound of Proposition 1.26,
and the regret analysis of LinUCB-CR (Theorem 5.18), and (ii) a new minimax lower bound
for expectiles (within at most polylogarithmic terms of our upper bound for LinUCB-CR).
Alternative regret analyses (stochastic action sets, online gradient descent) and an overview of
common risk measures are deferred to Appendix D.
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Outline and contributions

We recall that contextual bandits are sequential decision-makingmodels where at each time step
an agent observes a set of possible actions, or contexts, picks one and receives a stochastic reward,
the distribution of which is a function of the selected action. The goal of the agent is to learn a
reward-maximising policy, facing the classical exploitation-exploration dilemma. A prominent
example of suchmodels is the linear bandit, which assumes a linear relationship actions and the
expected rewards. In this setting, a standard learning strategy consists in estimating the reward
model by ridge regression coupled with an appropriate exploration scheme, e.g. optimism
(Abbasi-Yadkori et al., 2011), Thompson (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017)
or information-directed sampling (Russo and Van Roy, 2014; Kirschner et al., 2021).

As discussed in Chapter 3, an obstacle to the adoption by practitioners of such sequential
models for critical recommendations (agricultural practices concerned with food security,
medical treatment optimisation, etc.) is the lack of efficient and theoretically sound algorithms
beyond the simplistic expectation risk measure. In this chapter, we investigate an extension of
the linear bandit where a given risk measure, rather than the mean, is linearly parametrised
by the chosen actions. Specifically, we consider the case of convex risk measures which can
be elicited as minimisers of certain loss functions, which naturally extends the standard ridge
regression. This definition covers expectiles and entropic risk, and may be extended to mean-
variance and conditional value-at-risk using multivariate risk measures. To our knowledge, this
setting is new, although related to existing approaches, such as bandits with regression oracles
(Foster and Rakhlin, 2020) and generalised linear bandits (GLB) (Filippi et al., 2010; Li et al.,
2017; Faury et al., 2020), that extend beyond linearity while still optimising mean rewards.

We introduce a generalisation of LinUCB to these elicitable risk measures. Except for
the standard mean-linear bandit setting, learning the linear mapping between actions and
risk measures cannot be performed sequentially, which presents theoretical and numerical
challenges similar to GLB. We derive time-uniform confidence sets (Proposition 5.12) based on
the method of mixtures and introduce a geometric condition (Lemma 5.15) to ensure sublinear
pseudo regret (with high probability, uniformly in time) in this new setting (Theorem 5.18).
Using recent developments on time-uniform matrix concentration, we further strengthen
the regret bound in the case of stochastic actions with a known covariance lower bound
(Theorem 5.23). To mitigate the numerical burden, we introduce an episodic version of LinUCB
with online gradient descent approximation (Theorem 5.26), inspired by previous works on
online regression (Korda et al., 2015) and the recent literature on approximate Thompson
sampling for GLB (Ding et al., 2021).
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5.1 Contextual bandits with risk

We consider the stationary contextual bandit setting of Section 1.2 where an agent sequentially
observes at time t ∈ N a subset Xt ⊆ Rd, then chooses an action Xt ∈ Xt and receives a
stochastic reward Yt, the distribution of which is dependent on Xt, and is denoted by ν(Xt)
(we drop the superscript X to reference the dependency on the policy X = (Xt)t∈N to avoid
cluttering). We recall the definition of the adapted contextual bandit filtration (Ḡt)t∈N =
(σ(X1, X1, Y1, . . . ,Xt−1, Xt−1, Yt−1,Xt, Xt)t∈N, which encodes the information available to the
agent after observing the decision set and picking an action at time t ∈ N but before collecting
the corresponding reward.

Informally, the goal of the agent is to learn a representation of the mapping ν in order to
select actions that induce high rewards. As hinted in Section 1.2, a standard inductive bias in
this context is to assume a linear statistical model between rewards and contexts, typically of
the form Yt = ⟨θ⋆, Xt⟩+ ηt, where (ηt)t∈N is some centred stochastic process. We recall that our
definition of linear bandits extends beyond this setting by assuming the following factorisation

X Rp M+
1 (R) ,ℓ⋆ φ

ν = φ ◦ ℓ⋆

where ℓ⋆ : X → Rp denotes a linear map. In other words, the reward distribution (but not
necessarily its mean) is linearly parametrised by the chosen action. We denote such a linear
bandit by (φ, ℓ⋆). When the distribution depends on a single parameter (p = 1), we represent
the linear form by ℓ⋆ : x ∈ X 7→ ⟨θ⋆, x⟩, where θ⋆ ∈ Rd, and we use the notation (φ, θ⋆), or
equivalently we say that it is represented by Y ∼ φ(⟨θ⋆, X⟩). In the following, we also denote
by Θ ⊆ Rd parameter space. We use the notation P and E the refer to the probability and
expectation induced by this contextual bandit model.

As an example, let us consider the following Gaussian mapping

ν : X −→M+
1 (R)

x 7−→ µ(x) + σ(x)N (0, 1) . (5.1)

If σ is constant and µ(x) = ⟨θ⋆µ, x⟩ for some θ⋆µ ∈ Θ, we recover a standard linear bandit model,
in which the goal is to maximise the cumulative average rewards∑T

t=1 µ(Xt) (or equivalently,
minimise the pseudo regret associated with the expectation risk measure). However, in many
applications, the agent may be averse to high reward volatility, which can be encoded by
µ(x)− λσ(x) for some λ > 0. We detail in Appendix D.1 how many standard risk measures
(entropic, p-expectile) realise this mean-variance tradeoff.
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Overview of risk measures

Convex loss. In the bandit setting, the agent faces the classical dilemma between exploitation
(playing the most promising actions) and exploration (playing other actions to gain infor-
mation). In most algorithms, the exploitation takes the form of a supervised estimation that
consists in learning themapping φ at time t from the past observations {(Xs, Ys), 1 ⩽ s ⩽ t−1}.
When the expected reward is parametrised by Yt = ⟨θ⋆, Xt⟩+ ηt with E[ηt | Ḡt] = 0, a standard
strategy consists in estimating θ⋆ by ridge regression, i.e. as the unique solution to the strongly
convex minimisation problem

θ̂t = min
θ∈Θ

t−1∑
s=1

(Ys − ⟨θ,Xs⟩)2 + α

2 ∥θ∥
2
2 , (5.2)

where α ⩾ 0 is a regularisation parameter. Assuming for now the solution is in the interior of
Θ, the solution can be written as

θ̂t = (V α
t )−1

t−1∑
s=1

YsXs ∈ Rd , (5.3)

where we define the d× d positive (semi)definite matrix

V α
t =

t−1∑
s=1

XsX
⊤
s + αId ∈ S+

d (R) . (5.4)

This approach presents several advantages: it can be computed efficiently via sequential matrix
inversion (with complexityO(d2) at each step thanks to the Sherman-Morrison formula for the
rank-one update V α

t+1 = V α
t +XtX

⊤
t starting from V α

0 = αId) and explicit confidence ellipsoids
for θ⋆ can be constructed analytically around θ̂t to tune exploration (Abbasi-Yadkori et al.,
2011). The implicit limitation of this procedure is that it can only estimate the expectation E[Y ],
which is the solution of the quadratic loss minimisation problem argminθ∈Θ E[(Y − ⟨θ,X⟩)2].
We call this standard setting the mean-linear bandit.

Elicitable risk measure. Drawing inspiration from this simple example, we aim to estimate
other characteristics of the reward distribution than the mean, using other convex losses than
the quadratic loss.
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Definition 5.1 (Elicitable risk measure). Let p ∈ N and L : R× Rp → R be a strongly convex loss
function. The risk measure elicited by the loss L is defined as

ρL : M+
1 (R) −→ Rp ∪ {∞}

ν 7−→ arg min
ξ∈Rp

EY∼ν [L(Y, ξ)] . (5.5)

Similarly, we define the conditional risk measure elicited by the loss L with respect to the adapted bandit
filtration for all t ∈ N by

ρL(· | Ḡt) : M+
1 (R) −→ Rp ∪ {+∞}

ν 7−→ arg min
ξ∈Rp

EY∼ν
[
L(Y, ξ) | Ḡt

]
. (5.6)

Finally, we recall the definition of ρL-integrable probability measures as LρL(Rp) = ρ−1
L (Rp).

Note that the assumption that L is strongly convex ensures that ρL is well-defined (it could
be relaxed to simply assuming that the solution of the minimisation problem that defines
ρL(ν) is unique for all distributions ν ∈ LρL(Rp)). With this definition, ρL(ν) is a vector in Rp;
when p = 1, we call these scalar, or first order elicitable risk measures (Ziegel, 2016). Examples
of such risk measures include the mean, the median, and more generally any quantile and
expectile, which we further discuss below as special cases of risk measures associated with
convex potentials. Other examples are any generalised moments ρ(ν) = EY∼ν [T (Y )], where
T : R→ R is a ν-integrable mapping, and the entropic risk defined by ρL(ν) = 1

γ logEY∼ν [eγY ]
(Maillard, 2013). Unfortunately, not all risk measures commonly encountered in the risk
literature are first order elicitable. In particular, neither the variance nor the CVaR can be
expressed as scalar risk measures with respect to a convex loss (Fissler et al., 2016; Fissler and
Ziegel, 2016). They are however are second order elicitable, in the sense that the pairs (mean,
variance) and (VaR,CVaR) are jointly elicitable. We refer to Appendix D.1 for a summary and
further interpretations of elicitable risk measures. In the rest of this chapter, we only consider
scalar risk measure and leave the extension to measures like CVaR for further work. Moreover,
we implicitly assume that all considered measures ν have finite risk measure, i.e. ν ∈ LρL(R).

We now formalise the link between reward distributions of linear bandits and convex losses.
The goal here is to study linear bandits where generic elicitable risk measures of the reward
distributions are linear functions of the actions played by the agent, the same way expected
rewards are for mean-linear bandits.
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Definition 5.2 (Loss adapted to a bandit). A strongly convex loss L : R × Rp → R is said to be
adapted to a linear bandit (φ, ℓ⋆) if

∀x ∈ X , ℓ⋆ ∈ argmin
ℓ : X →Rp linear

EY∼φ◦ℓ(x) [L (Y, ℓ(x))] . (5.7)

In other words, whenever action x ∈ X is played, the risk measure ρL of the reward distribution
generated by the bandit is a linear function of x.

Convex potential. A special case of interest is when the convex loss L = Lψ derives from a
potential ψ, that is when Lψ : (y, ξ) ∈ R× R 7→ ψ(y − ξ). We denote by ρψ the corresponding
risk measure. This setting covers the ordinary least square potential associated to the mean,
but also quantiles and expectiles. We assume the reader to be familiar with the former, but
perhaps less so with the latter. Following Newey and Powell (1987), we define the p-expectile
of ν ∈ Lρψ(R) = L2(R) for p ∈ (0, 1) as

ep(ν) = argmin
ξ∈R

EY∼ν [|p− 1Y <ξ|(Y − ξ)2] , (5.8)

which is uniquely defined by strong convexity. Expectiles have been studied in particular in
the context of risk management (Bellini and Di Bernardino, 2017) and risk-aware Bayesian
optimisation (Picheny et al., 2022). Furthermore, under some symmetry conditions, quantiles
and expectiles are known to coincide (Abdous and Remillard, 1995), and thus expectiles can be
seen as a smooth (in particular differentiable) generalisation of quantiles (see Philipps (2022)
for further interpretation of the notion of expectiles). We refer the reader to Table 5.1 for a
summary of risk measures elicited by convex potentials.

Table 5.1 – Example of Risk Measures Elicited by Convex Potentials.
Name Potential ψ(z) Risk measure ρψ
Mean z2/2 ρψ =

∫
yν(dy)

Quantile
p ∈ (0, 1)

(p− 1z<0)z
∫ ρψ

−∞ ν(dy) = p

Expectile
p ∈ (0, 1)

|p− 1z<0|z2 (1−p)
∫ ρψ

−∞|y−ρψ|ν(dy)
= p

∫∞
ρψ
|y − ρψ|ν(dy)
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In the terminology defined above, the ordinary least square potential is adapted to the
mean-linear reward model Yt = ⟨θ⋆, Xt⟩+ ηt with E[ηt | Ḡt] = 0. More generally, such additive
decompositions exist for losses derived from potentials, as evidenced by the following lemma.

Lemma 5.3 . Assume that the loss Lψ derived from a strongly convex and differentiable potential ψ is
adapted to the linear bandit (φ, θ⋆). Then there exists a stochastic process (ηt)t∈N such that the bandit
is represented at time t ∈ N by Yt ∼ ⟨θ⋆, Xt⟩+ ηt with ρψ(ηt | Ḡt) = 0.

Proof of Lemma 5.3. This result is a straightforward application of the following technical lemma.

Lemma 5.4 (Risk Measures ρψ are additive). Let ψ : R→ R be a strongly convex, differentiable
function, and ν ∈ LLψ(R). Then ρψ(ν + c) = ρψ(ν) + c.

Proof of Lemma 5.4. For the sake of simplicity, we assume ν admits a density p (with respect to
e.g. the Lebesgue measure) and that ψ and p are regular enough to allow for differentiation
under the following integral. Then the risk measure associated with Lψ reads

ρψ(ν) = argmin
ξ∈R

∫
ψ (y − ξ) p(y)dy (5.9)

and the first order condition gives∫
ψ′(y − ρψ(ν))p(y)dy = 0 . (5.10)

Similarly, for any c ∈ R, we have∫
ψ′(y − ρψ(ν + c))p(y − c)dy = 0 , (5.11)

since the density of ν + c is given by y 7→ p(y − c). We now deduce from a simple change of
variable z = y− c that ∫ ψ′(z+ c− ρψ(ν + c))p(z)dz = 0, which shows that ρψ(ν + c)− c is also
a minimiser of ξ 7→ ∫

ψ (y − ξ) p(y)dy. By uniqueness (ψ is strongly convex), we deduce that
ρψ(ν + c) = ρψ(ν) + c. ■

Define the process (ηt)t∈N by ηt = Yt−⟨θ⋆, Xt⟩ for t ∈ N. To compute ρψ(νt | Ḡt), note thatXt

is measurablewith respect to Ḡt, therefore by Lemma 5.4 and the properties of conditional expec-
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tation, we have that ρψ(ηt | Ḡt) = ρψ
(
Yt | Ḡt

)
− ⟨θ⋆, Xt⟩ = ρψ

(
φ (⟨θ⋆, Xt⟩) | Ḡt

)
− ⟨θ⋆, Xt⟩ = 0

by definition of Lψ being adapted to the bandit (φ, θ⋆). ■

Non-unicity of adapted loss. In general, a riskmeasure can be described bymultiple different
adapted losses. First, the set of losses that elicit a given risk measure is a cone invariant by
scalar translation, i.e. ραL+β = ρL for all α > 0 and β ∈ R. Other less trivial examples of
non-unicity arise even for the simple mean criterion. Theorem 1 in Banerjee et al. (2005)
shows that EY∼ν [Y ] = ρBψ(ν) where ψ is any strictly convex, differentiable function and
Bψ : (y, ξ) 7→ ψ(y) − ψ(ξ) − ψ′(ξ)(y − ξ) is the Bregman divergence induced by ψ, which
generalises the quadratic potential. In fact, every continuously differentiable loss that elicits
the mean has this form (Theorem 3 and 4 in Banerjee et al. (2005)). In particular, this shows
that the converse of Lemma 5.3 cannot hold: except for the quadratic potential, Bψ does not
derive from a convex potential, even though it is an adapted loss to the mean-linear bandit,
which admits an additive decomposition Yt ∼ ⟨θ⋆, Xt⟩+ ηt with E[ηt | Ḡt] = 0. Similarly, the
pairs (mean, variance) and (VaR,CVaR) can be elicited by families indexed by differentiable,
strictly convex functions (Table D.1, Appendix D.1).

Contextual bandits with elicitable risk measures

We recall the notion of pseudo regret for contextual bandits (Definition 1.9) and specify it to
the setting of linear bandits with elicitable risk measures.

Definition 5.5 (Risk-aware pseudo-regret). For a linear bandit (φ, θ⋆), we define the pseudo-regret
associated to a risk measure ρL and a sequence of actions (Xt)t∈N as the stochastic process

(RT )T∈N =
(

T∑
t=1

ρL (φ(⟨θ⋆, X⋆
t ⟩))− ρL (φ(⟨θ⋆, Xt⟩))

)
T∈N

, (5.12)

where X⋆
t = argmaxx∈Xt ρL (φ(⟨θ⋆, x⟩)) is the optimal action with respect to ρL at time t ∈ N .̧

By definition, if the loss L is adapted to the linear bandit, this notion of pseudo regret
reduces toRT =

∑T
t=1⟨θ⋆, X⋆

t ⟩ − ⟨θ⋆, Xt⟩, which is formally the same as the standard pseudo
regret for mean-linear bandits. What differs though is the meaning of ⟨θ⋆, Xt⟩, which now
represents an elicitable risk measure for the reward distribution. As an example, this paves a
way for expectile-linear bandit of the form Yt = ⟨θ⋆, Xt⟩+ ηt where the conditional expectile of
ηt is zero and expectile rewards are measured as linear forms of the actions ⟨θ⋆, Xt⟩.
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Supervised estimation of θ⋆. Similarly to how ridge regression provides natural estimators
of the mean, we define

θ̂t = argmin
θ∈Θ

t−1∑
s=1
L(Ys, ⟨θ,Xs⟩) + α

2 ∥θ∥
2
2 , (5.13)

which corresponds to the empirical risk minimisation estimator, also known as an M-estimator
Huber (2004), associated to loss L, with L2 regularisation parameter α > 0 (again, θ̂t is well-
defined by strong convexity). Assuming that L is differentiable and that θ̂t is in the interior of
Θ, it is characterised by the first order condition, also known as Z-estimation (Kosorok, 2008),

αθ̂t = −
t−1∑
s=1

∂L(Ys, ⟨θ̂t, Xs⟩)Xs , (5.14)

where ∂L(y, ξ) stands for the derivative of ξ 7→ L(y, ξ). When θ̂t is not in the interior of Θ, an
additional projection onto Θ is necessary, which we denote by the operator Π (such an operator
is detailed in Section 5.2). We also define the mapping

Hα
t : Θ −→ S+

d (R)

θ 7−→
t−1∑
s=1

∂2L (Ys, ⟨θ,Xs⟩)XsX
⊤
s + αId , (5.15)

which represents the Hessian of the empirical loss associated with the minimisation problem,
where ∂2 stands for the second order derivative with respect to the second coordinate.

Of note, when the loss L derives from the quadratic potential ψ : ξ ∈ R 7→ ξ2/2, it holds that
Hα
t (θ) = V α

t for all θ ∈ Θ and we thus fall back to the mean-linear case. For all other choices of
the loss function L, the Hessian matrix Hα

t (θ) depends on θ, and in particular no closed-form
expression of θ̂t in terms of the inverse ofHα

t is available. As we detail in the next sections, this
introduces technical challenges to the analysis of linear bandit algorithms and forces the use of
convex programming algorithms to numerically evaluate θ̂t.
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Remark 5.6 . Similar complications arise in the case of generalised linear bandits (GLB) Yt =
µ(⟨θ⋆, Xt⟩) + ηt, with E[ηt | Ḡt] = 0 and µ a nonlinear link function. Under parametric assumptions
on Yt (typically one-dimensional exponential family), GLB can be seen as a special case of the risk-aware
setting with L the negative log-likelihood loss, with the analogy µ↔ ∂L. Despite this formal similarity,
GLB is designed solely to optimise the mean criterion. Another difference with our setting is that pseudo
regret for GLB is commonly defined as∑T

t=1 µ(⟨θ⋆, X⋆
t ⟩) − µ(⟨θ⋆, Xt⟩), which is smaller than RT

when µ is contracting.

Remark 5.7 . At selection time t, i.e. after observing the action set Xt but before playing Xt, the
agent has access to all possible actions x ∈ Xt (measurable with respect to the natural σ-algebra Gt).
Still, the regression scheme of equation (5.13) only involves (Xs, Ys)t−1

s=1. Instead of an isotropic ridge
regularisation term ∥θ∥2, we thus consider the directional penalisation ⟨θ, x⟩ and build confidence sets
for the corresponding estimators in order to assess the candidate action x ∈ Xt. This was recently studied
in Ouhamma et al. (2021), leading to explicit UCB policies. Of note, this allows to lift the boundedness
requirements on θ and Xt, corresponding to our Assumptions 5.16 and 5.17. This improvement being
orthogonal to the risk focus of this chapter, we only leave it as a remark.

Extension of LinUCB to convex losses. Themain benefit of the formulation of risk-awareness
in terms of convex losses is that it suggests a transparent generalisation of the standard LinUCB
algorithm (OFUL in Abbasi-Yadkori et al. (2011), Ch.19 in Lattimore and Szepesvári (2020)),
essentially substituting the least-squares estimate with the empirical risk minimiser associated
with L. The general idea of such optimistic algorithms is to play at time t the action x ∈ Xt
with the highest plausible reward. In the mean-linear case with ridge regression, this highest
plausible reward takes the form of ⟨θ̂t, x⟩ + γt(x), where γt(x) is a certain action-dependent
quantity also known as the exploration bonus. We write the general structure of our extension of
LinUCB (CR for Convex Risk) in Algorithm 3.

5.2 Regret analysis of LinUCB-CR

The goal of this section is to derive an exploration bonus sequence (γt)t∈N and a projection
operator Π that ensure sub-linear pseudo regret of the corresponding LinUCB instance. To this
end, we introduce the following control on the curvature of the adapted loss L.
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Algorithm 3 LinUCB-CR
Input: regularisation parameter α, projection operator Π,
exploration bonus sequence (γt)t∈N.
Initialisation: Observe X1, t = 1.
while continue do

θ̂ ← argmin
θ∈Rd

t−1∑
s=1
L(Ys, ⟨θ,Xs⟩) + α

2 ∥θ∥
2
2 ; ▷ Empirical risk minimisation

θ̄ ← Π(θ̂) ; ▷ Projection
Xt ← argmax

x∈Xt
⟨θ̄, x⟩+ γt(x) ; ▷ Play

Observe Yt and Xt+1; ▷ Observe reward and next action set
t← t+ 1 .

Assumption 5.8 (Bounded Loss Curvature). There existsm andM such that

∀y, ξ ∈ R, m ⩽ ∂2L(y, ξ) ⩽M . (5.16)

We call the parameter κ = M
m the conditioning of L.

Remark 5.9 . This assumption is reminiscent of the standard lower bound on the derivative of the link
function µ′ commonly encountered in the GLB literature.

Martingale property and concentration

A key property for the analysis of mean-linear bandits is that the sum process ∑t−1
s=1 ηsXs

naturally defines a vector-valuedmartingale inRd with respect to the filtration
(
Ḡt
)
t∈N

(Abbasi-
Yadkori et al., 2011). This is not the case in general for bandits associated with generic convex
losses. Instead, for a given loss L, we know that θ⋆ = argminθ E[L(Yt, ⟨θ,Xt⟩) | Ḡt]. Assuming
L is differentiable and using the shorthand ∂jL⋆t = ∂jL(Yt, ⟨θ⋆, Xt⟩) for j ∈ N and t ∈ N, this
implies that E[∂1L⋆t | Ḡt] = 0 since Xt is measurable with respect to Ḡt. A direct consequence
of this property of (∂1L⋆t

)
t∈N is that

St =
t−1∑
s=1

∂1L⋆sXs ∈ Rd (5.17)
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defines a
(
Ḡt
)
t∈N

-martingale. This process is at the heart of the next proposition, which
establishes multivariate confidence bounds using themethod of mixtures. To this end, we detail
below a helpful transformation of the sum process (St)t∈N into a nonnegative supermartingales
(Lemma 5.11) under a standard sub-Gaussian assumption (Assumption 5.10) and state the
high-probability uniform deviation bound we obtain (Proposition 5.12).

Assumption 5.10 (Sub-Gaussian). ∂1L⋆ is a conditionally sub-Gaussian process with respect to the
filtration (Ḡt)t∈N, i.e. there exists R > 0 such that

∀t ∈ N, ∀λ ∈ R, logE
[
exp

(
λ∂1L⋆t

) ∣∣∣ Ḡt] ⩽ λ2R2

2 . (5.18)

Lemma 5.11 (Supermartingale control). Under Assumptions 5.8 and 5.10, there exists σ > 0 such
that for any t ∈ N and λ ∈ Rd, the following inequality holds:

E
[
exp

(
⟨λ,Xt⟩∂1L⋆t −

σ2

2 ⟨λ,Xt⟩2∂2L⋆t

) ∣∣∣∣∣ Ḡt
]
⩽ 1 . (5.19)

Proof of Lemma 5.11. Assumption 5.8 implies that ∂2L∗
t ⩾ m, therefore it is sufficient to show

that there exists σ′ > 0 such that

E
[
exp

(
⟨λ,Xt⟩∂1L∗

t −
mσ′2

2 ⟨λ,Xt⟩2
) ∣∣∣∣∣ Ḡt

]
⩽ 1 . (5.20)

Since Xt is Ḡt-measurable, this is equivalent to

E
[
exp

(
⟨λ,Xt⟩∂1L∗

t

∣∣∣Ḡt]) ⩽ exp
(
mσ′2

2 ⟨λ,Xt⟩2
)
, (5.21)

which follows from the sub-Gaussian property of the process ∂1L∗ with parameter σ =
√
mσ′

(Assumption 5.10). ■
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Proposition 5.12 (Method of mixtures with convex loss). Let β > 0 and δ ∈ (0, 1). Under
Assumptions 5.8 and 5.10, we have the following inequality:

P
(
∃t ∈ N, ∥St∥2Hβ

t (θ⋆)−1 ⩾ σ2
(

2 log 1
δ

+ log detHβ
t (θ⋆)

detβId

))
⩽ δ . (5.22)

Proof of Proposition 5.12. The proof is similar to that of Proposition 1.26 and follows the method
of mixture. To this end, we first construct a (Ḡt)t∈N-nonnegative supermartingale as follows:
for λ ∈ Rd, we define the process for t ∈ N by

Mλ
t = exp

(
λ⊤St −

σ2

2 ∥λ∥
2
H0
t (θ⋆)

)
. (5.23)

We recall the expression of the HessianH0
t (θ) =

∑t−1
s=1 ∂

2L (Ys, ⟨θ,Xs⟩)XsX
⊤
s and that in partic-

ular ∥λ∥2
H0
t (θ⋆) =

∑t−1
s=1 ∂

2L (Ys, ⟨θ,Xs⟩)
(
λ⊤Xs

)2. This process is (Ḡtt∈N)-adapted, integrable,
nonnegative and is indeed a supermartingale since

E
[
Mλ
t+1

∣∣∣ Ḡt] = E
[
exp

(
λ⊤St+1 −

σ2

2 ∥λ∥
2
H0
t+1(θ⋆)

) ∣∣∣∣∣ Ḡt
]

= E
[
exp

(
λ⊤St −

σ2

2 ∥λ∥
2
H0
t (θ⋆) + ∂L (Yt, ⟨θ⋆, Xt⟩)λ⊤Xt −

σ2

2 ∂
2L (Yt, ⟨θ⋆, Xt⟩)

(
λ⊤Xt

)2
) ∣∣∣∣∣ Ḡt

]

= e
λ⊤St−σ2

2 ∥λ∥2
H0
t

(θ⋆) E
[
exp

(
∂L (Yt, ⟨θ⋆, Xt⟩)λ⊤Xt −

σ2

2 ∂
2L (Yt, ⟨θ⋆, Xt⟩)

(
λ⊤Xt

)2
) ∣∣∣∣∣ Ḡt

]
︸ ︷︷ ︸

⩽1

⩽ e
λ⊤St−σ2

2 ∥λ∥2
H0
t

(θ⋆) (Lemma 5.11)
= Mλ

t . (5.24)

Now we construct a new supermartingale by mixing the (Mλ
t )t∈N. Formally, let Λ a Rd-

valued random variable independent of the rest andMt = E[MΛ
t | Ḡ∞] where Ḡ∞ = σ(

⋃
t∈N Ḡt).

If Λ admits a density pwith respect to the Lebesgue measure, we haveMt =
∫
RdM

λ
t p(λ)dλ. For

the choice Λ ∼ N (0, 1
βσ2 Id) with β > 0, we have, by completing the square in the exponential,

Mt = (βσ2)d/2

(2π)d/2

∫
Rd

exp
(
−λ⊤St + σ2

2
(
λ⊤
(
H0
t (θ⋆) + βId

)
λ
))

dλ
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= (βσ2)d/2

(2π)d/2 exp
(
σ2

2 λ̄
⊤Hβ

t (θ⋆)λ̄
)∫

Rd
exp

(
−σ

2

2
(
λ− λ̄

)⊤
Hβ
t (θ⋆)

(
λ− λ̄

))
dλ

=
(

βd

detHβ
t (θ⋆)

) 1
2

exp
(
σ2

2 λ̄
⊤Hβ

t (θ⋆)λ̄
)
, (5.25)

where λ̄ = 1
σ2H

β
t (θ⋆)−1St andHβ

t (θ) = H0
t (θ)+βId is the regularisedHessian, which is positive

definite and hence invertible. This expression further simplifies to

Mt =
(

detβId
detHβ

t (θ⋆)

) 1
2

exp
( 1

2σ2 ∥St∥
2
Hβ
t (θ⋆)−1

)
. (5.26)

From there, the argument is standard and follows the framework of Theorem 1.20. In
particular, the choice of τ = inf

{
t ∈ N, ∥St∥2

Hβ
t (θ⋆)−1 ⩾ σ2

(
2 log 1

δ + log detHβ
t (θ⋆)

detβId

)}
and a

straightforward application of Markov’s inequality reveals that

P (τ <∞) = P
(
∃t ∈ N, Mt ⩾

1
δ

)
⩽ E[Mτ ]δ ⩽ δ , (5.27)

which is exactly the expected result. ■

Discussion on Lemma 5.11 and Assumption 5.10. As shown in the proof, Lemma 5.11 alone
implies Proposition 5.12. While this lemma may be valid in more general settings, it is conve-
niently implied by Assumption 5.8 and the sub-Gaussian control of Assumption 5.10. In the
rest of the paper, in particular in the regret bounds of Theorem 5.18, 5.23 and 5.26, σ will refer
to the parameter that appears in the supermartingale control of Lemma 5.11.

Regarding Assumption 5.10, note that for a mean-linear bandit Yt = ⟨θ⋆, Xt⟩ + ηt with
adapted loss L(y, ξ) = 1

2(y − ξ)2, we have that ∂L⋆t = ηt, which is classically assumed to be
sub-Gaussian. For other bandits, and thus other adapted losses, it may be more convenient
to make assumptions on the distribution of observable quantities such as Xt and Yt rather
than directly on ∂L⋆t . Formally, this raises the question of how the sub-Gaussian property of
a random variable Z transfers to f(Z) for a given mapping f . While to our knowledge no
complete answer is available, several partial results are available in the concentration literature.

(i) If Z is Gaussian with variance σ2 and f isM -Lipschitz, the Tsirelson-Ibragimov-Sudakov
inequality (Boucheron et al., 2013, Theorem 5.5) shows that f(Z) isMσ-sub-Gaussian.
In particular, the Lipschitz assumption holds for ∂L if the loss curvature is bounded from
above byM . More generally, if Z can be written as a σ-Lipschitz function of a N (0, 1),
then f(Z) isMσ-sub-Gaussian.
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(ii) If the density of Z is strongly logconcave, then f(Z) is sub-Gaussian (with parameter
related to the largest eigenvalue of the Hessian of the logdensity, see Vershynin (2018,
Theorem 5.2.15)).

(iii) If Z is bounded (i.e. actions and rewards are bounded) and f is Lipschitz and separately
convex, then f(Z) is sub-Gaussian (application of the entropymethod, see e.g. Boucheron
et al. (2013, Theorem 6.10)). The boundedness assumption can be lifted at the cost of a
slightly more stringent condition than the sub-Gaussianity of Z, see Adamczak (2005,
Theorem 3).

In short, Assumption 5.10 holds in a variety of settings, under rather mild assumptions on
either Xt and Yt or the loss L. Also of note, ∂1L isM -Lipschitz under Assumption 5.8.

Confidence sequence for θ⋆. To help write the above confidence set in terms of θ⋆ and the
empirical estimator θ̂t, we introduce the function

Fαt : Θ −→ Rd

θ 7−→
t−1∑
s=1

∂L (Ys, ⟨θ,Xs⟩)Xs + αθ , (5.28)

As seen above, Fαt (θ̂t) = 0 and Fαt (θ⋆) = St + αθ⋆. Noticing that

∥Fαt (θ⋆)− Fαt (θ̂t)∥2Hβ
t (θ⋆)−1 = ∥St + αθ⋆∥

Hβ
t (θ⋆)−1 ⩽ ∥St∥Hβ

t (θ⋆)−1 + α∥θ⋆∥
Hβ
t (θ⋆)−1 , (5.29)

we immediately derive the following result (note the use of a priori different regularisation
parameters α and β, which we exploit later in Lemma 5.15).
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Corollary 5.13 (Time-uniform confidence sequence for θ⋆). Let t ∈ N, δ ∈ (0, 1), α, β > 0, and
define the set

Θ̂δ
t =

θ ∈ Θ, ∥Fαt (θ)− Fαt (θ̂t)∥Hβ
t (θ)−1 ⩽ σ

√
2 log 1

δ
+ log detHβ

t (θ)
detβId

+ α∥θ∥
Hβ
t (θ)−1

 .

(5.30)

Then under Assumptions 5.8 and 5.10,
(
Θ̂δ
t

)
t∈N

is a time-uniform confidence sequence at level δ
for θ⋆, i.e.

P
(
∀t ∈ N, θ⋆ ∈ Θ̂δ

t

)
⩾ 1− δ , (5.31)

or equivalently, for any random time τ in N,

P
(
θ ∈ Θ̂δ

τ

)
⩾ 1− δ . (5.32)

We constantly use this result in the following, in particular to construct the projection
operator Π. Indeed, we define

θ̄t = Π(θ̂t) = argmin
θ∈Θ

∥Fαt (θ)− Fαt (θ̂t)∥Hβ
t (θ)−1 , (5.33)

such that, in particular, we have the property that Π(θ̂t) ∈ Θ̂δ
t with high probability.

Remark 5.14 . Although we formulated the bounded curvature condition (Assumption 5.8) globally,
we note that we only require it to hold in a convex neighborhood of θ⋆ containing θ̄t, and Corollary 5.13
shows that with high probability, ∥θ⋆−θ̄t∥2 is bounded (going from theHβ

t (θ⋆)−1 norm to the Euclidean
norm can be done by simple positive definite matrix inequalities). Therefore, one could instead assume
a local curvature control on ∂L(y, ⟨θ, x⟩) for x ∈ Xt and θ in a ball around θ⋆, in the same spirit as
Assumption 1 in Li et al. (2017) for GLB.
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Optimism and local metrics

We recall here the principle of optimism in the face of uncertainty and adapt it to the framework
of elicitable risk measures. We denote by rt = ⟨θ⋆, X⋆

t ⟩ − ⟨θ⋆, Xt⟩ the instantaneous pseudo
regret, where ⟨θ⋆, X⋆

t ⟩ = maxx∈Xt⟨θ⋆, x⟩ is the optimal risk measure associated with L at time
for the actions available at time t. Then, simple algebra shows that

rt = ⟨θ⋆ − θ̄t, X⋆
t ⟩ − ⟨θ⋆ − θ̄t, Xt⟩+ ⟨θ̄t, X⋆

t −Xt⟩

= ∆(X⋆
t , θ̄t) + ∆(Xt, θ̄t) + ⟨θ̄t, X⋆

t −Xt⟩ , (5.34)

where we define for x ∈ X and θ ∈ Θ, ∆(x, θ) = |⟨θ⋆ − θ, x⟩| the absolute error made by θ with
respect to the true parameter of the linear bandit θ⋆ in the direction ofx. Ifwe knowa sequence of
functions γt : X → R+ such that with high probability, for all t ∈ N and x ∈ Xt, ∆(x, θ̄t) ⩽ γt(x),
then the principle of optimism recommends the action Xt ∈ argmaxx∈Xt⟨θ̄t, x⟩+ γt(x), i.e. the
one leading to the best plausible reward with respect to the confidence on the prediction error
of θ̄t. In this case, rt ⩽ ∆(X⋆

t , θ̄t) + ∆(Xt, θ̄t) + γt(Xt)− γ(X⋆
t ) ⩽ 2γt(Xt) with high probability,

and hence RT ⩽ 2
∑T
t=1 γt(Xt). We detail below how Corollary 5.13 coupled with standard

assumptions provides such a bound.

Bound on the prediction error. We follow the standard strategy of decoupling the depen-
dency on θ̄t and x in ∆(x, θ̄t). By the Cauchy-Schwarz inequality, we have, for some positive
definite matrix P to be determined later,

∆(x, θ̄t) = |⟨P
1
2 (θ⋆ − θ̄t), P− 1

2x⟩| ⩽ ∥θ⋆ − θ̄t∥P ∥x∥P−1 . (5.35)

As we see below, a natural choice for P is the (average) Hessian of the empirical risk min-
imisation problem, and therefore the term ∥x∥P−1 can be handled by the elliptical potential
lemma (Lemma 11 in Abbasi-Yadkori et al. (2011)). To control the remainder term in θ⋆ − θ̄t,
we borrow technical tools from the classical approach developed for generalised linear bandits
(Filippi et al., 2010; Faury et al., 2020) and note that

Fαt (θ⋆)− Fαt (θ̄t) = H̄α
t (θ⋆, θ̄t)(θ⋆ − θ̄t) , (5.36)

where H̄α
t (θ⋆, θ̄t) =

∫ 1
0 H

α
t (uθ⋆ + (1− u)θ̄t)du is the average of the Hessian matrices along the

segment [θ̄t, θ⋆]1 (this follows from the observation that the differential of Fαt isHα
t ). Therefore

the choice P = H̄α
t (θ⋆, θ̄t) yields

∥θ⋆ − θ̄t∥P = ∥Fαt (θ⋆)− Fαt (θ̄t)∥H̄α
t (θ⋆,θ̄t)−1

1By convexity of Θ, the segment [θ̄t, θ⋆] lies in Θ. However, we could also use average the Hessian matrices along
a curve, i.e. H̄α

t (θ⋆, θ̄t) =
∫ 1

0 Hα
t (γu)du where γ : [0, 1] → Θ is a smooth, unit speed path connecting θ̄t and θ⋆.

141



⩽ ∥Fαt (θ⋆)− Fαt (θ̂t)∥H̄α
t (θ⋆,θ̄t)−1 + ∥Fαt (θ̄t)− Fαt (θ̂t)∥H̄α

t (θ⋆,θ̄t)−1 . (5.37)

To conclude, we need to find a way to relate the local metric defined by H̄α
t (θ⋆, θ̄t)−1 to those

defined byHβ
t (θ⋆)−1 andHβ

t (θ̄t)−1, for which we have high confidence bounds. This motivates
the following assumption.

Lemma 5.15 (Transportation of Local Metrics). Under Assumption 5.8, for α > 0, there exists
κ > 0, β > 0 such that

H̄α
t (θ⋆, θ̄t) ≽

1
κ
Hβ
t (θ⋆) and H̄α

t (θ⋆, θ̄t) ≽
1
κ
Hβ
t (θ̄t) . (5.38)

Proof of Lemma 5.15. The result follows from simple calculations and the bounds provided by
Assumption 5.8:

H̄α
t (θ⋆, θ̄t) =

t−1∑
s=1

∫ 1

0
∂2L(Ys, ⟨uθ⋆ + (1− u)θ̄t, Xs⟩)duXsX

⊤
s + αId

=
t−1∑
s=1

∫ 1

0
∂2L(Ys, ⟨θ⋆, Xs⟩)

∂2L(Ys, ⟨uθ⋆ + (1− u)θ̄t, Xs⟩)
∂2L(Ys, ⟨θ⋆, Xs⟩)

duXsX
⊤
s + αId

≽
m

M

t−1∑
s=1

∂2L(Ys, ⟨θ⋆, Xs⟩)XsX
⊤
s + αId (Assumption 5.8)

= 1
κ

(
t−1∑
s=1

∂2L(Ys, ⟨θ⋆, Xs⟩)XsX
⊤
s + καId

)

= 1
κ
Hκα
t (θ⋆) , (5.39)

which is the desired result with β = κα and κ = M
m the conditioning of the loss L. The other

inequality with H̄β
t (θ̄t) is derived similarly. ■

Again, we keep the formulation fairly generic as Lemma 5.15 may hold beyond losses with
bounded curvature. For instance, in a special case of GLB, namely the logistic bandit, it is
shown in Faury et al. (2020) that this lemma holds thanks to self-concordance properties of the
sigmoid link function.

Examples. We conclude this section by discussing examples of standard losses and whether
they satisfy the above conditions.
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• Expectiles. The expectile loss is derived from the strongly convex potential ψ2(z) =
|p−1z<0|z2, the second derivative of which is ψ′′

2(z) = 2|p−1z<0|. Thus, Assumption 5.8
holds withm = 2 min(p, 1−p) andM = 2 max(p, 1−p) (see Section 5.4 for more details).

• Quantiles. The quantile loss is derived from the potential ψ1(z) = (p − 1z<0)z, which
is piecewise linear. In particular, it is not strongly convex and thus does not satisfy
Assumption 5.8, i.e. bandits with quantile regression are outside the scope of this work.

Regret analysis

We make two additional standard assumptions that prior bounds are known on θ⋆ and on the
actions X =

⋃
t∈NXt, which is standard in the existing literature on linear bandits.

Assumption 5.16 (Prior bound on parameters). All parameters are bounded by a constant S > 0,
i.e. Θ ⊆ Bd∥·∥2

(0, S). In particular, this implies that ∥θ⋆∥
Hβ
t (θ⋆)−1 ⩽ S√

β
for any β > 0.

Assumption 5.17 (Prior bound on actions). All actions are bounded by a constant L > 0, i.e.
X ⊆ Bd∥·∥2

(0, L).

Wenowobtain a high probability upper bound on the pseudo regret incurred byAlgorithm3
for an explicit choice of exploration bonus sequence (γt)t∈N and projection Π. As is standard
for contextual bandits with possibly infinite action sets, this bound is minimax (worst case) as
it does not depend explicitly on the optimality gaps ⟨θ⋆, X⋆

t ⟩ − ⟨θ⋆, Xt⟩.
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Theorem 5.18 (Pseudo regret upper bound for LinUCB-CR - 1). Let δ ∈ (0, 1), α ⩾ max(1, L2)
and define for t ∈ N the exploration bonus

γt : Xt −→ R+

x 7−→ cδt∥x∥Hκα
t (θ̄t)−1 , (5.40)

cδt = 2κ
(
σ

√
2 log 2

δ
+ d log m

α
+ log detV

α
m
t +

√
α

κ
S

)
(5.41)

and the projection operator

Π: Rd −→ Θ

θ 7−→ argmin
θ′∈Θ

∥Fαt (θ′)− Fαt (θ)∥Hκα
t (θ′)−1 . (5.42)

Under Assumptions 5.8, 5.10, 5.16 and 5.17, with probability at least 1− δ, for all T ∈ N, the pseudo
regret of Algorithm 3 is upper bounded by

RT ⩽ 2cδT max
( 1√

m
,
L√
κα

)√
2Td log

(
1 + mTL2

dκα

)
, (5.43)

and in particular, we have

RT = O
(
κσd√
m

√
T log TL

2

d

)
. (5.44)

Proof of Theorem 5.18. The proof of this result follows the standard regret analysis of LinUCB, up
to the modifications detailed in the previous sections. First, we justify the choice of exploration
sequence (γt)t∈N, which naturally derives from the optimistic principle and the analysis of local
metrics. Then, we use a somewhat crude bound on the Hessian to simplify the analysis and
reduce it to the so-called elliptic potential lemma.

Indeed, as established in Section 5.2, with probability at least 1− δ, the cumulative pseudo
regretRT is upper bounded for all T ∈ N by 2

∑T
t=1 γt(Xt) provided that

P
(
∀t ∈ N, ∆(Xt, θ̄t) ⩽ γt(Xt)

)
⩾ 1− δ , (5.45)

where ∆(Xt, θ) = |⟨θ⋆ − θ,Xt⟩| ⩽ ∥θ⋆ − θ̄t∥H̄α
t (θ⋆,θ̄t)∥Xt∥H̄α

t (θ⋆,θ̄t)−1 . (5.46)
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Tuning of the ExplorationBonus Sequence. The transportation of localmetrics (Lemma 5.15,
implied by the curvature bound of Assumption 5.8) reveals that

∥θ⋆ − θ̄t∥H̄α
t (θ⋆,θ̄t) ⩽ ∥F

α
t (θ⋆)− Fαt (θ̂t)∥H̄α

t (θ⋆,θ̄t)−1 + ∥Fαt (θ̄t)− Fαt (θ̂)∥H̄α
t (θ⋆,θ̄t)−1

⩽
√
κ
(
∥Fαt (θ⋆)− Fαt (θ̂t)∥Hβ

t (θ⋆)−1 + ∥Fαt (θ̄t)− Fαt (θ̂)∥
Hβ
t (θ̄t)−1

)
. (5.47)

Thanks to the supermartingale control of Lemma 5.11, we deduce from Corollary 5.13 that
with probability at least 1− δ, the following inequalities hold for all t ∈ N:

∥Fαt (θ⋆)− Fαt (θ̂t)∥Hβ
t (θ⋆)−1 ⩽ σ

√
2 log 1

δ
+ log detHβ

t (θ⋆)
detβId

+ α∥θ⋆∥
Hβ
t (θ⋆)−1 , (5.48)

∥Fαt (θ̄t)− Fαt (θ̂t)∥Hβ
t (θ̄t)−1 ⩽ σ

√
2 log 1

δ
+ log detHβ

t (θ̄t)
detβId

+ α∥θ̄t∥Hβ
t (θ̄t)−1 . (5.49)

The prior bound on parameters (Assumption 5.16) implies that ∥θ∥
Hβ
t (θ)−1 ⩽ S/

√
β for θ ∈

{θ⋆, θ̄t}. Furthermore, the curvature bound (Assumption 5.8) implies that Hβ
t (θ) ≼MV

β/M
t ,

and therefore detHβ
t (θ) ⩽ Md detV β/M

t for θ ∈ {θ⋆, θ̄t}. Combining these together with a
time-uniform union bound over the two events of equations 5.48 and 5.49, and substituting the
expression of β = κα, where κ = M

m is the conditioning of the convex loss L, we obtain:

∥θ⋆ − θ̄t∥H̄α
t (θ⋆,θ̄t) ⩽ 2

√
κ

(
σ

√
2 log 2

δ
+ d log m

α
+ log detV

α
m
t +

√
α

κ
S

)
. (5.50)

By the same arguments, it holds that H̄α
t (θ⋆, θ̄t)−1 ≼ κHκα

t (θ̄t)−1 and therefore

∥Xt∥H̄α
t (θ⋆,θ̄t)−1 ⩽

√
κ∥Xt∥Hκα

t (θ̄t)−1 . (5.51)

This shows that

γt : Xt −→ R+

x 7−→ 2κ
(
σ

√
2 log 2

δ
+ d log m

α
+ log detV

α
m
t +

√
α

κ
S

)
︸ ︷︷ ︸

cδt

∥x∥Hκα
t (θ̄t)−1 (5.52)

is a valid choice of exploration sequence.
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Bounding the pseudo regret. Going back to the pseudo regretRT , we notice that (cδt )Tt=1 is a
positive, nondecreasing sequence. Hence, with probability at least 1− δ, for all T ∈ N, we have

RT ⩽ 2
T∑
t=1

γt(Xt) ⩽ 2cδT
T∑
t=1
∥Xt∥Hκα

t (θ̄t)−1 . (5.53)

A priori, the direct analysis of the right-hand side is tedious due to the dependency on θ̄t in the
local metric. However, we notice that the curvature bound (Assumption 5.8) also implies the
weaker control Hκα

t (θ̄t)−1 ≼ 1
m(V

κα
m
t )−1, which translates to

∥Xt∥Hκα
t (θ̄t)−1 ⩽

1√
m
∥Xt∥(V

κα
m
t )−1

. (5.54)

This bound is less informative as it looses the local information carried by θ̄t, but still sufficient
to obtain sublinear pseudo regret growth. We recall the following result, which is a direct
consequence of the deterministic elliptic potential lemma (Lemma 11, Abbasi-Yadkori et al.
(2011)) and the Cauchy-Schwarz inequality.

Lemma 5.19 (Deterministic elliptic potential). Let (xt)t∈N be an arbitrary sequence of vectors in
Bd∥·∥(0, L), γ > 0 and vt =

∑t−1
s=1 xsx

⊤
s + γId ∈ S++

d (R) for t ∈ N. Then

t∑
s=1
∥xs∥v−1

s
⩽ max(1, L√

γ
)
√

2td log
(

1 + tL2

dγ

)
. (5.55)

Note that this result holds in our case (with γ = κα
m ) thanks to the prior bound on actions

(Assumption 5.17).

Conclusion of the proof. With high probability, uniformly in T ∈ N, the pseudo regret of
LinUCB-CR is upper bounded by

RT ⩽ 2
T∑
t=1

γt(Xt) ⩽ 2cδT max
( 1√

m
,
L√
κα

)√
2Td log

(
1 + mTL2

dκα

)
. (5.56)

Going back to the expression of cδT , it follows from simple algebra (see e.g. Lattimore and
Szepesvári (2020, proof of Lemma 19.4)) that detV

α
m
t ⩽

(
α
m + TL2

d

)d, and thus we have the
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asymptotic control cδT = O
(
κσ
√
d log TL2

d

)
when T → +∞, which implies

RT = O
(
κσd√
m

√
T log TL

2

d

)
. (5.57)

■

Remark 5.20 . This regret bound scales with κm−1/2, where m is the minimum curvature of the
loss L and κ the coefficient of transportation of local metrics. Under Assumption 5.8, this scales as
m−3/2. In the limit of flattening loss m→ 0, learning with this strategy becomes impossible. We
show in Appendix D.2 that a small modification of the exploration sequence reduces this dependency
to κ1/2m−1/2, at the cost of loosing local information carried by Hκα

t (θ̄t). An analogous dependency
on m−1 was observed for GLB in Filippi et al. (2010). In the special case of logistic bandit, Faury
et al. (2020) obtained a κ independent ofm using self-concordance, and even pushed the dependency
onm−1/2 to higher order terms in T using a more intricate algorithmic design. We conjecture that a
similar construction could apply here but leave this open for future work.

Remark 5.21 . In the mean-linear case, m = M = κ = 1 and Hα
t = V α

t , thus this result matches
the standard LinUCB upper bound (Abbasi-Yadkori et al., 2011) and is compatible with the minimax
lower boundO(d

√
T ) for actions in Bd∥·∥2

(0, 1) (Theorem 1.10). In Section 5.4, we show that the lower
bound also applies to expectile bandit models (Corollary 5.29).

Regret analysis under stochactic action sets

Theorem 5.18 holds for arbitrary (potentially adversarial) sequence of action sets (Xt)t∈N. If
these are instead stochastically generated, the regret bound can be further tightened.
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Assumption 5.22 (Stochastic action sets). Let νX ∈M+
1

(
P
(
Bd∥·∥2

(0, L)
))

, i.e. νX is a probability
measure such that samples drawn from it are sets of vectors of norm at most L.
(i) For t ∈ N, Xt ∼ νX defines an i.i.d. sequence of random action sets.

(ii) Recall that Xt ∈ Xt denotes the action selected by the agent at time t ∈ N. Then
E
[
XtX

⊤
t | Ḡt−1

]
≽ ρXL

2Id > 0.

The lower bound on conditional covariance of actions of Assumption 5.22 is new, although
related to more standard settings. In the case of finite action sets Xt = {Xk,t, k ∈ [K]}, Li et al.
(2017); Kim et al. (2023) considered a lower bound on the unconditional average covariance
across arms E[1/K

∑
k∈[K]Xk,tX

⊤
k,t]. We argue that this assumption is quite mild in the sense

that for non-degenerate νX , the conditioning is essentially irrelevant. At time t, Xt is drawn
independently of Ḡt−1, and Xt ∈ Xt is selected in a Ḡt−1-measurable fashion. To violate the
covariance inequality, there should exist a fixed strict subspace V ⊂ Rd such that with some
probability Xt ∩ V ̸= ∅ (when randomising over the action set Xt) and Xt should be one of the
vectors in V ; however, if e.g. νX spans an open set, this almost surely cannot happen.

The following result shows that under this condition of diversity of the action sets, the
pseudo regret guarantee of optimistic strategies can be slightly improved by a factorO(

√
log T ).
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Theorem 5.23 (Pseudo regret upper bound for LinUCB-CR - 2). Let δ ∈ (0, 1), α > 0 and
define t0 = ⌈ 8

ρ2
X

log 2
δ −

2κα
mρXL2 ⌉. Under Assumptions 5.8, 5.10, 5.16, 5.17 and 5.22, for T ⩾ t0, with

probability at least 1− 2δ, the pseudo regret of Algorithm 3 is bounded by

RT ⩽ 4cδT

√
2T
mρX

(
1 + C√

T

)
, (5.58)

where

C = 1
L2

√√√√κα− 4mL2

ρX
log 2

δ

2mρX
− 1

2L

√√√√
t0 − 1 +

2(κα− 4mL2

ρX
log 2

δ )
mρXL2

+ 1
2 max

(
1, L

√
m

κα

)√
ρXdt0 log

(
1 + mL2t0

dκα

)
. (5.59)

In particular, we have

RT = O

κσ√ dT

mρX
log TL

2

d

 . (5.60)

The reduced logarithmic dependency in T cannot be significantly improved further. Indeed,
Li et al. (2019) proved a Ω(

√
dT log(K) log(T/d)) lower bound on the expected pseudo regret,

although in the context of action sets containing at mostK vectors. Note that Assumption 5.22
and ρX do not influence the design of Algorithm 1, only theO (√log T

) term in its regret bound.
Compared toKim et al. (2023), our proof relies on line crossing arguments developed inHoward
et al. (2020) rather than on a crude union bound, leading to improved constants and higher
order terms (even in the mean-linear case), and preserves the time-uniform property of the
regret bound. We defer these technical details and the proof of Theorem 5.23 to Appendix D.2.
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Remark 5.24 (Dependency of ρX on d). Following the argument in Kim et al. (2021) in the case of
unconditional covariance control, we obtain the following bound on ρX :

dρXL
2 ⩽ dλmin

(
E
[
XtX

⊤
t | Ḡt−1

])
⩽
∑
λ∈St

λ = Tr
(
E
[
XtX

⊤
t | Ḡt−1

])
= E

[
Tr

(
XtX

⊤
t

)
| Ḡt−1

]
⩽ L2 , (5.61)

whereSt denotes the spectrum of the symmetric matrixE
[
XtX

⊤
t | Ḡt−1

]
. Therefore ρ−1

X ⩾ d. Moreover,
Bastani et al. (2021); Kim et al. (2021, 2023) identified two families of examples where ρX = O(d−1)
in the unconditional case:
(i) If the distribution of X ∈ Xt (marginal distribution of a each action) admits a density p with

respect to the Lebesgue measure supported in Bd∥·∥2
(0, L) and such that p(x) ⩾ pmin > 0 for

all x ∈ Bd∥·∥2
(0, L), then ρX = pmin

(d+2)vol
(
Bd∥·∥2

(0, 1)
)
is a suitable choice (Kim et al., 2023,

Lemma C.1). In general, the volume of the Euclidean unit ball in Rd is vol
(
Bd∥·∥2

(0, 1)
)

=

πd/2

Γ( d2 +1) ∼
1√
dπ

(
2πe
d

) d
2 , which goes to 0 when d → +∞. In certain cases though, such as the

uniform and truncated Gaussian distributions, pmin is proportional to vol
(
Bd∥·∥2

(0, 1)
)
, thus

leading to ρX = O(d−1).

(ii) If the covariance matrix E
[
XX⊤

]
exhibits a certain structure, for instance AR(1), tridiagonal

or block diagonal, then ρX = O(d−1), regardless of the marginal distributions.
In particular, the regret upper bound of Theorem 5.23 scales linearly with d, which is consistent with
the lower bound discussed in Remark 5.21.

5.3 Approximate strategy with online gradient descent

So far, we have shown that the standard LinUCB principle can be extended to the convex loss
setting with similar pseudo regret guarantees under some curvature assumption. However,
this comes at the cost of a significant computational overhead since the estimator θ̂t needs to be
calculated from scratch at each step as argminθ∈Rd

∑t−1
s=1 L(Ys, ⟨θ,Xs⟩) + α

2 ∥θ∥
2
2. As a reminder,

in the standard mean-linear case, this estimator has an analytical expression that amounts to
incrementally inverting the matrix V α

t , which can be done efficiently from the knowledge of
the inverse of V α

t−1 via the Sherman-Morrison formula.
We propose an alternative algorithm that exploits online gradient descent (OGD) to com-

pute a fast approximation of the empirical risk minimiser θ̂t. This may be of practical interest
to deploy risk-aware linear bandits in time-sensitive environments, such as in real-time online
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recommendation systems. Moreover, it can also be relevant in the mean-linear setting with
high dimensional action sets, where computing gradients may be more tractable than inverting
a large d× dmatrix. For n, h ∈ N, we define the aggregated gradient of the empirical loss as

∇αn,h : Rd −→ Rd

θ̂ 7−→
h∑
k=1

∂L(Y(n−1)h+k, ⟨θ̂, X(n−1)h+k⟩) + αθ . (5.62)

Algorithm 4 LinUCB-OGD-CR
Input: horizon T , regularisation parameter α, projection operator Π, exploration bonus se-

quence (γOGD
t,T )t⩽T , step sequence (εt)t∈N, episode length h > 0.

Initialisation: Observe X1, set θ̂OGD
0 , n = 1.

for t = 1, . . . , T do
if t = nh+ 1 then

θ̂OGD
n ← θ̂OGD

n−1 − εn−1∇αn,h(θ̂OGD
n−1 ) ; ▷ OGD

θ̄OGD ← 1
n

n∑
j=1

Π(θ̂OGD
j ) ; ▷ Average

n← n+ 1 ;
Xt ← argmax

x∈Xt
⟨θ̄OGD, x⟩+ γOGD

t,T (x) ; ▷ Play with same parameter for h steps

Observe Yt and Xt+1; ▷ Observe reward and next action set
t← t+ 1 .

The intuition behind Algorithm 4 is that at time t = nh+ 1, the approximation error
between the OGD estimate θ̄OGD

n and the exact minimiser of the empirical risk θ̂t induces
additional exploration, which translates to an increased regret compared to LinUCB. In other
words, LinUCB-OGD trades off accuracy for computational efficiency. The episodic structure is
borrowed from Ding et al. (2021) and is key to ensure sufficient convexity of the aggregate loss
∇αn,h(θ̂). This allows to leverage the strong approximation guarantees of OGD, which we extend
in the following proposition by relaxing the standard boundedness requirement of the gradient
(Theorem 3.3, Hazan et al. (2016)) to a weaker sub-Gaussian control at a given parameter. We
prove in Appendix D.3 an extension of the following proposition, with an explicit bound on
the OGD regret, which we report below in the O notation for the sake of concision.
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Proposition 5.25 (OGD regret, sub-Gaussian gradients). Let C a convex subset of Rd and Π the
projection operator onto C. For j = 1, . . . , N , let ℓj : C −→ R+ a twice differentiable convex function
and a,A > 0 such that aId ≼ ∇2ℓj(z) ≼ AId for all z ∈ C. Define the OGD update at step j by
zj = Π(zj−1 − εj−1∇ℓj(zj−1)) and z̄n = arg minz∈C

∑n
j=1 ℓj(z). Assume that there exists z∗ ∈ C

such that∇ℓj(z∗) = gj + α
nz

∗ with α ⩾ 0 and g a centered, Rd-valued σ-sub-Gaussian process, and
also that C is bounded, i.e diam(C) = supz,z′∈C∥z − z′∥ <∞. Then with probability at least 1−δ, the
OGD regret with step size εj = 3

aj is bounded for all n ⩽ N by

n∑
j=1

ℓj(zj)− ℓj(z̄n) ⩽ 9
2a

(
2dσ2 log 2dN

δ
+A2diam(C)2 + α2

n2 ∥z
∗∥2
)

(1 + logn) . (5.63)

In particular, we have

N∑
j=1

ℓj(zj)− ℓj(z̄N ) = O
(
dσ2

a
log2N

)
(5.64)

when N → +∞. In addition, if g is uniformly bounded by a constant G > 0, the regret with step size
εs= 1

aj can be reduced to the almost sure bound:

n∑
j=1

ℓj(zj)− ℓj(z̄n) ⩽ G2

2a (1 + logn) . (5.65)

Finally, we show that the approximation error of OGD induces at most a polylog correction
in the pseudo regret bound of LinUCB-OGD-CR, which we prove in Appendix D.3.
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Theorem 5.26 (Pseudo regret of LinUCB-OGD-CR). Let εh > 0 and h = ⌈ 2εh
ρXL2 + 8

ρ2
X

log 2
δ ⌉.

Assume that ∂L(Yt, ⟨θ⋆, Xt⟩) is
√
mσ-sub-Gaussian for all t ⩽ T . Under Assumptions 5.8, 5.10,

5.16, 5.17 and 5.22, there exists C ′ > 0 such that with probability at least 1− (1 + T/h)δ the pseudo
regret of Algorithm 4 with the projection operator of Theorem 5.18, the exploration bonus sequence

γOGD
t,T : Xt −→ R+

x 7−→ (cδt + cOGD,δ
t,T )∥x∥Hκα

t (θ̄OGD
⌊ t−1
h

⌋
)−1 , (5.66)

cOGD,δ
t,T =

√√√√(L2 + α

mMt

)(2κC ′dh2σ2

ε2
h

log
(2dT
hδ

)
log

(
t

h

))
, (5.67)

and the OGD step sequence of Proposition 5.25 satisfies

RT = O

σ√ κdT

mρX

√κ log
(
TL2

d

)
+ h log (dT )

 . (5.68)

The episode length h scales as O(ρ−2
X ), which grows at least as fast as O(d2) in the action

dimension d. This is sufficient to bound with high probability the smallest eigenvalue of the
Hessian of the aggregate losses ∇αn,h and thus ensure their strong convexity. However, longer
episodes also means less frequent updates of θ̄OGD

n , i.e. less learning, which is materialised
by the additional dependency on h in the regret bound. In Lemma D.7, we deduce a tighter,
more intricate expression for h, although still scaling as O(ρ−2

X ). We only report the simpler
expression here to avoid cluttering.

Remark 5.27 . The union bound used in Proposition 5.25 imposes the knowledge of the horizon T at
runtime (in the definition of γt,T ), thus making Algorithm 4 not anytime.
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� In Chapter 7, we propose another randomised algorithm for linear bandits with elicitable convex
losses, where the effect of randomisation also adds (heuristically) a polylog correction in T to the pseudo
regret bound.

5.4 Applications and numerical experiments

We conducted three numerical experiments to illustrate themerits of both risk-aware algorithms,
under expectiles and entropic risk criteria. As far as we are aware, no algorithm exists for the
expectile criterion; for entropic risk, Maillard (2013) analyses a variant of KL-UCB but only for
the non-contextual multiarmed bandit problem (and without numerical evidences). Instead,
we designed these numerical experiments so that the optimal arms were different depending
on the criterion of interest (mean versus risk-aware), and we benchmarked the risk-aware
algorithms against the classical mean-linear LinUCB (Abbasi-Yadkori et al., 2011).

Computing expectiles. We detail two cases of distributions for which expectiles are known.
For p ∈ (0, 1), we denote by ep(ν) the p-expectile of distribution ν.

• If ν = N (0, 1), then, letting ϕ and Φ be the p.d.f. and c.d.f. of ν respectively, we obtain
after simple calculus and the identity ϕ′(y) = −yϕ(y) the following fixed point equation:

ep(ν) = 2pϕ(ep(ν))− 1
(1− 2p)Φ(ep(ν)) + p

, (5.69)

from which one can estimate the value of ep(ν) using a fast iterative scheme. The gen-
eral Gaussian case ν = N

(
µ, σ2) is then easily deduced from the relation ep(ν) =

µ+σep(N (0, 1)). Expectile calculations for a few other classical distributions are covered
in Philipps (2022).

• If ν is the so-called expectile based distribution (Picheny et al., 2022; Arbel et al., 2023)
with asymmetric density (with respect to the Lebesgue measure) given by

fµ,σ,p(y) = cp
σ

exp
(
−|p− 1y<µ|(y − µ)2

2σ2

)
, (5.70)

where cp =
√

2p(1−p)√
π(√p+

√
1−p) , then ep(ν) = µ. In otherwords, these distributions offer a family

parametrised directly by their expectile, generalizing the family of Gaussian distributions
parametrised by their mean (for a given variance).
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We recall that the p-expectile can be elicited by the convex potential ψ(z) = |p−1z<0|z2. The
second derivative of this potential is given by ψ′′(z) = 2(1−p)1z<0 +2p1z>0, which is bounded
between 2p and 2(1− p). In particular, Assumption 5.8 holds with conditioning κ = M

m = 1−p
p

if p ⩽ 1
2 and κ = M

m = p
1−p otherwise. Note that the two classes of distributions considered

above are Gaussian or strongly logconcave, which fits the scope of the supermartingale control
of Lemma 5.11. In addition, the following minimax lower bound holds.

Corollary 5.29 (Minimax lower bound for expectile bandits). Let σ > 0 and p ∈ (0, 1). Assume
that Xt = X for all t ∈ N. If either (i) X = Bd∥·∥∞

(0, 1) or (ii) X = Bd∥·∥2
(0, 1), the expected regret of

any policy on the bandit model νθ(x) with density f⟨θ,x⟩,σ,p for all x ∈ X , θ ∈ Rd and ρ the p-expectile
risk measure is at least, for T large enough,

sup
θ∈Rd

Eθ [RT ] = Ω(σd
√
T ). (5.71)

Proof of Corollary 5.29. Let us assume that σ = 1, the general case follows from a simple scaling
argument, just as in the classical Gaussian case. For θ, θ′ ∈ Rd and x ∈ X , let µ = ⟨θ, x⟩ and
µ′ = ⟨θ′, x⟩. We have the following likelihood identity:

EY∼νθ(x)

[
log dνθ(x)

dνθ′(x)(Y )
]

= 1
2σ2EY∼νθ(x)

[
|p− 1Y <µ′ |

(
Y − µ′)2 − |p− 1Y <µ| (Y − µ)2

]
.

(5.72)

Fix ε ∈ R and µ′ = µ+ ε. In order to apply Theorem 1.10, we need to prove that the right-hand
side is O(ε2) when ε → 0. Assume that ε > 0 (the reverse case is obtained similarly). The
Taylor expansion (Y − µ− ε)2 = (Y − µ)2 + 2(Y − µ)ε+O(ε2) allows to simplify the above
expectation as

EY∼νθ

[
|p− 1Y <µ+ε| (Y − µ)2 + 2|p− 1Y <µ+ε|(Y − µ)ε− |p− 1Y <µ| (Y − µ)2

]
+O(ε2)

= EY∼νθ

[
(|p− 1Y <µ+ε| − |p− 1Y <µ|) (Y − µ)2

]
+ 2εEY∼νθ [|p− 1Y <µ+ε|(Y − µ)] +O(ε2)

= (2p− 1)EY∼νθ

[
1Y ∈[µ,µ+ε] (Y − µ)2

]
+ 2εEY∼νθ [|p− 1Y <µ+ε|(Y − µ)] +O(ε2) . (5.73)

The first expectation can be rewritten as ∫ ε0 y2f0,σ,p(y)dy, and since the integrand y 7→ y2f0,σ,p(y)
is equivalent to y 7→ cp/σy

2 in the neighbourhood of zero, this integral contributes to O(ε3).
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For the second term, we also write the integral and split it in three parts:

EY∼νθ [|p− 1Y <µ+ε|(Y − µ)]

= cp
σ

(∫ µ

−∞
(1− p)(y − µ)e−(1−p) (y−µ)

2σ2 dy +
∫ µ+ε

µ
(1− p)(y − µ)e−p (y−µ)2

2σ2 dy

+
∫ +∞

µ+ε
p(y − µ)e−p (y−µ)2

2σ2

)
. (5.74)

Now, we note that EY∼νθ [|p− 1Y <µ(x)|(Y − µ(x))] = 0 by definition of the p-expectile µ (first
order condition). Hence, adding and substracting cp/σ

∫+∞
µ p(y − µ) exp(−p(y − µ)2/(2σ2))dy

to this expression yields

EY∼νθ [|p− 1Y <µ+ε|(Y − µ)] = cp
σ

∫ µ+ε

µ
(1− 2p)(y − µ)e−p (y−µ)2

2σ2 dy = O(ε) , (5.75)

since the integrand is bounded on [µ, µ+ ε]. Combining all these estimates results in the bound
O(ε2), which concludes the proof by Theorem 1.10. ■

We recall that although this lower bound is on the expected pseudo regret, Lemma A.1
shows that it translates to a high probability bound as in Theorems 5.18, 5.23 and 5.26.

Computing entropic risk. For a distribution ν, the entropic risk at level γ > 0 takes the form
ργ(ν) = 1

γ logEY∼ν
[
eγY

]
and corresponds to the lossL : (y, ξ) 7→ ξ+ 1

γ (eγ(y−ξ)−1). Derivatives
of this loss satisfy the following identities, where ∂ represents the differentiation operator with
respect to the second coordinate ξ:

∂L(y, ξ) = 1− eγ(y−ξ),

∂2L(y, ξ) = γeγ(y−ξ),

and is thus in particular strictly convex.
For a Bernoulli-like distribution ν = pδa + (1− p)δb, with p ∈ (0, 1), a, b ∈ R, the entropic

risk takes the simple form ργ(ν) = 1
γ log

(
peγa + (1− p)eγb

)
. If ν has a bounded support with

diameter D, then it is clear that the Hessian of the loss is controlled bym = γe−γD ⩽ ∂2L ⩽

γeγD = M , and therefore the conditioning number of the loss κ can be bounded by e2γD. Finally,
ν being bounded also fits the scope of the supermartingale control of Lemma 5.11.
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Remark 5.30 (Computing generic risk measures). If a density p and a loss function L are known,
one may resort to numerical integration to approximate the following quantity up to arbitrary precision:

EY∼ν [L(Y, ξ)] =
∫
L(y, ξ)p(y)dy ≈

∑
i

wiL(yi, ξ)p(yi),

where the weights (wi) and knots (yi) depend on the approximation routine. Then, one may simply
run a minimisation algorithm on the function ξ 7→∑

iwiL(yi, ξ)p(yi) to estimate ρL(ν).

Experiment 1: multiarmed Gaussian bandit with expectile noise. We considered K = 2
Gaussian arms with expectiles at level p = 10% equal to 1 and 0 respectively. This bandit
can be represented by constant orthonormal actions Xt = {[1 0]⊤, [0 1]⊤}, parameter θ⋆ =
[1 0]⊤ and noise distributions N (µk, σ2

k

), with µk and σk chosen such that the expectile of the
corresponding noise is zero for k ∈ {1, 2}. This can be achieved with e.g. µ1 ≈ 0.44, σ1 = 0.5
and µ2 ≈ 2.62, σ2 = 3, which was the setup for this experiment. Note that for a given expectile
level p ∈ (0, 1) and standard deviation σ, finding the unique mean µ such that N (µ, σ2) has
zero p-expectile can be easily done via a numerical root search, using the formula for Gaussian
expectiles described above.

The optimal armwith respect to the expectile criterion is the first one by definition. However,
the expectations of these arms are in reversed order, making the second one optimal with
respect to the mean criterion.

As recalled in Example 5.2, the corresponding expectile loss satisfies Assumption 5.8 with
m = 2 min(p, 1−p) andM = 2 max(1−p, p). Note that the more risk-averse (p→ 0), the flatter
the loss (m→ 0) and thus the harder it is to learn. This matches the intuition on risk-aware
measures: by focusing on the more extreme events, they require more samples to reach the
same statistical accuracy.

Experiment 2: linear bandit with expectile asymmetric noise. We considered a second ex-
ample with non-Gaussian noise and non-orthogonal features. We defined the action set at time
t by Xt = {X1

t , X
2
t } ⊂ R3 where:

• X1
t = Z1

t

∥Z1
t ∥2

with Z1
t ∼ N ([1 0 0]⊤, σxI3),

• X2
t = Z2

t

∥Z2
t ∥2

with Z1
t ∼ N ([0 1 0]⊤, σxI3),

• We set the action noise to an arbitrary value σx = 0.1.
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• (Z1
t , Z

2
t )t∈N are all independent random variables.

This construction results in bounded, anisotropic actions. We chose θ⋆ = [0.9 0 1]⊤, so
that ⟨θ⋆, X1

t ⟩ is likely higher than ⟨θ⋆, X2
t ⟩, thus favoring Xt = X1

t in the expectile model
Yt = ⟨θ⋆, Xt⟩+ ηt. To model the zero p-expectile noise ηt with p = 10%, we used the expectile
based distribution presented above with µ1 = µ2 = 0 and σ1 = 0.5 if action X1

t is played,
and σ2 = 1.5 otherwise, resulting in different mean noise E[ηt | Ḡt] ≈ 1.8 and E[ηt | Ḡt] ≈ 3.3
respectively. Note that this distribution is also strongly logconcave, thus fitting the scope of the
supermartingale control of Lemma 5.11. As in the previous example, this setting was designed
to deceive the mean criterion by inverting the order of optimal actions.

Experiment 3: multiarmed Bernoulli bandit with entropic risk noise. The last experiment
consisted ofK = 2 Bernoulli-like arms ν1 = 1

2δ1+ 1
2δ−1 and ν2 = 1

4δ2+ 3
4δ−2, which corresponds

to means µ1 = 0, µ2 = −1 and entropic risk ργ(ν1) ≈ 0.43 and ργ(ν2) ≈ 0.67 at level γ = 1.
Again, this setting was designed so that the best optimal arm is different under the mean and
entropic risk criteria.

Results. In each of the three settings, we ran an instance of Algorithm 3, i.e. LinUCB (convex
risk), and Algorithm 4, i.e. LinUCB-OGD (convex risk). We also ran a standard LinUCB
algorithm for the mean criterion (Abbasi-Yadkori et al., 2011). Hyperparameters m,M and
κ were tuned according to the analysis above. Regularisation was fixed at λ = 0.1. As is
customary in bandit experiments, the parameter σ, which in the formal analysis is derived
from the supermartingale control of the noise, was considered a degree of freedom to control
the amount of exploration; we arbitrarily fixed it at σ = 0.1 in experiments 1 and 2 and at σ = 1
in experiment 3. For the LinUCB-OGD variant, the step size for the OGD scheme was set to
εn = 0.1/n, following the linear decay suggested by Proposition 5.25, and the frequency of
OGD update to h = 5. In addition, all algorithms went through an initial warmup phase where
each arm was played 5 times, in order to ensure better stability of the initial estimations of θ.

In all three examples, the mean criterion algorithm was deceived and accumulated linear
expectile and entropic risk pseudo regret, while both risk-aware algorithms exhibited sublinear
trends. Interestingly, the LinUCB-OGD variant showed higher regrets due to the approximate
minimisation of the loss criterion by OGD, but remained below the mean criterion LinUCB
benchmark. Figure 5.1 reproduces the results of each experiments across 500 independent
replications. Finally, average runtimes for each algorithm are reported in Table 5.2. Calcu-
lations were performed on a distributed infrastructure comprised of 80 CPUs. While the
values themselves are not indicative, as they would vary on a different system, their relative
magnitudes illustrate the computational gain of the OGD scheme over solving the empirical
risk minimisation problem at each step as required in LinUCB (convex risk). Note also that
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the standard LinUCB with mean criterion is faster due to the sequential nature of the ridge
regression estimator. Indeed, this procedure involves inverting at each step a d × d matrix
subject to rank one updates, which can be calculated efficiently via the Sherman-Morrison
formula. By contrast, other convex losses than the one derived from the quadratic potential
loose this sequential form and require solving the corresponding regression problem from
scratch at each time step.
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LinUCB (mean)
LinUCB-CR (expectile)
LinUCB-OGD-CR (expectile)
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Figure 5.1 – Left: two-armed Gaussian expectile bandit. Center: two-armed linear expectile bandit with
R3 contexts and expectile-based asymmetric noises. Right: two-armed Bernoulli entropic risk bandit.
Thick lines denote median cumulative pseudo regret over 500 independent replicates. Dotted lines
denote the 25 and 75 pseudo regret percentiles. Shaded areas denote the 5 and 95 percentiles.
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Table 5.2 – Runtimes for the classical LinUCB andAlgorithms 3 (LinUCB for convex risk) and 4 (LinUCB-
OGD for convex risk) in each experiments. Runtimes are reported in seconds as mean ± standard
deviation, estimated across 500 independent replications with time horizon T = 1500.

Algorithm Experiment 1 Experiment 2 Experiment 3
LinUCB (mean) 0.4± 0.0 37.2± 4.9 0.6± 0.0

LinUCB-CR (convex risk) 231.0± 21.7 814.8± 88.3 519.1± 33.3

LinUCB-OGD-CR (convex risk) 20.4± 3.9 60.2± 12.0 25.7± 4.9

Conclusion

We have introduced a new setting for contextual bandits, building on the recent interest for risk-
awareness inmultiarmed bandits. We reviewed the literature on riskmeasures, in particular the
notion of elicitability, that allows to extend the risk minimisation framework of ridge regression
beyond standard mean-linear bandits. To lift the regret analysis of optimistic algorithms to
the setting of scalar risk measures ρL elicited by a convex loss L, we showed that uniformly
bounding the curvature of the loss (Assumption 5.8) is sufficient to maintain near optimal
minimax regret (O(d

√
T ), as evidenced in the novel lower bound of Corollary 5.29), up to

polylog terms (Theorem 5.18 and 5.23). More precisely, we identified two key conditions,
namely a supermartingale control (Lemma 5.11) and a transportation inequality (Lemma 5.15),
that guarantee sublinear regret; while these are direct consequences of the bounded curvature
assumption, they may hold in different settings, as was recently discovered in GLB.

Going further, we believe it would be interesting to extend the linear model between actions
and risk measures to generalised linear models (ρL(Yt) = µ(⟨θ,Xt⟩) for some link function
µ : R → R), kernelised bandits (ρL(Yt) = f(Xt) where f belongs to some RKHS) or neural
bandits (ρL(Yt) = fθ(Xt) where fθ is a neural network with weights θ). Moreover, capturing
well-established risk measures such as mean-variance, conditional value-at-risk or quantiles
would require to adapt the theory to high-order elicitable measures and to non-smooth losses.
Finally, we believe the technical results developed here, can pave a way for the design and
the analysis of randomised strategies in the contextual risk-aware setting, such as Thompson
sampling. We discuss a heuristic example of such extensions in Chapter 7.
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Take-home message:

�It is possible to sequentially optimise
other risk measures than the expectation
with contextual information for little ad-
ditional complexity.

We have extended the classical linear bandit framework to handle sequential optimisation of
other distributional properties of the rewards than their means. To this end, we considered
elicitable risk measures, defined as minimisers of expected convex losses, including:

• the mean criterion, a special case (symmetric quadratic loss);

• the expectile risk measures, which correspond to asymmetric quadratic losses and
encode a risk aversion (negative and positive outcomes are weighted differently).

Up to mild assumptions on the risk measures, this new formalism is not significantly more
difficult. In particular, we have obtained minimax logarithmic pseudo regret guarantees for a
natural extension of LinUCB in this setting.
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Part IV

Nonparametric modelling in bandits
or how to play well without knowing much





Chapter 6

From optimality to robustness:
Dirichlet sampling strategies in
stochastic bandits (�)

[...] va devant toi, au hasard, sans boussole. Si tu vois une marque
faite sur le sable, prends la fuite et dis au sable du Désert : Je te veux
intact ; dis-moi où nul pied ne t’a touché.

— Ernest Hello, Paroles de Dieu

The content of this chapter was published at the 2021 Conference on Neural Information
Processing Systems (NeurIPS) (Baudry et al., 2021c) and presented at the 2021 Inria Scool
seminar. The notations and presentation have been heavily reworked compared to that article.
To avoid cluttering, the proofs of the regret analysis, which involve careful manipulations of the
round-bases structure and fine properties of Dirichlet distributions, are deferred to Appendix E.
We instead stress out (i) the problem of boundary crossing probabilities (in particular, we
correct a detail in the proof of Lemma 6.8), highlighting connections with concentration and the
study of the extremal Kullback-Leibler operator, and (ii) the extensive numerical experiments.
Of note, building on similar posterior sampling principles, several works followed-up on ours:
Tiapkin et al. (2022a,b) in reinforcement learning, and Jourdan et al. (2022) in pure exploration.
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Outline and contributions

We recall from Section 1.2 in Chapter 1 that aK-armed stochastic bandit is a model for decision
making problem in which a learner sequentially picks actions among K arms and collects
random rewards according to the product measure ν = (νk)k∈[K] ∈

⊗
k∈[K]Fk (unstructured

bandit), where each family is assumed to be integrable (Fk ⊆ L1(R)), with mean µk. The
objective of the learner is to adapt their policy (πt)t∈[T ] to minimise the expected pseudo regret

E[RT ] = E
[
T∑
t=1

µ⋆ − µπt

]
=

K∑
k=1

∆kE
[
Nk
T

]
, (6.1)

where Nk
T =

∑T
t=1 1πt=k is the number of pulls to arm k after T steps, µ⋆ = maxk∈[K] µk is the

maximum expected reward and ∆k = µ⋆ − µk is the suboptimality gap of arm k ∈ [K]. Optimal
policies are constrained by the asymptotic lower bound of Theorem 1.6, i.e.

lim inf
T→∞

E[RT ]
log T ⩾

∑
k:∆k>0

∆k

KFk
inf (νk;µ⋆)

, (6.2)

where the extremal Kullback-Leibler operator over a family of distributions F ⊆ L1(R) is:

KF
inf : F × R −→ R

(ν;µ⋆) 7−→ inf
ν′∈F

{
KL(ν ∥ ν ′), EY∼ν′ [Y ] > µ⋆

}
. (6.3)

For integrable distributions supported in (−∞, B), we use the notation KBinf = K
F(−∞,B)
inf .

As discussed in Chapter 2, an outstanding issue in multiarmed bandits is to design efficient
algorithms under weak, practitioner-friendly hypotheses. In this chapter, we propose simple
alternative settings allowing for unspecified tail shapes while still avoiding “mass leakage”
at infinity (Lemma 1.13). We introduce a flexible template for randomised index policies,
Dirichlet sampling (DS), by generalising the index of NPTS (Riou and Honda, 2020) with
data-dependent exploration incentives, implemented within a round-based structure inspired
by Chan (2020); Baudry et al. (2020) (Section 6.1). We then introduce in Section 6.2 a first regret
decomposition of DS algorithms under general assumptions, and the technical results that
allow to fine-tune the algorithm for different families (Section 6.2). We provide three instances
of DS algorithms and their respective settings and regret guarantees in Section 6.3: (i) bounded
Dirichlet sampling (BDS) tackles bounded distributions with possibly unknown upper bounds;
(ii) quantile Dirichlet sampling (QDS) substitutes common tail assumptions for a mild quantile
condition while preserving logarithmic regret for unbounded distributions; last, robust Dirichlet
sampling (RDS) exhibit slightly larger than logarithmic regret for any unspecified light-tailed
distributions, making it a competitor to the robust R-UCB algorithm of Ashutosh et al. (2021).
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We study in Section 6.4 a use case in agriculture using the DSSAT simulator (Hoogenboom
et al., 2019), which naturally faces the questions of robustness and model specification that
motivated this work and shows the merit of DS over state-of-the-art methods for this problem.
We leave possible extensions (e.g. heavy tailed distributions, with tools such as truncated or
median of means estimators, see Bubeck et al. (2013)) for future work.

6.1 Dirichlet sampling algorithms

We recall the definition of NPTS and motivate the introduction of a round-based structure to
analyse data-dependent exploration bonuses for Dirichlet sampling.

Background. NPTS is an index strategy where the index of each arm is a random reweighting
of their past rewards, augmented by an exploration bonus. The weights are drawn from the
Dirichlet distribution Dn+1 = Dir((1, . . . , 1)) for samples of size n + 1, which is the uniform
distribution on the n-simplex Dn = {w ∈ [0, 1]n+1,

∑n+1
i=1 wi = 1} and matches the Bayesian

posterior (i.e. Thompson Sampling) for multinomial arms. The exploration bonus is simply
the known upper bound of the support, and avoids underexploration of potentially unlucky
good arm. We provide further explanations on the Dirichlet distribution in Appendix E.2.

The simplicity of NPTS and its strong theoretical guarantees are appealing for further
generalisation. As we fully depart from the Bayesian approach, considering other exploration
bonuses, we derive a new family of algorithms under the name of Dirichlet Sampling. We
keep the two principles of reweighting the observations using a Dirichlet distribution and the
exploration aid, and explore how to apply them tomore general (e.g. unbounded) distributions.
In particular, we allow in DS some pre-processing of the observations before reweighting (see
section 6.2 and 6.3) and motivate in Section 6.2 the use of a data-dependent bonus, that use
information from several arms. The additional complexity in the analysis requires a change of
algorithm structure, dropping the index policy for a leader vs challenger approach (Chan, 2020).

Round-based algorithm. We define a round as a step of the algorithm at the end of which a
set of (possibly several) arms are selected to be pulled. Let Ar ⊆ [K] be the subset of the arms
pulled at round r ∈ N. The (essentially unchanged) definitions of the number of pulls and
T -round cumulative expected pseudo regret in this context are

Nk
T =

T∑
r=1

1k∈Ar , (6.4)

E[RT ] = E

 T∑
r=1

∑
k∈[K]

∆k1k∈Ar

 =
∑
k∈[K]

∆kE[Nk
T ] . (6.5)
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We consider the T -round regret for simplicity, as it is a simple upper bound of the regret after T
pulls (moreover, as we discuss below, we expectAr to be often reduced to a single, optimal arm
when r is large enough). At the beginning of each round we define a reference arm (leader),
and then organise pairwise comparisons called duels between this arm and the other arms
(challengers). The leader is chosen as the arm with largest sample size,

ℓr ∈ argmax
k∈[K]

Nk
r , (6.6)

where ties are broken first in favour of the best arm, then with a random choice. A major
motivation for structuring the algorithm in such a way is that the leader will have a sample size
that is linear in the number of rounds, as at least one arm is chosen at each round. This ensures
strong statistical properties that we will exploit to design the exploration bonus of DS strategies.
Randomising the index of the leader is also unnecessary: it competes against each challenger
with its empirical mean. We also dismiss all the arms k that satisfy Nk

r = N ℓr
r with the same

argument. These design choices have a practical interest as they avoid the computation time
of drawing the largest weight vectors. We believe this can be an alternative of independent
interest for computationally intensive index policies.

Challenger’s index. Following notations of Chapter 1, for a given pair of challenger and leader
k, ℓ ∈ [K], we denote by Ykr = (Y k

i )N
k
r

i=1 and Yℓr = (Y ℓ
i )N

ℓ
r

i=1 their respective reward histories,
and let µ̂kr and µ̂ℓr be their respective empirical average rewards at round r. The pairwise
comparison between k and ℓ is then performed by calculating an index, that can depend on
both reward histories Ykr and Yℓr, but not directly on the current round r. For now, we denote
by µ̃ : R(N) × R(N) → R a generic function to represent such an index.

The duel between k and ℓ includes two steps, and the challenger is declared the winner
whenever one of the following two conditions holds:
(i) µ̂kr ⩾ µ̂ℓr (first attempt with empirical mean), or

(ii) µ̃
(
Ykr ,Yℓr

)
⩾ µ̂ℓr,

in this order. We summarise in Algorithm 5 the steps of the DS algorithm for the generic
index µ̃. The algorithm is part of the DS family if this index includes Dirichlet reweighting of
the observations augmented by an exploration bonus. However, the algorithm structure in
Algorithm 5may in principle be combinedwith any randomised index, which is of independent
interest as we will see in Section 6.2. In this work, we are primarily interested in the following
canonical example of Dirichlet sampling index, which directly generalises the NPTS index with
a data-dependent (instead of fixed) exploration bonus.
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Definition 6.1 (DS index). Let B : R(N) × R(N) → R. The DS index associated with B is the
mapping defined as

µ̃W : R(N) × R(N) −→M+
1 (R)(

Y,Y′) 7−→ n∑
i=1

Wiyi +Wn+1B
(
Y,Y′) , (6.7)

where Y = (yi)ni=1 ∈ R(N), Y′ ∈ R(N) andW = (Wi)n+1
i=1 ∼ Dn+1.

To avoid cluttering, we resort to a slight abuse of notation as we identify the distribution
µ̃W (Y,Y′) and its instanciation as a random variable. In the rest of this chapter, by drawing a
DS index at round r + 1 for a challenger k and leader ℓ, we mean to generate a realisation of
a uniform Dirichlet weight vectorW of size Nk

r + 1 (independent of the rest) while keeping
elements of Ykr and Yℓr fixed, and returning the weighted sum defined in µ̃W (Ykr ,Yℓr).

In the next section we study theoretical properties of Dirichlet sampling algorithms, and
discuss the choice of the index µ̃W for different families of distributions.
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Algorithm 5 Generic round-based randomised index bandit algorithm
Input: K arms, index function µ̃
Initialisation: t = 1, r = 1, ∀k ∈ [K], Yk = {}, Nk = 0, Sk = 0, µ̂k = 0.
while continue do
A = {} ; ▷ Set of arms to pull at the end of the round
if r = 1 then
A = [K] ; ▷ All arms are pulled at the first round

else

// Pick the leader
L = argmax

k∈[K]
Nk ; ▷ Arm(s) with the largest number of samples

L̄ = argmax
k∈L

µ̂k ; ▷ Keep best arm(s) in L

ℓ ∼ U(L̄) ; ▷ Random choice if several candidates

// Duels
for k ∈ [K] \ L ; ▷ Challengers in L are eliminated
do

if µ̂k ⩾ µ̂ℓ then
A ← A∪ {k} ; ▷ First duel with empirical mean

else
Draw index µ̃(Yk,Yℓ)
if µ̃(Yk,Yℓ) ⩾ µ̂ℓ then

A ← A∪ {k} ; ▷ Second duel with DS index

// Collect reward and update quantities
if |A| = 0 then
A ← {ℓ} ; ▷ If no winning challenger ℓ is pulled

Shuffle A
for k ∈ A do

Observe Y k
Nk , Yk ← Yk ∪ {Y k

Nk}, Nk ← Nk + 1 ; ▷ Update
Sk ← Sk + Y k

Nk , µ̂k ← Sk/Nk, t← t+ 1 ;
r = r + 1 .

6.2 Regret analysis and technical results

In this section, we analyse the regret of DS algorithms. We first derive a general regret decom-
position for any randomised index µ̃ that holds thanks to the round-based structure. We then
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introduce several properties of Dirichlet sampling, that theoretically guide proper tuning of a
DS index. We finally instantiate DS for three different problems and provide regret bounds
in these settings. Starting with the regret decomposition, we exhibit general sufficient con-
ditions to prove regret guarantees arbitrary indices. The first one concerns the finite sample
concentration of the mean of each distribution.

Assumption 6.2 (Concentration of empirical means). For each k ∈ [K] and νk ∈ Fk, there exists
a good rate function Ik : Ik → R+ with Ik ⊆ R an open set, such that
(i) ∀k, ℓ ∈ [K], µk ∈ Iℓ,

(ii) ∀x ∈ Ik \ {µk}, Ik(x) > 0,

(iii) for all i.i.d. sequence (Yi)i∈N drawn from νk, n ∈ N and ε > 0 such that [µk − ε, µk + ε] ⊂ Ik
and µ̂n = 1/n

∑n
i=1 Yi, we have:

P (µ̂n ⩾ µk + ε) ⩽ e−nIk(µk+ε) and P (µ̂n ⩽ µk − ε) ⩽ e−nIk(µk−ε) . (6.8)

This hypothesis is standard in the bandit literature, and is for instance satisfied by any light
tailed distributions, with good rate function given by the Fenchel-Legendre transform of their
CGF (Cramér’s theorem, Proposition 1.15); in particular, if νk is R-sub-Gaussian, Ik : x ∈ R 7→
(x−µk)2

2R2 is a valid choice. We refer to the monograph Dembo and Zeitouni (2009) for general
techniques to derive such good rate functions. In particular, this shows that the empirical mean
of a suboptimal arm is exponentially unlikely to exceed µ⋆ (with rate Ik(µ⋆)).

We now provide an upper bound on the round-regret presented in Section 6.1 for Algo-
rithm 5. This upper bound exhibits two non-constant terms, that represent (i) the expected
number of pulls of sub-optimal arms when the best arm is the leader, and (ii) the cost of
underexploration of the best arm. These terms are, to some extent, present in the regret bounds
of most randomised algorithms. Our result is in this sense similar to Kveton et al. (2019b,
Theorem 1). Theorem 6.3 generalises it for an index that may depend on the history of two arms
instead of one, which is a result of independent interest (indeed, at this step of the analysis,
the index has not been instanciated to a specific form yet).

Notations. For simplicity, we now consider indices that only depends on the rewards of the
leader through their (empirical)mean, whichwedenote by µ̃ : R(N)×R→ R. Theorem6.3 below
holds for any index using statistics on the leader’s history that have concentration properties
similar to Assumption 6.2 (e.g. possibly quantiles, variance, etc.) with slight adaptations of
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the proof. For instance, in Algorithm 5, the index of challenger k against leader ℓ at round r+ 1
becomes µ̃(Ykr ; µ̂ℓr). We recall the notations Y⋆(n) = (Y ⋆

i )ni=1 ∼ ν
⊗n
k⋆ for the list of the first n ∈ N

random rewards of the optimal arm k∗ and µ̂k⋆(n) = 1
n

∑n
i=1 Y

⋆
i for their empirical mean.

Theorem 6.3 (Generic regret decomposition of round-based randomised algorithms). Consider
a bandit measure ν = (νk)k∈[K]. Under Assumption 6.2, for any DS index µ̃ and ε ∈ [0,∆k), the
expected number of pulls of each suboptimal arm k ∈ [K] \ {k⋆} is upper bounded by

E
[
Nk
T

]
⩽ nk(T ) +BT,ε + Cν,ε , (6.9)

where nk(T ) = E
[
T−1∑
r=1

1k∈Ar+1,ℓr=k⋆

]
, Cν,ε is a constant dependent on the bandit measure ν and ε

but not T , and

BT,ε =
∑

j∈[K]\{k⋆}

⌈2 log(T )/Ik∗ (µj+ε)⌉∑
n=1

sup
µ∈[µj−ε,µj+ε]

EY⋆(n)∼ν⊗n
k⋆

 1µ̂k
⋆

(n)⩽µ

P
(
µ̃(Y⋆(n);µ) ⩾ µ

∣∣∣ Y⋆(n)

)
 .
(6.10)

The proof, which we defer to Appendix E.1, follows the general outline of Chan (2020), and
makes all the components of Cν,ε explicit. This term is related to the deviations of empirical
means for all arms and is typically bounded by a (problem-dependent) constant under light
tailed concentration (Assumption 6.2) so it does not depend on the index µ̃ but only on the
rate functions and the means of each arm. The other two terms reflect the exploration strategy:
nk(T ) is the expected number of pulls of arm k when the best arm is the leader — we interpret
it as the sample size required to statistically distinguish both arms at horizon T ; on the other
hand, BT,ε measures the capacity of the best arm to recover from first few low rewards.

Theorem 6.3 is formulated in a rather generic fashion and can be regarded as a counterpart
of Kveton et al. (2019b, Theorem 1). We will later analyse instances of Dirichlet sampling
where the first order term of the regret is driven entirely by nk(T ). We therefore introduce the
following condition to control the contribution of BT,ε to the regret.
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Assumption 6.4 (Sufficient exploration of optimal arm). For any ε > 0 and any sequence
(n⋆(T ))T∈N such that n⋆(T ) = O(log T ), we have

n⋆(T )∑
n=1

EY⋆(n)∼ν⊗n
k⋆

 1µ̂k
⋆

(n)⩽µ
⋆−ε

P
(
µ̃(Y⋆(n);µ⋆ − ε) ⩾ µ⋆ − ε | Y⋆(n)

)
 = o(log T ) . (6.11)

The left-hand side represents the expected cost in terms of regret of underestimating the op-
timal arm; intuitively, it measures the expected number of losing rounds before finally winning
one when starting with low rewards. This is a classic decomposition in bandit analysis, and a
counterpart of Assumption 6.4 holds for most index policies with provable regret guarantees,
e.g. Theorem 1 in Kveton et al. (2019b, Theorem 1) or Agrawal and Goyal (2012, Lemma 4)).
Notably, this regret decomposition depends only on the distribution of the best arm and its
randomised Dirichlet sampling index when it is a challenger.

Corollary 6.5 (Conditions for controlled expected pseudo regret). Under Assumption 6.2 and
6.4, the T -round cumulative expected pseudo regret of Algorithm 5 satisfies

E[RT ] ⩽
∑

k∈[K]\{k⋆}
∆knk(T ) + o(log T ) . (6.12)

Proof of Corollary 6.5. The bound E[Nk(T )] ⩽ nk(T ) + o(log T ) for all k ∈ [K] \ {k⋆} follows
directly from Theorem 6.3 and Assumption 6.4, and we conclude by invoking the standard
regret decomposition of equation 6.5. ■

Up to this point this result is rather abstract, but this standardised analysis allows us to
instantiate the Dirichlet sampling algorithm on different classes of problems and calibrate the
DS index in order to ensure Assumption 6.4 holds and to make nk(T ) explicit. In particular if
nk(T ) = O(log T ), we recover the classical logarithmic regret. In the next section, we present
technical results to justify calibrations of the DS index for several kind of families.
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Technical tool: boundary crossing probability. We highlight key properties of sums of ran-
dom variables reweighted by Dirichlet weight vectors that help us suggest a sound tuning of
the exploration bonus B used in Definition 6.1 for different kind of families.

Definition 6.6 (Boundary crossing probability (BCP)). We define the boundary crossing prob-
ability (BCP) as

[BCP ] : R(N) × R −→ [0, 1]

(Y;µ) 7−→ PW∼Dn+1

(
n+1∑
i=1

Wiyi ⩾ µ

)
, (6.13)

whereY = (yi)n+1 andDn+1 is the Dirichlet distribution with parameter (1, . . . , 1) of size n+1 ∈ N⋆,
i.e. the uniform distribution on the n-simplex Dn.

We emphasise that here that the sequence Y is considered fixed, and the only source of ran-
domness comes from the Dirichlet weights W . For this reason, we denote the elements of
Y by the lower case letters (yi)n+1

i=1 , as opposed to the upper case letters used for random re-
wards. In the context of DS algorithms, at round r + 1, for challenger k and leader ℓ, the first
n = Nk(r) elements correspond to random rewards (Y k

i )ni=1 from a challenger arm k, and the
last one corresponds to the added exploration bonus B(Ykr ,Yℓr), so that [BCP ] correspond to
the conditional probability

[BCP ]
(
Ykr ⊔

(
B(Ykr ,Yℓr)

)
;µ
)

= P
(
µ̃W (Ykr ,Yℓr) ⩾ µ

∣∣∣ Ykr ,Yℓr) . (6.14)

This quantity is of much interest as both the growth of nk(T ) and Assumption 6.4 can
be derived from respectively upper and lower bounds on [BCP ]. When all observations are
pairwise distinct, a closed-form expression has been derived1 in Cho and Cho (2001) using
geometric arguments on the intersection of the n-simplex by hyperplanes:

[BCP ] (Yn+1;µ) =
n+1∑
i=1

(yi − µ)n+
n+1∏
j=1
j ̸=i

yi − yj
. (6.15)

Unfortunately, bounding this expression is hardly feasible since the denominators are of al-
ternating signs. Instead, Riou and Honda (2020, Lemma 14 and 15) provide lower and upper

1To the best of our knowledge, such a closed formula only exist when the randomDirichlet weights follow Dir(α)
with αi ⩽ 1 for all i = 1, . . . , n + 1. Here, we only use the case αi = 1 for all i = 1, . . . , n + 1.
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bounds on the probability directly, resorting to classical properties of the Dirichlet distribution
that we recall in Appendix E.2, and complete with additional technical results.

Building on these previous results, we propose two novel bounds on [BCP ]. The first is a
direct adaptation of Riou and Honda (2020, Lemma 15), using the empirical maximum instead
of a the known support upper bound.

Lemma 6.7 (Upper bound on [BCP ]). Let n ∈ N and Yn+1 = (yi)n+1
i=1 ∈ Rn+1. For any

µ < maxYn+1, we have

[BCP ] (Yn+1;µ) ⩽ exp
(
− max
λ∈[0,1)

n+1∑
i=1

log
(

1− λ yi − µ
maxYn+1 − µ

))
⩽ exp

(
−(n+ 1)KmaxYn+1

inf (ν̂Yn+1 ;µ)
)
, (6.16)

where we recall that ν̂Yn+1 denotes the empirical measure of the finite sequence Yn+1.

Proof of Lemma 6.7. We follow a similar proof to that of Riou and Honda (2020, Lemma 15),
which consists in using the Chernoff method to upper bound [BCP ] and writing the uniform
Dirichlet weights with exponential variables. Indeed, for n ∈ N, W ∼ Dn+1 has the same
distribution as

(
Ri/

∑n+1
j=1 Rj

)n+1

i=1
, where R = (Rj)n+1

j=1 is an i.i.d. sample of exponential
random variables drawn from E(1). Then for any λ ∈ [0, 1), we have that

[BCP ](Yn+1;µ) = PR∼E(1)⊗(n+1)

n+1∑
i=1

Riyi ⩾ µ
n+1∑
j=1

Rj


= PR∼E(1)⊗(n+1)

(
n+1∑
i=1

Ri (yi − µ) ⩾ 0
)

= PR∼E(1)⊗(n+1)

(
n+1∑
i=1

Ri
yi − µ

maxYn+1 − µ
⩾ 0

)
(maxYn+1 − µ > 0)

= PR∼E(1)⊗(n+1)P
(

exp
(
λ
n+1∑
i=1

Ri
yi − µ

maxYn+1 − µ

)
⩾ 1

)

⩽
n+1∏
i=1

ERi∼E(1)

[
exp

(
λRi

yi − µ
maxYn+1 − µ

)]
, (6.17)
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where the last line comes from Markov’s inequality. Since λ ∈ [0, 1), each term is well-defined
and has an explicit formula (moment generating function of E(1)), hence

[BCP ](Yn+1;µ) ⩽
n+1∏
i=1

1
1− λ yi−µ

maxYn+1−µ

= exp
(
−
n+1∑
i=1

log
(

1− λ yi − µ
maxYn+1 − µ

))
. (6.18)

We obtain the first inequality of the lemma by choosing the maximum over all possible values
of λ, and the second inequality is direct when writing the dual problem associated with
KmaxYn+1

inf (ν̂Yn+1 ;µ) (e.g. Honda and Takemura (2010, 2015)). ■

If Yn+1 is bounded by B ∈ R, replacing maxYn+1 by B effectively makes the Kinf term
data-independent. This formulation allows us to consider sets Yn+1 generated as samples of
unbounded distributions. The second result introduces a lower bound on [BCP ] that precisely
depends on the growth rate of the maximum of Yn+1.

Lemma 6.8 (Lower bound on [BCP ]). Let n ∈ N and Yn+1 = (yi)n+1
i=1 ∈ Rn+1 such that

maxYn+1 is unique. For any µ < maxYn+1, we have

[BCP ] (Yn+1;µ) ⩾ exp
(
−n ∆̂+ (Yn+1;µ)

maxYn+1 − µ

)
, (6.19)

where we defined the empirical excess gap mapping as

∆̂+ : R(N) × N −→ R

(Y;µ) 7−→ 1
|Y|

∑
y∈Y

y<maxY

(µ− y)+ . (6.20)

Proof of Lemma 6.8. The idea here is to truncate all the observations that are larger than the
threshold µ except the maximum of maxYn+1, in order to make all but a single term vanish
in the closed-form expression of [BCP ] (equation 6.15). The difficulty however is that this
formula only holds if all elements of Yn+1 are pairwise distinct, which is impossible if at
least two of them are truncated to µ.2 To circumvent this, let us assume (without loss of

2This technical detail was overlooked in the original paper, we provide the full derivation here.
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generality) that maxYn+1 = yn+1 and define ỹqi = yi ∧ µ − εqi for i ∈ {1, . . . , n}, q ⩾ 1 and
εqi = 1

iq minj ̸=i|yi∧µ−yj ∧µ|. These new variables are pairwise distinct, as otherwise if we had
ỹqi = ỹqj for some i ̸= j, then |yi∧µ− yj ∧µ| = |εqi − εqi | < 1

q |
1
i −

1
j |minj ̸=i|yi∧µ− yj ∧µ|, which

would be contradictory since 1
q |

1
i −

1
j | < 1. Going back to [BCP ], because of the truncation,

the boundary crossing event with Ỹn+1 = (ỹqi )ni=1 ⊔ (yn+1) is less likely than with Yn+1, and
thus the following inequalities hold:

[BCP ] (Yn+1;µ) ⩾ [BCP ]
(
Ỹn+1;µ

)
= (yn+1 − µ)n

n∏
i=1

yn+1 − ỹqi

= exp
(
−

n∑
i=1

log
(
yn+1 − ỹqi
yn+1 − µ

))

= exp
(
−

n∑
i=1

log
(

1 + µ− ỹqi
yn+1 − µ

))

⩾ exp
(
−

n∑
i=1

µ− ỹqi
yn+1 − µ

)
(∀x ∈ R⋆+, log(1 + x) < x)

= exp
(
−

n∑
i=1

(µ− ỹqi )+
yn+1 − µ

)
. (6.21)

Letting q → +∞ results in ỹqi → yi for all i ∈ {1, . . . , n}, which yields the result. ■

In particular, we see in this expression that the growth rate of the maximum sample may
hinder the exponentially decaying lower bound on [BCP ]. As it turns out, this exponential
decay is a crucial condition for the optimality of DS algorithms, as it allows to upper bound the
sum in Assumption 6.4, where [BCP ] appears in the denominator.

Remark 6.9 .When Yn+1 is a realisation of a sequence of i.i.d. random variables, the growth rate of
maxYn+1 is directly related to the tail behaviour of their distribution. If it is upper bounded by B,
maxYn+1 is upper bounded independently of n, and we thus recover the lower bound of Riou and
Honda (2020). If it is light tailed, we recall from Boucheron et al. (2013) that maxYn+1 = O (logn)
with high probability. By contrast, heavy tailed distributions such as the Cauchy distribution, which
are outside the scope of this chapter, exhibit a growth rate Ω(n), altogether preventing the above lower
bound to decay to zero.
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Asymptotic behaviour of the empirical Kinf . The analysis of [BCP ], in particular the upper
bound of Lemma 6.7, makes appear by the empirical extremal Kullback-Leibler operator
KmaxYn+1

inf , which we recall is calculated over distributions upper bounded by maxYn+1 for a
given set of observations. However, the regret lower bound of Burnetas and Katehakis (1996)
involves KF

inf , calculated over distributions belonging to a base family F ⊂ L1(R). The analysis
of NPTS (Riou andHonda, 2020) considers only distributions with bounded support, for which
both operators can be made arbitrarily close in the relevant Lévy topology. We show that this
is essentially the only favourable setting where such manipulations are possible.

Lemma 6.10 (Asymptotic behaviour ofKmaxYn+1
inf ). Let (Yn)n∈N ∈ RN an i.i.d. sequence of random

variables drawn from ν ∈ L1(R) and Yn+1 = (Yi)n+1
i=1 for all n ∈ N. Then for all µ ∈ R,

KmaxYn+1
inf

(
ν̂Yn+1 ;µ

)
= Oa.s.

( 1
maxYn+1

)
. (6.22)

Proof of Lemma 6.10. Combining Lemmas 6.7 and 6.8, we have

exp
(
−n ∆̂+ (Yn+1;µ)

maxYn+1 − µ

)
⩽ [BCP ] (Yn+1;µ) ⩽ exp

(
−(n+ 1)KmaxYn+1

inf (ν̂Yn+1 ;µ)
)
. (6.23)

Taking the log on both sides yields

KmaxYn+1
inf (ν̂Yn+1 ;µ) ⩽ n

n+ 1
∆̂+ (Yn+1;µ)
maxYn+1 − µ

. (6.24)

To conclude, note that the empirical excess gap converges almost surely when n→ +∞ since
the measure ν is integrable (law of large numbers). ■

In particular, if the distribution ν is unbounded, then maxYn+1 → +∞ (the sequence
(maxYn+1)n∈N is almost surely nondecreasing and cannot converge, otherwise ν would be
bounded), and thus¸ KmaxYn+1

inf
(
ν̂Yn+1 ;µ

)
→ 0 almost surely. Therefore, the Kinf operator

cannot be continuous with respect to the family over which it is defined in the sense that the
following assertions are mutually exclusive:
(i) F contains an unbounded distribution ν and KF

inf(ν;µ) > 0,

(ii) KmaxYn+1
inf

(
ν̂Yn+1 ;µ

)
−→ KF

inf(ν;µ).
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A direct consequence is that a direct generalisation of NPTS to unbounded distributions is
impossible while preserving logarithmic regret, forcing us to either let go of logarithmic
guarantees or alter the measure ν to recover the continuity between the empirical KmaxYn+1

inf
and KF

inf . We show examples of these approaches in the next section.

Empirical validation. Note that the above result does not give any information on the tight-
ness of the upper bound KmaxYn+1

inf (ν̂Yn+1 ;µ) = Oa.s.(1/maxYn+1). To investigate this, we con-
ducted a numerical experiment where (i) we calculated KF

inf for different choices of F among
classical SPEF (Gaussian with fixed variance, exponential and Bernoulli), using the explicit
formula for their one-dimensional KL divergence (see Chapter 1), and (ii) simulatedKmaxYn+1

inf
for various sample sizes n, using the dual formulation of the optimisation problem for upper
bounded families (equation (1.24) in Chapter 1). Precisely, we generated sequences (Y m

i )n+1
i=1

for m ∈ {1, . . . ,M} withM = 104, and then calculated KmaxYmn+1
inf (ν̂Ymn+1

;µ) for standard val-
ues of ν and µ, where Ymn+1 = (Y m

i )n+1
i=1 . We report in Figure 6.1 the densities fitted to theM

realisations of the empiricalKinf operator, as well as their mean 1/M
∑M
m=1K

maxYmn+1
inf (ν̂Ymn+1

;µ).
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(c) Bernoulli.

Figure 6.1 – Dotted line: KF
inf(ν;µ) with respect to a given SPEF. Dashed lines: empirical

Kmax Yn+1
inf (ν̂Yn+1 ;µ) for sample size n = 102, 103, 104, averaged over 104 independent replicates (fit-

ted densities are shown in the background). Top left: Gaussian with fixed variance, ν = N (2, 1), µ = 3.
Top right: exponential, E( 1

2 ), µ = 3. Bottom: Bernoulli, ν = B( 1
2 ), µ = 0.7.

For the unbounded SPEF (Figures 6.1a and 6.1b), we observed that the empirical Kinf

decreases away from KF
inf(ν;µ) with increasing sample sizes n ∈ N, which is consistent with

the bound O(1/maxYn+1). By contrast, the Bernoulli distribution (Figure 6.1c) showed a
concentration pattern around KF

inf(ν;µ).
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Furthermore, we empirically validated the relation between E
[
KmaxYn+1

inf

]
(estimated by

1/M
∑M
m=1K

maxYmn+1
inf (ν̂Ymn+1

;µ)) and the running maximum maxYn+1 as a function of n ∈ N.
Indeed, we have maxYn+1 = Θ(logn) for exponential distributions and maxYn+1 = Θ(

√
logn)

for Gaussian distributions, and therefore we expect logKmaxYn+1
inf (ν̂Yn+1 ;µ) ≈ − log logn and

logKmaxYn+1
inf (ν̂Yn+1 ;µ) ≈ −1

2 log logn respectively. Figure 6.2 shows the outcome of a linear
model (with intercept) for the regression of logKmaxYn+1

inf (ν̂Yn+1 ;µ) on log logn, which confirms
the linear trend (R2 = 1.00 for both Gaussian and exponential SPEF) and approximately recov-
ers the expected slopes (although −1/2 and −1 lie both outside the estimated 95% confidence
intervals for the slopes of the Gauss and exponential SPEF respectively, indicating that there
may be an additional factor at play). Again, the case of the Bernoulli SPEF shows no significant
dependency on n as maxYn+1 → 1.

2.0 2.2 2.4 2.6

3.0

2.5

2.0

1.5

1.0

slope: -0.88 (95% CI -0.89; -0.87), R 2= 1.00

slope: -0.58 (95% CI -0.59; -0.58), R2 = 1.00

slope: -0.00 (95% CI -0.01; 0.00), R2 = 0.06

Exp
Gauss
Bernoulli

Figure 6.2 – Linear fit (dashed) of logKmax Yn+1
inf (ν̂Yn+1 ;µ) (solid) on log logn and resulting slopes.

Dotted lines correspond to logKF
inf(ν;µ) for the corresponding SPEF F . X-axis: log logn. Y-axis: logKinf .

Canonical exploration bonus. The lower bounds suggest a natural tuning of the bonus.
Indeed, inspecting the exponential term in the lower bound of Lemma 6.8 reveals that if
maxYn+1−µ is of the order of the empirical excess gap, then the exponential decay is preserved.
We formalise this intuition in Corollary 6.12 below.
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Definition 6.11 (Canonical exploration bonus). We define the following bonus mapping:

B : R(N) × R× R⋆+ −→ R

(Y;µ, ρ) 7−→ µ+ ρ

|Y|
∑
y∈Y

(µ− y)+ . (6.25)

We interpret ρ as the leverage of the empirical excess gap. It is a free parameter that balances
the importance of the exploration bonus and the decay of the [BCP ] lower bound.

Corollary 6.12 (Lower bound on [BCP ] with canonical bonus). Let n ∈ N, Yn ∈ Rn and
ρn > 0. Define Yn+1 = max (B(Yn;µ, ρn),maxYn), and Yn+1 = Yn ⊔ (Yn+1). For all µ ∈ N, we
have

[BCP ] (Yn+1;µ) ⩾ exp
(
− n

ρn

)
. (6.26)

Proof of Corollary 6.12. By construction of B, we have, for n ∈ N and Yn = (yi)ni=1,

maxYn+1 ⩾ µ+ ρn
n

n∑
i=1

(µ− yi)+ = µ+ ρn∆̂+
n (Yn+1;µ) , (6.27)

and thus in particular,

exp
(
− ∆̂+

n (Yn+1;µ)
maxYn+1 − µ

)
⩾ e

− 1
ρn . (6.28)

We conclude by plugging this inequality in the expression of Lemma 6.8. ■
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Remark 6.13 .In practice for DS algorithms, at round r + 1 and for challenger k and leader ℓ, we set
the (Nk

r + 1)-th sample to B
(
Ykr ; µ̂ℓr, ρNk

r

)
, without the additional maximum over Ykr . As we will see

for the RDS algorithm, we can choose a sequence (ρn)n∈N that goes to +∞ at an appropriate rate to
ensure that, with high probability, the exploration bonus is indeed larger than all previous rewards Ykr .
For other algorithms, choosing a constant sequence ρn = ρ for all n ∈ N will be sufficient.

The analysis of DS algorithms then comes down to tuning the leverage sequence (ρn)n∈N,
assuming weak distributional hypotheses for a given class of distribution. In the next section
we discuss three examples of such DS algorithms and their theoretical regret guarantees.

6.3 Theoretical guarantees of three DS instances

Building on the results from previous the section, we now instantiate the DS algorithms for
three bandits problems. We first prove that optimal guarantees can be derived for DS with
bounded distributions under a nonstandard definition of the problem, motivated by practical
considerations. Then, we consider a natural extension to unbounded distributions using a
simple truncationmechanism, ensuring logarithmic regret under assumptions on some quantile
of the distributions. Finally, we consider a simple DS algorithm securing slightly larger than
logarithmic regret for the entire family of light tailed distributions. In the rest of this chapter, we
use the DS index of Definition 6.1 (except for QDS, where we slightly amend this definition),
namely, at round r + 1 with challenger k and leader ℓ, conditional on Ykr = (Y k

i )N
k
r

i=1 and Yℓr,

µ̃W
(
Ykr ; µ̂ℓr

)
=

Nk
r∑

i=1
WiY

k
i +WNk

r +1B
(
Ykr ; µ̂ℓr, ρkNk

r

)
, (6.29)

whereW ∼ DNk
r +1 and B is the canonical bonus of Definition 6.11 with leverages (ρkn)n∈N, i.e.

B
(
Ykr ; µ̂ℓr, ρkNk

r

)
= µ̂ℓr +

ρk
Nk
r

Nk
r

Nk
r∑

i=1

(
µ̂ℓr − Y k

i

)
+
. (6.30)

We detail below each DS instance and defer the proofs of the three regret theorems in Ap-
pendix E.3. In all cases, the proof consists in showing that Assumptions 6.2 and 6.4 hold for
each proposed algorithms in their respective settings and deriving an expression for nk(T ).
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Optimality for bounded distributions. We start by defining subsets of interests of the set of
bounded distributions over R and instantiate the canonical bonus function B of Definition 6.11
to these families.

Definition 6.14 (Bounded Dirichlet sampling).Let B,B ∈ R such that B < B, p ∈ [0, 1] and
γ ∈ [0, B−B]. We recall that F[B,B] is the set of bounded distributions supported in [B,B] and define
the subset of such distributions with at least p mass in a neighbourhood of B of size γ:

Fγ,p[B,B] =
{
ν ∈ F[B,B], Pν

(
[B − γ,B]

)
⩾ p

}
. (6.31)

Then we define the bounded Dirichlet sampling (BDS) bonus associated with a distribution ν as

BBDS : R(N) × R× R+ −→ R

(Y;µ, ρ) 7−→


B if ν ∈ F[B,B] with known B ,
(maxY + γ) ∨ (B(Y;µ, ρ)) if ν ∈ Fγ,p[B,B] with unknown B

but known p, γ .
(6.32)

Plugging the BDS index for F[B,B] in Algorithm 5 makes it essentially equivalent to NPTS
(Riou and Honda, 2020) (up to the round-based structure, which is not a fundamental change
since this particular index is constant for all pairs of challenger and leader). Crucially, the
support upper bound B (but not B) appears in the definition of the index, and therefore must
be known to the agent beforehand. The BDS index for Fγ,p[B,B] covers a novel setting where
neither bounds B and B are known precisely but B is detectable, in the sense that observing
samples in its neighbourhood occurs with sufficient probability. Circling back to the intuitive
notion of "mass leakage at infinity" discussed in the introduction, this condition excludes
for instance distributions of the form (1 − ε)ν + εδyε with ν ∈ F[B,B−γ], ε ∈ [0, 1] arbitrarily
small and yε ∈ R arbitrarily large. We provide in Section 6.4 examples of applications of this
detectable setting.

Consider aK-armed bandit measure ν = (νk)k∈[K], and (Bk)k∈[K] ∈ RK and (Bk)k∈[K] ∈
RK . We refer to the bandit model where the rewards of arm k ∈ [K] are bounded between (a
possibly unknown) Bk and a known Bk as

Bandit model (B1): ν ∈
⊗
k∈[K]

F[Bk,Bk] . (6.33)
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Additionally, for (pk)k∈[K] ∈ [0, 1]K and (γk)k∈[K] ∈
∏

k∈[K]
[0, Bk − Bk], we refer to the bandit

model where the bounds (Bk)k∈[K] ∈ RK are unknown but detectable as

Bandit model (B2): ν ∈
⊗
k∈[K]

Fγk,pk[Bk,Bk] . (6.34)

Theorem 6.15 (Optimality of BDS). Algorithm 5 with BDS index satisfies:
(i) in bandit model (B1),

E[Nk
T ] ⩽ log T

KBkinf (νk;µ⋆)
+O(1) ; (6.35)

(ii) in bandit model (B2), for any suboptimal arm k ∈ [K] \ {k⋆} and ρk ⩾ −1/ log(1− pk),

E[Nk
T ] ⩽ log T

KBk
inf (νk;µ⋆)

+O(1) , (6.36)

whereBk =
(
Bk + γk

)
∨
(
µ⋆ + ρkEY∼νk [(µ⋆ − Y )+]

)
.

Unbounded distributions: truncating the upper tail. Let consider the family F[B,+∞) for
some unknown B ∈ R. A natural way to extend algorithms designed for a distribution in
F[B,B] (where B ∈ R) is to truncate its right tail and summarise it by a single Dirac mass.
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Definition 6.16 (Quantile Dirichlet sampling). Let α ∈ (0, 1), B ∈ R and q1−α the quantile
operator at level 1− α. We define the right tail conditional expectation

Cα : F[B,+∞) −→ R

ν 7−→ EY∼ν [Y | Y > q1−α(ν)] , (6.37)

and the truncation operator

Tα : F[B,+∞) −→ F[B,+∞)

ν 7−→ ν
∣∣
[B,q1−α(ν)] + αδCα(ν) . (6.38)

Then we define the quantile Dirichlet sampling (QDS) bonus as

BQDS : R(N) × R× R+ −→ R

(Y;µ, ρ) 7−→ B(Supp Tα(ν̂Y);µ, ρ) . (6.39)

In other words, for ν ∈ F[B,+∞), the truncation operator Tα (i) does not change ν below its
1 − α-quantile, and (ii) "summarises" its α-right tail by concentrating it into a single point
Cα(ν), chosen so that the truncation preserves the total expectation (when ν is atomless, Cα(ν)
coincides with the conditional value at risk (CVaR) — although, contrary to the definition in
Appendix D.1, CVaR is defined here on the right tail rather than the left tail).

Consider a K-armed bandit measure ν = (νk)k∈[K], (Bk)k∈[K] ∈ RK , (αk)k∈[K] ∈ (0, 1)K

and (ρk)k∈[K] ∈ RK+ . We define the following setting to analyse the regret of the QDS instance:

Bandit model (Q): ν ∈
⊗
k∈[K]

FαkBk , (6.40)

where

FαkBk =
{
ν ∈ F[Bk,+∞), ∀µ > EY∼νk [Y ], K

F[Bk,+∞)
inf (νk;µ) ⩾ KMk

q

inf (Tαk(νk);µ)
}
, (6.41)

Mk
q = (q1−αk(νk)) ∨

(
µ⋆ + ρkEY∼νk [(µ⋆ − Y )+]

)
. (6.42)

Although quite technical, this condition essentially states that the bandit problem with arm
k ∈ [K] taken on the complete family of distributions with support bounded from below by
Bk is no harder than an alternative bandit problem with truncated distributions and an upper
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bounded family, with an upper bound depending on the 1− αk quantile and the leverage ρk of
the exploration bonus.

The meaning of the QDS index is the following. At round r+1 with challenger k and leader
ℓ, let Y k

(1) ⩽ . . . ⩽ Y k
(Nk

r ) be the order statistics of the reward history Ykr = (Y k
i )N

k
r

i=1, as well as
Nk,αk
r = ⌈Nk

r αk⌉/Nk
r . Truncating the top αk-fraction of the samples in Ykr and averaging them

results in Cαk(ν̂kr ) = 1
Nk
r −Nk,αk

r +1

∑Nk
r

i=Nk,αk
r

Y k
(i), where we recall that ν̂kr = ν̂Ykr is the empirical

measure of Ykr . We then slightly amend the definition of the DS index to account for the
occurrences of the truncated rewards, i.e.:

µ̃QDS
W

(
Ykr ; µ̂ℓr

)
=

N
k,αk
r −1∑
i=1

WiY
k

(i) +W
N
k,αk
r

Cαk(ν̂kr ) +W
N
k,αk
r +1B

QDS
(
Ykr ; µ̂ℓr, ρk

)
, (6.43)

whereW ∼ Dir
(
(1, . . . , 1, Nk,αk

r , 1)
)
. Thanks to the aggregation properties of Dirichlet distri-

butions (see Appendix E.2), this is equivalent to using uniform Dirichlet weights DNk
r +1 on

the sequence (Y k
(1), . . . , Y

k

(Nk,αk
r )︸ ︷︷ ︸

N
k,αk
r times

, Cαk(ν̂kr ), . . . , Cαk(ν̂kr )︸ ︷︷ ︸
Nk
r −Nk,αk

r +1 times

).

Theorem 6.17 (Logarithmic expected pseudo regret of QDS). For any ε > 0 small enough,
Algorithm 5 with QDS index satisfies, in bandit model (Q), for any suboptimal arm k ∈ [K] \ {k⋆},
α′ < αk and ρk ⩾ (1 + α′)/α′2,

E[Nk
T ] ⩽ log T

KMC
k

inf (Tαk(νk), µ⋆)− ε
+O(1) , (6.44)

with Mk
C = Cαk(νk) ∨

(
µ⋆ + ρkEY∼νk [(µ⋆ − Y )+]

)
.

This result is of particular interest as it captures the continuum between bounded and light
tailed distributions. In our opinion, it sheds new light on the interpretation of impossibility
results of e.g. Ashutosh et al. (2021): logarithmic regret can be achieved without fully specifying
the tail with precise parameters, as a simple quantile condition is sufficient to avoid pathological
distributions. The family FαB for some α ∈ (0, 1) and B ∈ R trades off the mathematical
convenience of parametric model specification for the ability to capture perhaps more realistic
distributions. We further discuss this condition in Appendix E.4 and show that virtually any
lower bounded bandit model can satisfy the quantile condition of bandit model (Q), provided
the leverages (ρk)k∈[K] are large enough (although the exact bound on the leverage is model-
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dependent and thus of limited practical intersest). We also detail examples of classical families
for which this quantile condition holds (exponential, Gaussian).

Remark 6.18 . The restriction to the semibounded case B > −∞ is due to our proof technique,
based on a discretisation of the support of the truncated distribution (see Appendix E.3). Note that
the actual value of B does not need to be known at the algorithm runtime, which is intuitive since
K

F(−∞,B]
inf = K

F[B,B]
inf for all B,B ∈ R (Honda and Takemura, 2015, Theorem 2). Different theoretical

tools, such as quantisation of probability measures (Graf and Luschgy, 2007; Montes, 2020) may unlock
the proof of a logarithmic regret for QDS in the doubly unbounded case.

Onemaywonder whether the quantile condition and the truncation technique are necessary
to achieve theoretical regret guarantees. Our last algorithm investigates this issue.

Robust regret for light tailed distributions The third and final instance of DS algorithms
requires little setup as it effectively ensures sublinear regret under virtually no assumption other
than reward distributions being in the light tailed family Fℓ, which we recall from Section 1.3
in Chapter 1 only imposes the existence of the moment generating function around zero.

Consider aK-armed bandit measure ν = (νk)k∈[K]. We define the following bandit model:

Bandit model (R): ν ∈ F⊗K
ℓ . (6.45)

We call robust Dirichlet sampling (RDS) bonus the canonical bonus of Definition 6.11 coupled
with nondecreasing sequences (ρkn)n∈N ∈ RN

+ for each k ∈ [K], as in equation 6.30. For an
appropriate choice of such sequences, the resulting DS algorithm has sublinear regret for any
light tailed bandit model, which is why we call it robust.
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Theorem 6.19 (Expected pseudo regret bound for RDS). Algorithm 5 with RDS index satisfies,
in bandit model (R), for any suboptimal arm k ∈ [K] \ {k⋆}, T large enough, η ∈ (0, 1] and ε > 0,

E[Nk
T ] ⩽ nη,εk (T ) +O(1) , (6.46)

where nη,εk (T ) is a solution to the fixed point equation

nη,εk (T ) = log T
η(∆k − ε)

(Mk
nη,ε
k

(T ) − µ
⋆) , (6.47)

and, for all n ∈ N,

Mk
n = ρkn ∨ F−1

k

(
exp

(
− 1
n2(logn)2

))
, (6.48)

where F−1
k is the (pseudo)inverse of the c.d.f. of νk. In particular, if ρkn = O(logn) then

E[Nk
T ] = O(log(T ) log log(T )) . (6.49)

The termMk,n derives from a high probability upper bound on the maximum of n ∈ N rewards
from arm k ∈ [K], which we discuss further in Appendix E.3. For light tailed distributions,
it holds that Mk

n = O(logn) (using Jensen’s inequality as in the proof of Boucheron et al.
(2013, Theorem 2.5)). Hence, choosing ρkn = O(logn) we can further simplify the regret
upper bound to O(log(T ) log log(T )). Of note, this slightly larger than logarithmic rate is a
direct consequence of the lower bound on [BCP ] stated in Lemma 6.8. In our opinion this is
a small cost compared to the adaptive power of RDS. We recommend setting the sequence
of leverages to ρkn = ρn =

√
log(1 + n) (identical for all arms), which corresponds (up to a

constant multiplicative factor) to the growth rate of the maximum of sub-Gaussian samples
and is empirically validated (see Section 6.4). We emphasise that in this case, RDS eschews
any hyperparameter tuning, a desirable feature for the practitioner with little information on
the problem at hand. Furthermore, in the next section we show that this algorithm performs
very well in practice despite its nonlogarithmic asymptotic guarantees.
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6.4 Numerical experiments and application to a crop farming bandit

Wepresent in this section various experimental results for theDS algorithms. First, we introduce
a multiarmed bandit inspired by a decision-making problem in agriculture. In particular, we
show that each of the three settings we introduced, namely bounded with unknown but
detectable upper bound (BDS), unbounded with a quantile condition (QDS) and robust
(RDS), are eligible assumptions for simulated maize grain yields, providing new modelling
tools for the practitioner. Going further, we detail another setting for which QDS and RDS
apply but that is outside the scope of SPEF algorithms: the family of Gaussian mixtures, which
can be of practical relevance as these distributions are used for nonparametric estimation
of arbitrary probability densities via kernel density estimation. We also test the sensitivity of
the DS algorithms to their exploration bonus. For BDS, we consider a toy bandit problem
with uniform arms and provide heuristics to tune the hyperparameter ρ that complete the
theoretical recommendations. For RDS, we follow the experimental setting of the robust UCB
for light-tailed distributions presented in Ashutosh et al. (2021) and show the superiority of
the Dirichlet ampling approach for different leverage sequences (ρn)n∈N.

DSSAT bandit

We consider a practical decision-making problem using the DSSAT3 simulator (Hoogenboom
et al., 2019). Harnessing more than 30 years of expert knowledge, this simulator is calibrated
on historical field data (soil measurements, genetics, planting date, etc.) and generates realistic
crop yields. Such simulations are used to explore crop management policies in silico before
implementing them in the real world, where their actual effect may take months or years to
manifest themselves. More specifically, we model the problem of selecting a planting date for
maize grains among K = 7 possible options, all else being equal, as a seven-armed bandit
with reward distributions⊗k∈[K] νk corresponding to crop yields. The resulting distributions
incorporate historical variability and exogenous randomness coming from a stochastic weather
model; we illustrate their histograms in Figure 6.3.

3Decision Support System for Agrotechnology Transfer is an open-source projectmaintained by theDSSATFoundation,
see https://dssat.net/.
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0 3179 8281 0 3317 8656 0 3504 7922

Figure 6.3 – Distribution of simulated maize dry grain yield (kg/ha) for seven different planting dates,
computed on 106 samples. Reported on the x-axis are the distribution minimum, mean and maximum
values. The optimal arm is the third one (mean 3630 kg/ha).

Modelling A natural choice for the learner would be to use algorithms adapted for bounded
distributions with known support. Indeed, one could argue that crop yields are fundamentally
bounded by some large value, called the yield potential, that can be provided with some expert
knowledge. However, this approach is limited when the upper bound is not known accurately
(few data, new environment, etc.), as overestimating it has a direct impact on the theoretical
regret guarantees (cf. Lemma 6.10). Moreover, yield distributions are typically right skewed,
multimodal and exhibit a peak at zero corresponding to years of zero harvest, hence they hardly
fit a convenient parametric model (e.g. SPEF) or a stringent tail control (e.g. sub-Gaussian).

We believe that the novel Dirichlet sampling algorithmswe introduced in Section 6.3 provide
promising alternative modelling choices for this problem. In the DSSAT setting in particular,
the three exploration bonuses detailed in Theorems 6.15, 6.17 and 6.19 encapsulate relevant
assumptions: BDS keeps the bounded support hypothesis but introduces a possible uncertainty
on the upperbound, QDS posits that the conditional value at risk is a meaningful summary of
tail statistics, and RDS capture realistic distributions under weak, light tailed assumptions.

Benchmark algorithms. We present the benchmark algorithms used to compare against
the DS algorithms on the DSSAT bandit problem, along with their necessary assumptions
(extracted from Table 2.1).

Assuming yield distributions are bounded, one can use classical algorithms such as UCB1
(Auer et al., 2002) or Thompson samplingwithBeta prior using the binarisation trick introduced
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in Agrawal and Goyal (2012). These algorithms enjoy logarithmic regret without the optimal
Kinf constant of Burnetas and Katehakis (1996) for nonparametric models.

Other algorithms for bounded distributions include empirical IMED (Honda and Takemura,
2015) and NPTS (Riou and Honda, 2020). The former is based on the calculation ofKinf indices
directly inspired by the Burnetas-Katehakis lower bound. We distinguish IMED, which relies
on a SPEF assumption to explicitly compute the Kinf and therefore falls short of the scope of
DSSAT, from empirical IMED, which solves the (dual) convex optimisation problem defined
by the Kinf of the empirical distribution of each arm and requires boundedness.

As discussed above, these algorithms require the explicit knowledge of upper bounds
(Bk)k∈[K] such that Supp νk ⊂ [0, Bk] for all k ∈ [K]. To represent the fact that tight bounds
are sometimes unknown to the practitioner (uncertain environment, possibility of events
unobserved so far, etc.), we run two variants of the above algorithms: (i) with a rather tight
bound of Bk = 104 kg/ha for all arms, with closely matches the maximum yields over all arms
on simulated data and thus represent a strong prior information, and (ii) with the same bound
inflated by 50%, i.e. Bk = 1.5× 104 kg/ha, which we deem a conservative estimate.

Finally, RB-SDA (Baudry et al., 2020) is a recent subsampling algorithm using a similar
round-based structure as our DS algorithms. Its optimality is only established under tail
conditions satisfied by some SPEF; in particular, it enjoys none of the theoretical guarantees of
the previous algorithms and is shown for empirical comparison only. Note that although it
has been analysed under strong parametric assumptions, the algorithm itself is nonparametric,
and in particular is agnostic to the choice of the upper bound.

Tuning For BDS we chose the parameters ρ = 4, γ = 3500, corresponding to p ≈ 20% in the
hypothesis of Theorem 6.15, which is conservative in our example. For QDS, we set ρ = 4 to
be able to compare with BDS and a quantile 1 − α with α = 5%. Finally for RDS, we chose
ρn =

√
log (1 + n), which fits the theoretical framework of Theorem 6.19 and ensures that

regret is bounded by O (log(T ) log log(T )).

Results We report statistics of the cumulative regret of the DS algorithms and the benchmarks
in Figure 6.4 and Table 6.1. As expected, UCB1 and binarised TS perform poorly on the DSSAT
problem, hinting that this particular bandit instance is not easy and requires more sophisticated
methods. RB-SDA achieves small regret but exhibits larger dispersion than other methods (95%
quantile of empirical total regret is 0.99× 106, standard deviation is 0.26× 106), meaning that
some runs in the Monte Carlo simulations suffer high regret; we interpret this as evidence that
RB-SDA operates outside its theoretical scope here and is therefore not backed by strong regret
guarantees. The DS algorithms achieve similar or even slightly better regret than empirical
IMED and NPTS using the prior knowledge of a tight upper bound. However the latter two
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suffer from using the conservative bound instead. Note that contrary to RB-SDA, empirical
IMED andNPTS remain theoretically sound in both the prior knowledge and conservative cases,
but the larger bound drives the exploration-exploitation balance towards more exploration
than is optimal. The overall winner is RDS, which outperformed all others on both mean and
median total regret. Finally, the tuning of the leverage ρ in the DS algorithms is done using
plausible heuristics (see Figure 6.6) and have not been optimised to suit this particular problem.
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(a) Optimal algorithms, tight upper bound.
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(b) Optimal algorithms, conservative upper bound.
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(c) All algorithms, tight upper bound.

0 2500 5000 7500 10000
Time

0.0

0.8

1.6

1e6 Cumulative regret
UCB1
Binarised TS
empirical IMED
NPTS
RB-SDA
BDS
RDS
QDS

(d) All algorithms, conservative upper bound.

Figure 6.4 – Comparison of DS algorithms against benchmarks on a seven-armed DSSAT bandit, with
parameters ρ = 4 (BDS), ρ = 4, α = 5% (QDS) and ρn =

√
log(1 + n) (RDS). From left to right: tight

(104 kg/ha) or conservative (1.5× 104 kg/ha) reward upper bound. From top to bottom: theoretically
optimal benchmarks only (empirical IMED,NPTS andRB-SDA), or all benchmarks (UCB1, and binarised
Thompson sampling). Thick lines denote mean cumulative regret up to horizon T = 104 over 5000
independent replicates. Dotted lines denote to respectively 25th and 75th regret percentiles. Shaded
areas denote the 5th and 95th percentiles.
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Table 6.1 – Regret on DSSAT bandit at T = 104, over N = 5000 independent replicates. Scale = 106

kg/ha. SD: standard deviation. IQR: interquartile range.
Algorithm 5% quantile Mean ± SD Median ± IQR 95% quantile
UCB1 1.56 1.74± 0.11 1.74± 0.14 1.92

UCB1
(conservative) 2.00 2.13± 0.08 2.13± 0.11 2.26

Binarised TS 0.72 1.36± 0.46 1.29± 0.63 2.20

Binarised TS
(conservative) 0.94 1.70± 0.50 1.66± 0.69 2.57

Empirical IMED 0.23 0.38± 0.13 0.36± 0.13 0.58

Empirical IMED
(conservative) 0.29 0.42± 0.10 0.4± 0.12 0.60

NPTS 0.30 0.46± 0.14 0.43± 0.14 0.69

NPTS
(conservative) 0.39 0.55± 0.13 0.53± 0.18 0.77

RB-SDA 0.20 0.42± 0.26 0.35± 0.18 0.99

BDS 0.31 0.47± 0.13 0.44± 0.14 0.68

QDS 0.25 0.41± 0.14 0.38± 0.14 0.64

RDS 0.22 0.38± 0.16 0.35± 0.14 0.63
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Gaussian mixture

Many real world situations (loss profile of a portfolio of financial assets, crop yields, statistics
of heterogeneous populations, etc.) exhibit multimodal distributions. The Gaussian mixture
model is perhaps the simplest example of such distributions and is ubiquitous in many areas
of machine learning and engineering (speech recognition, clustering, etc.), in particular as a
nonparametricmodel for kernel density estimation. Still, to the best of our knowledge, it escapes
the scope of current optimal bandit methods as it is neither bounded nor SPEF. Thanks to the
different sets of assumptions in which they operate, both RDS and QDS are eligible algorithms
to tackle the problem of sequential decision-making in a Gaussian mixture environment, at the
cost of slightly larger than logarithmic regret and lower Kinf rate respectively.

We consider two arms distributed as independent mixture of Gaussian distributions:

ν1 = 1
2N (−0.3, 1) + 1

2N (1.3, 1) , (6.50)

ν2 = 1
10N (−1.5, 1) + 4

5N (0.6, 1) + 1
10N (2.5, 1) . (6.51)

Note that both mixtures have total variance equal to 1, but different means (µ1 = 0.5 vs.
µ2 = 0.58). Due to the lack of theoretically grounded benchmark, we run three SPEF algorithms
(kl-UCB, IMED and Thompson sampling) assuming the arms belong to the SPEF of Gaussian
distributions with fixed variance 1. We also run UCB1, calibrated for the family of 1-sub-
Gaussian distributions. This is an example of model misspecification.

We run RDS with ρn =
√

log(1+n), which matches the asymptotic growth rate of the
maximum of i.i.d. Gaussian samples, and QDS with α = 5%, ρ = 4; we recall that Appendix E.4
shows empirical evidence that the quantile condition required by QDS holds for a large variety
of α and ρ in the case of Gaussian tails. Note that the use of QDS in this context is technically out
of scope of Theorem 6.17 since Gaussian mixtures are not lower bounded; we believe however
that this is an artifact of our proof technique that could lifted with a finer analysis.

Results are reported in Figure 6.5. Both RDS and QDS outperform other existing meth-
ods; in particular, among the misspecified SPEF algorithms, only IMED exhibit comparable
regret growth, albeit with higher overall regret. As this bandit problem is complicated (small
optimality gap, non SPEF distributions), all algorithms have a relatively large variance.
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Figure 6.5 – Left: Gaussian mixture arms. Right: comparison of QDS and RDS against benchmarks on
a two-armed bandits with these arms. UCB1, IMED, kl-UCB and TS are run assuming (sub-)Gaussian
arms with same variance as the mixtures. RDS: ρn =

√
log(1+n). QDS: ρ = 4, α = 5%. Thick lines

denote mean cumulative regret up to horizon T = 104 over 5000 independent replicates. Dotted lines
denote to respectively 25th and 75th regret percentiles. Shaded areas denote the 5th and 95th percentiles.

BDS parameters sensitivity.

We now study the impact of the leverage parameter ρ on the regret of BDS. Theorem 6.15
suggests to scale it as ρ = −1/ log(1− p), where p ∈ (0, 1) is one of the parameter of BDS. We
believe this bonus to be rather conservative when p is small and the distributions considered
exhibit little skewness; as an example, if a distribution is such that at most 25% of its mass is
located to the right of the optimal mean reward µ⋆, ρ ≈ 4 should be a suitable tuning.

To investigate this, we consider a toy bandit instance with two arms following uniform
distributions on [0, 1] and [0.2, 0.9] respectively (note that the upper bound is different for each
arm yet the distribution of mass near their respective bounds is the same, thus fitting the setting
(B2) of BDS). These distributions are shown in Figure 6.6, and in particular their means are 0.5
and 0.55 respectively. For γ = 0.1, we compute the expected regret of BDS obtained with the
theoretical tuning ρ = −1/ log(1− p) ≈ 9.5, and compare it with other choices of ρ. Figure 6.6
shows that only the most extreme tuning ρ = 50 exhibits significant, albeit still sublinear, regret.
Small deviations from the theoretical tuning yields similar regret, the heuristic ρ = 4 discussed
above being slightly better, which tends to confirm our belief that the analysis of Theorem 6.15
could be sharpened. Note that the exploration incentive given by ρ is necessary since smaller
values (e.g. ρ = 0.1) tends to accumulate more regret.
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Figure 6.6 – Left: uniform arms U([0, 1]) and U([0.2, 0.9]). Right: comparison of different instances of
leverage ρ for BDS on a two-armed bandits with these arms. Thick lines denote mean cumulative regret
up to horizon T = 104 over 5000 independent replicates. Dotted lines denote to respectively 25th and
75th regret percentiles. Shaded areas denote the 5th and 95th percentiles.

Robustness for light-tailed bandits: comparison with R-UCB-LT.

The study of statistically robust bandit algorithms is fairly recent, and as such is yet to have
well-established benchmarks. Ashutosh et al. (2021) introduce R-UCB-LT, an adaptation of the
standard sub-Gaussian UCB to enforce robustness with respect to light tailed distributions (in
the sense of Definition ??). We reproduce the setting of their experiment, namely two Gaussian
arms N (1, 1) and N (2, 3), and compare several variants of both R-UCB-LT and RDS against a
misspecified UCB1 (the misspecification takes the form of an overly optimistic 1-sub-Gaussian
assumption, while the second arm is only

√
3-sub-Gaussian). Both R-UCB-LT and RDS rely on

a slowly growing exploration bonus, denoted respectively by f and ρ; we run both algorithms
with f and ρ equal to log2, log and √log.

Results are reported in Figure 6.7. As expected, the misspecified UCB1 exhibits much faster
regret growth than the robust algorithms. However, RDS outperforms R-UCB-LT, the best
average regret being achieved by RDS with ρn =

√
log(1 + n) and ρn = log(1 + n) for n ∈ N.

Furthermore, the regret to RDS appears to be somewhat monotonic (slightly increasing) with
respect to the growth rate of (ρn)n∈N, and the best results are achieved by the one matching
the asymptotic growth rate of the maximum of i.i.d. Gaussian samples, as recommended by
Theorem 6.19. On the other hand, the best version of R-UCB-LT is obtained with f = log (for
which we do not find a theoretical intuition) and the performance gap is significant when other
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bonuses are considered. In light of these results, RDS seems less sensitive to its hyperparameter
than R-UCB-LT, which is another sort of robustness guarantee.

Of note, the exploration bonus of R-UCB-LT for an arm k ∈ [K] scales with the global
running time t ∈ N (or round r in our round-based structure) instead of the number of pulls
Nk
t as with RDS, which is perhaps a more natural, intrinsic way to tune exploration. We also

tested R-UCB-LT and RDS with powers of log log to account for the expected scalingNk
t ≈ log t

for suboptimal arm k ∈ [K] \ {k⋆}. This resulted in similarly poor performances for R-UCB-LT;
we do not report these curves to avoid cluttering.

−10 −5 0 5 10 15
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μ2=2.00

0 10000 20000 30000 40000 50000
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103

Cumulative regret

UCB1
R-UCB-LT log
R-UCB-LT log2

R-UCB-LT √ log
RDS log
RDS log2

RDS √ log

Figure 6.7 – Left: Gaussian arms N (1, 1) and N (2, 3). Right: Comparison of different instances of
leverage sequence (ρn)n∈N for RDS and exploration bonus f for R-UCB-LT (Ashutosh et al., 2021), in
logarithmic scale for readability. Thick lines denote mean cumulative regret up to horizon T = 5× 104

over 5000 independent replicates. Dotted lines denote to respectively 25th and 75th regret percentiles.
Shaded areas denote the 5th and 95th percentiles.

Conclusion

We have introduced a new framework for randomised exploration in stochastic bandits based
on resampling of the reward history and a data-dependent bonus, which generalises an optimal
Thompson Sampling strategy for bounded distributions to light tailed families. We proposed
three instances of such Dirichlet Sampling (DS) algorithms, corresponding to different mod-
eling assumptions. In our opinion, these new algorithms are appealing for the practitioner
because (i) our theoretical results show strong guarantees under different settings, (ii) DS algo-
rithms are simple to implement despite the technically challenging analysis and achieve strong
practical performances, and (iii) they provide alternative robust ways to tackle unbounded
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distributions in bandit problems. Interesting future directions include extending the DS frame-
work to heavy tailed distributions, and tightening the analysis of boundary crossing probabilities of
Section 6.2 to design sharper bonuses for general families of distributions motivated by real
use-cases. Moreover, we believe the duel-based structure associated with the generic regret
decomposition of Theorem 6.3 opens up new perspectives to design exploration strategies
in bandits. In particular, they allow to analyse policies using the history of two arms in the
computation of a single index.
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Chapter 7

Perspectives on Dirichlet sampling for
contextual bandits (�)

Sometimes, you have to roll the hard six.
— “The Hand of God”, Battlestar Galactica

The content of this chapter is new and has not been previously published. This work
started as a follow-up to the article presented in the previous chapter, in an effort to lift the
Dirichlet sampling scheme from multiarmed to contextual bandits. As a testament to the
flexibility of the risk-aware framework of Chapter 5, we consider the setting of linear bandits
with elicitable risk measures, which extends the classical mean-linear case at minimal cost in
terms of formalism. To analyse this new class of algorithms, we leverage an important
probabilistic tool, namely strong approximation of empirical processes, which has seldom been
used in the context of bandits. Beyond the scope of Dirichlet sampling, we hope this work may
help popularise these methods for sequential learning.

Contents
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201



Outline and contributions

In this chapter, we propose an extension of Dirichlet sampling (DS) to linear bandits. Following
the setting of Chapter 5, we consider an agent that sequentially observes a decision set Xt ⊂
Rd at time t ∈ N, plays an action Xt ∈ Xt and receives a random reward Yt, such that a
certain elicitable risk measure ρL of the reward distribution is parametrised by ⟨θ⋆, Xt⟩, where
L : R × R → R is a strongly convex mapping. For simplicity, the reader may think of L as
L : (y, y′) ∈ R× R 7→ (y − y′)2/2, in which case ρL is simply the expectation risk measure.

7.1 Weighted bootstrap regression as a randomised design principle

A key component of many contextual bandit algorithms is to estimate the parameter θ⋆ in
an open set Θ ⊂ Rd from a set of t − 1 pairs of actions and rewards ((Xs, Ys))t−1

s=1. Drawing
inspiration from Dirichlet sampling, we introduce additional pairs (X̃t

i , Ỹ
t
i ) ∈ Rd × R for

i ∈ {1, . . . , q} and q ∈ Nwhich represent (possibly time-dependent) exploration variables, and
we define the empirical risk minimisation estimator

θ̂t = argmin
θ∈Θ

t−1∑
s=1
L(Ys, ⟨θ,Xs⟩) +

q∑
i=1
L(Ỹ t

i , ⟨θ, X̃t
i ⟩) . (7.1)

For simplicity, we drop the regularisation term and assume all relevant matrices are invertible
if need be. We also let nt = t+ q − 1 be the total number of variables at time t (q exploration
variables in addition to the t− 1 observations). Letting P̂t = (

∑t−1
s=1 δXs,Ys +

∑q
i=1 δ(X̃t

i ,Ỹ
t
i ))/nt

be the empirical measure on Rd×R induced by these nt variables, θ̂t is an M-estimator (Huber,
2004; Kosorok, 2008) defined by argminθ∈Θ EP̂t

[L(Y, ⟨θ,X⟩)]. The optimism principle (LinUCB)
aims to quantify the uncertainty of P̂t using the concentration of measure phenomenon to
guide exploration, yielding deterministic algorithms. An alternative approach is to substitute
the empirical measure P̂t with a randomised measure P̃t that aims to approximate the true
distribution of the pair (X,Y ). This approach was pioneered by the bootstrapmethod (Efron,
1982; Efron and Tibshirani, 1994) and later extended to the weighted bootstrap (Rao and Zhao,
1992; Barbe and Bertail, 1995). Given a probability measure νZ on R+ and a sequence of
independent νZ-distributed random variables Zt = (Zts)nts=1 and St =

∑nt
s=1 Z

t
s, we define the

random (with respect to Zt) probability measure

P̃t = 1
St

(
t−1∑
s=1

Ztsδ(Xs,Ys) +
q∑
i=1

Ztt+i−1δ(X̃t
i ,Ỹ

t
i )

)
, (7.2)

and the associated M-estimator θ̃t ∈ argminθ∈Θ EP̃t
[L(Y, ⟨θ,X⟩)]. The weight measure νZ is

typically assumed to be light tailed, either multinomial (bootstrap, corresponding to sampling
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past observations with replacement) or with unit mean and variance (weighted bootstrap),
such as the exponential distribution E(1). Furthermore, if we define for θ ∈ Θ,

Ψθ : X × R −→ Rd and F̃t : Θ −→ Rd

(X,Y ) 7−→ ∂L(Y, ⟨θ,X⟩)X θ 7−→ EP̃t
[Ψθ(X,Y )] , (7.3)

and assuming mild regularity assumptions (first order condition), θ̃t is the solution to the
Z-estimation equation (Kosorok, 2008) F̃t(θ̃t) = 0. In particular, under the expectation risk
measure, we have the closed-form expression:

θ̃t = argmin
θ∈Θ

t−1∑
s=1

Zts (Ys − ⟨θ,Xs)2 +
q∑
i=1

Ztt+i−1

(
Ỹ t
i − ⟨θ, X̃t

i

)2

=
(
t−1∑
s=1

ZtsXsX
⊤
s +

q∑
i=1

Ztt+i−1X̃
t
i X̃

t⊤
i

)−1(t−1∑
s=1

ZtsYsXs +
q∑
i=1

Ztt+i−1Ỹ
t
i X̃

t
i

)
. (7.4)

For contextual bandits, we propose the linear Dirichlet sampling algorithm (LinDS), an
adaptation of the Dirichlet sampling scheme, which is greedy with respect to the weighted
bootstrap estimator, without adding an optimistic exploration bonus. Note that we formulate it
for a generic convex risk (CR), as it also covers the classical mean-linear case.

Algorithm 6 LinDS-CR
Input: Exploration bonuses

(
((X̃t

i , Ỹ
t
i ))qi=1

)
t∈N

, projection operator Π, weight distribution νZ .
Initialisation: Observe X1, t = 1.
while continue do

Draw (Zts)
t+q−1
s=1 ∼ νZ ; ▷ Random weights

θ̃ ← argmin
Rd

t−1∑
s=1

ZtsL(Ys, ⟨θ,Xs⟩) +
q∑
i=1

Ztt+i−1L(Ỹ t
i , ⟨θ, X̃t

i ⟩) ; ▷ Weighted bootstrap

θ̄ ← Π(θ̃) ; ▷ Projection
Xt ← argmax

x∈Xt
⟨θ̄, x⟩ ; ▷ Play

Observe Yt and Xt+1; ▷ Observe reward and next action set
t← t+ 1.

Reduction to DS for multiarmed bandits. To build intuition, we show that the weighted
bootstrap strategy with exponential weights of Algorithm 6 actually matches the generic DS
index strategy (Definition 6.1) in the case of multiarmed bandits with expectation risk measure.

Let d = K ∈ N and Xt = (ek)k∈[K] be the canonical basis of RK for all t ∈ N. If at time
t ∈ N the action Xt = ek is played for k ∈ [K], we let πt = k and the matrix XtX

⊤
t has the

k-th diagonal term equal to 1 and all other entries equal to zero. We choose q = K constant
exploration actions X̃t

k = ek and corresponding exploration rewards Ỹ t
k for k ∈ [K]. The
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weighted bootstrap estimator is

θ̃t =


t−1∑
s=1

1πs=kZ
t
sYs

t−1∑
s=1

1πs=kZ
t
s + Ztt+k−1

+
Ztt+k−1Ỹ

t
k

t−1∑
s=1

1πs=kZ
t
s + Ztt+k−1


k∈[K]

. (7.5)

If the i.i.d. randomweights (Zts)
t+q−1
s=1 follow the exponential distribution E(1) (redrawn at each

time t ∈ N), the k-th coordinate is equal in distribution to∑Nk
t−1

i=1 WiY
k
i +WNk

t−1+1Ỹ
t
k , where

Nk
t−1 =

∑t−1
s=1 1πs=k and (W k

i )N
k
t−1+1

i=1 ∼ DNk
t−1+1 (Lemma E.1), which is precisely the definition

of a DS index for arm k ∈ [K]. In particular, if νk ∈ F[Bk,Bk] (setting (B1), bounded rewards
with known upper bound), letting Ỹ t

k = Bk makes LinDS equivalent to BDS.
Interestingly, this also paves a way for non-contextual multiarmed bandits with elicitable

risk measures. Indeed, for a generic strongly convex loss L, we have

θ̃t = argmin
θ=(θk)k∈[K]∈Θ

∑
k[K]

t−1∑
s=1

1πs=kZ
t
sL(Ys, θk) +

K∑
i=1

1πs=kZ
t
t+i−1L(Ỹ t

k , θk) . (7.6)

The right-hand side is the sum ofK univariate function in variable θk. If the set Θ has a product
structure Θ =

∏
k∈[K] Θk, each coordinate of the vector θ̃t can be estimated individually. By

grouping the i.i.d. random variables (Zts)t+K−1
s=1 intoK i.i.d. lists (Zk,ti )N

k
t−1+1

i=1 and denoting by
(Y k
i )N

k
t−1

i=1 the rewards observed for arm k ∈ [K] at time t−1, we obtain the univariate estimators

θ̃k,t = argmin
θk∈Θk

Nk
t−1∑
i=1

Zk,ti L(Y k
i , θk) + Zk,t

Nk
t−1+1L(Ỹ t

k , θk) . (7.7)

Randomised estimators and empirical processes Instances of randomised algorithms have
been analysed for contextual bandits, starting with linear Thompson sampling Agrawal and
Goyal (2013). The key component to the regret analysis is to control the probability of three
events, as summarised in Kveton et al. (2020, Theorem 1) : (i) a deterministic estimator θ̂t
concentrates around the true parameter θ⋆, (ii) the randomised estimator θ̃t concentrates
around θ̂t, and (iii) θ̃t also anticoncentrates away from θ̂t. The first condition is easily satisfied if
we choose θ̂t to be the empirical risk minimiser (Corollary 5.13), so the technical challenge lies
in proving the other two. That last condition is analogous to Assumption 6.4 and is necessary
to promote sufficient exploration, without the need for an optimistic exploration bonus.

In stark contrast with θ̂t, the weighted bootstrap estimator θ̃t does not lend itself to the type
of martingale analysis (method of mixtures) that we have used throughout this thesis to analyse
time-uniform concentration. Indeed, because the random weights are redrawn at each time
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t ∈ N, θ̃t shares little information with θ̃t−1 (see Appendix F.1 for a more detailed study). For
optimistic algorithms, deriving tight time-uniform confidence sequences was paramount since
these were used in the design of the algorithm itself (to tune the exploration bonus); in other
words, looser concentration would translate directly to more regret due to overexploration. For
randomised strategies, exploration only comes from the variability of θ̃t, and hence, while we
still need to analyse the concentration of θ̂t, looser bounds may only be detrimental to the theo-
retical guarantees, not the actual empirical performances. Also, using crude union arguments
instead of sharp time-uniform sequences typically contributes to an extra O(

√
log T ) term at

horizon T ∈ N, which would only add a polylogarithmic correction to the minimax optimal
regret O(

√
T ). We only mention the dependency in T since the dependency in the dimension

dmay be suboptimal; for instance, guarantees for linear Thompson sampling (Agrawal and
Goyal, 2013; Abeille and Lazaric, 2017) are Õ(d3/2√T ).

We now sketch an approach to analyse the concentration of theweighted bootstrap estimator
θ̃t. Similarly to the analysis of Chapter 5, we start from the Z-estimation equation F̃t(θ̃t) = 0,
and try to relate θ̃t and θ̂t. Precisely, we define the following mappings1

H̃t : Θ −→ S+
d (R) and ¯̃

Ht : Θ×Θ −→ S+
d (R)

θ 7−→ EP̃t

[
∂2L(Y, ⟨θ,X⟩)XX⊤

]
(θ, θ′) 7−→

∫ 1

0
H̃t(uθ + (1− u)θ′)du ,

(7.8)

so that 0 = F̃t(θ̃t) = F̃t(θ̂t) + ¯̃
Ht(θ̂t, θ̃t)(θ̃t − θ̂t). Assuming ¯̃

Ht(θ̂t, θ̃t) is invertible, we have

θ̃t − θ̂t = − ¯̃
Ht(θ̂t, θ̃t)−1

(
EP̃t

[
Ψ
θ̂t

(X,Y )
])

. (7.9)

Therefore, we would like to control the fluctuations of the expected term on the right-hand
side. To this end, we introduce the following stochastic process.

1Note that compared to Chapter 5, we define operators F and H asmeans rather than sums, which more naturally
fits the description of the weighted bootstrap regression as an expectation under a reweighted measure.
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Definition 7.1 (Weighted bootstrap empirical process). Assume that for all θ ∈ Θ, Ψθ belongs to
a given family of mappings F ⊂ {ψ : Rd × R→ Rd}, we define the weighted bootstrap empirical
process associated with probability measures P̂t and P̃t as

α̃t : F −→ Rd

ψ 7−→
√
nt
(
EP̃t

[ψ(X,Y )]− EP̂t
[ψ(X,Y )]

)
. (7.10)

Note that this is a process in the sense that for a fixed t ∈ N, (α̃t(ψ))ψ∈F defines a stochastic
process indexed by functions inF , where the randomness comes from the variables ((Xs, Ys))t−1

s=1
and the weights (Zts)nts=1. Moreover, by definition of the deterministic estimator θ̂t, we have
EP̂t

[Ψ
θ̂t

] = 0. We then rewrite the Z-estimation equation as

√
nt
(
θ̃t − θ̂t

)
= − ¯̃

Ht(θ̂t, θ̃t)−1α̃t(Ψθ̂t
) . (7.11)

Consequently, it is sufficient to study the fluctuations of the weighted bootstrap empirical
process. To this end, we briefly introduce the theory of strong approximation of empirical
processes, which offers powerful tools to generalise the well-known central limit theorem.

7.2 Technical detour: strong approximation of empirical processes

Let us first consider a stochastic process (St)t∈N such that St is the sum of t ∈ N i.i.d. centred
random variable with unit variance. It is well-known that √tSt converges in distribution (i.e.
weakly) to a standard GaussianN (0, 1). The idea behind strong approximation, also known as
the strong invariance principle, is to lift this analysis to a uniform (i.e. strong) convergence,
either almost surely or in probability. Practically speaking, this allows to replace (St)t∈N with
(Bt)t∈N where B is a Brownian motion (defined on a possibly enriched probability space), up
to controlled fluctuations of order almost surely o(√t log log t) (Strassen, 1964); in addition,
this approximation rate is tight (Major, 1979).

More generally, we may consider empirical processes instead of just sums of i.i.d. random
variables. We define the classical empirical process α̂t(ψ) = √nt(EP̂t

[ψ(X,Y )]− EP[ψ(X,Y )])
for t ∈ N andψ ∈ F , and study its convergence in the strong topology defined by the supremum
norm ∥α̂t∥F = supψ∈F∥α̂t(ψ)∥2. Obviously, this convergence crucially depends on the structure
of the family F (the smaller the family, the faster the convergence). For d = 1 and family
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F = {1(−∞,y), y ∈ R}, ∥α̂t∥F corresponds to the Kolmogorov-Smirnov statistic (rescaled by√
t) between cumulative distribution functions. In this specific case, assuming P is light tailed,

the Komlós-Major-Tusnády theorem (Komlós et al., 1975, 1976) shows that almost surely
∥α̂t −Gt∥F = O(t−1/2 log(t)) (with also a maximal, nonasymptotic inequality in probability),
where (Gt)t∈N is a sequence of independent P-Brownian bridge indexed by F , i.e. Gt is the
centred Gaussian process with covariance EP[Gt(ψ)Gt(ψ′)] = EP[ψψ′] − EP[ψ]EP[ψ′], for all
t ∈ N, and ψ,ψ′ ∈ F . This result was later extended by Berthet and Mason (2006) to more
general families F satisfying uniform finite covering number conditions, such a the Vapnik-
Chervonenkis condition (VC) and the more general bracketing entropy condition (BR), at the
cost of slower approximation rates ; we refer to Albertus (2019) for a recent overview.

In the context of weighted bootstrap however, we are interested in the empirical process
α̃t rather than α̂t. Fortunately, Alvarez-Andrade and Bouzebda (2013) extended the KMT
theorem to the strong approximation of α̃t by a sequence of independent P-Brownian bridges,
including in the multidimensional case d ⩾ 1, with a O(t−1/(4d−2) log(t)) approximation error.
Finally, Albertus and Berthet (2019) provided corresponding results in dimension d = 1 for
the generalisation of Berthet and Mason, with same approximation rates, which we now detail.

Assumption 7.2 (Bounded bootstrap weights). There exists ζ, ζ ∈ R⋆+ such that

EZ∼νZ [Z] = 1, VZ∼νZ [Z] = 1, and Supp (νZ) ⊆ [ζ, ζ] . (7.12)

We call the parameter κZ = ζ/ζ the conditioning of the weight measure νZ .

This assumption is not necessary to establish strong approximation results for the weight
bootstrap empirical processes but simplifies otherwise cumbersome measurability arguments
(Albertus and Berthet, 2019); we will also resort to it in the regret analysis in the next section.
In particular, the boundedness requirement excludes the exponential distribution.

We now state the strong approximation result in dimension d = 1 for the (BR) condition,
which is the most general.
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Definition 7.3 (Bracketing entropy condition). Let Y be a metric space, F = {ψ : Y → R},
F ⊂ F , ∥·∥ a norm on F and ε > 0. We let [ψ,ψ] = {ψ ∈ F , ψ ⩽ ψ ⩽ ψ} for ψ,ψ ∈ F and define
the ε-bracketing number of F with respect to ∥·∥ as

N[ ](ε,F , ∥·∥) = inf
{
n ∈ N, ∃((ψ

i
, ψi))ni=1, F ⊂

n⋃
i=1

[ψ
i
, ψi] and ∀i ∈ [n], ∥ψi − ψi∥ ⩽ ε

}
,

(7.13)

and the ε-bracketing entropy of F with respect to ∥·∥ as

H[ ](ε,F , ∥·∥) = logN[ ](ε,F , ∥·∥) . (7.14)

We say that F satisfies the (BR) condition if there exists b > 0 and r ∈ (0, 1) such that

∀ε ∈ (0, 1), H[ ](ε,F , ∥·∥P,2) ⩽ b2ε−2r , (7.15)

where ∥ψ∥P,2 =
√
EY∼P[ψ(Y )2].

This condition is specific to the case d = 1 since it requires a total order (to define the segment
[ψ,ψ]), and extending it to higher dimensional settings is nontrivial and remains, to the best of
our knowledge, an open question.

The following lemma, directly borrowed from Vaart and Wellner (2023, Corollary 2.7.2),
provides a convenient example of family that satisfies the bracketing entropy condition.

Lemma 7.4 . If Y is a bounded, nonempty interval of R and F is a subset of the set of continuously
differentiable mappings with Lipschitz derivative, then it satisfies the (BR) condition with r = 1/2.

We now state the strong approximation result of Albertus and Berthet (2019, Theorem 2.1)
to our setting, which provides the theoretical foundation for the analysis of LinDS.
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Theorem 7.5 (Strong approximation under (BR)). Let α > 0. Under Assumption 7.2, ifF satisfies
the (BR) condition with r ∈ (0, 1), there exists Cα > 0 and a sequence of independent P-Brownian
bridges (Gt)t∈N such that for t large enough,

P
(
∥α̃t −Gt∥F ⩾

Cα

log(t)
1−r
2r

)
⩽

1
log(t)α . (7.16)

In particular, ∥α̃t −Gt∥F = O(log(t)−(1−r)/(2r)) almost surely when t→ +∞.

Remark 7.6 (Strong approximation in statistics). Arguments based on controlling suprema of
empirical processes are ubiquitous in statistics, mainly to establish asymptotic normality of estimators,
as many inference problems can be framed as M or Z-estimations, see e.g. Geer (2000); Kosorok
(2008); Koltchinskii (2011); Vaart and Wellner (2023). On the topic of strong approximation, we
refer to the monograph Csörgo and Révész (2014). However, to the best of our knowledge, these results
have been seldom used by the sequential decision-making community. A possible explanation is that
optimism has long been the dominating trend in designing algorithms for bandits and model-based
reinforcement learning, which requires tight, nonasymptotic concentration, whereas bounds on suprema
of empirical processes are typically very asymptotic and little explicit in nature. A noteworthy exception
is Waudby-Smith et al. (2021), who recently applied the strong invariance principle of Strassen (1964);
Major (1979) to build time-uniform confidence sequences for semiparametric causal inference.

7.3 Regret analysis of LinDS-CR

We now provide a heuristic upper bound on the pseudo regret of Algorithm 6. Assuming that
the family F = {θ ∈ Θ, Ψθ} satisfies a strong approximation principle (e.g. if d = 1, the (BR)
condition) we deduce from equation (7.11) that almost surely

θ̃t = θ̂t −
1
√
nt

¯̃
Ht(θ̂t, θ̃t)−1

(
Gt

(
Ψ
θ̂t

)
+ vt

)
, (7.17)

whereGt(Ψθ̂t
) is a d-dimensionalGaussian randomvariablewith covariancematrixVP[Ψ

θ̂t
(X,Y )]

and vt is converging to zero. This serves as an alternative to Corollary 5.13 to control the concen-
tration of the randomised estimator. Note that the strong approximation, as opposed to weak
convergence principles such as the central limit theorem, is crucial here for two reasons: (i) it
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allows to relate random variables instead of distributions, and (ii) the uniformity over the family
F makes the error term vt independent of θ̂t and θ̃t. Of note, the (BR) condition is satisfied
in our setting provided action sets are convex and the curvature of the loss L is controlled
(Lemma 7.4). We illustrate this in the following (purely algebraic) lemma, where we recall the
definition of the global Hessian matrix Vt = ntEP̂t [XX

⊤] (see Chapter 5).

Lemma 7.7 (Relation between randomised and deterministic Hessian matrices). Assume
Assumptions 5.8 and 7.2, then we have the following almost sure inequalities:

m

ntκZ
Vt ≼

¯̃
Ht(θ̂t, θ̃t) ≼

κZM

nt
Vt . (7.18)

Proof of Lemma 7.7. First, since ∂2L is nonnegative, we have mṼt ≼ nt
¯̃
Ht(θ̂t, θ̃t) ≼ MṼt with

Ṽt = nt(
∑t−1
s=1W

t
sXsX

⊤
s +

∑q
i=1W

t
t+i−1X̃iX̃

⊤
i ) and W t

i = Zti/
∑nt
j=1 Z

t
j for all t ∈ N and i ∈

{1, . . . , nt}. Now given the constraint that almost surely Ztj ∈ [ζ, ζ] for all j ∈ {1, . . . , nt}, we
see thatW t

i is maximal when Zti = ζ and Ztj = ζ for j ̸= i, and conversely ifW t
i is minimal, i.e.

ζ

ζ + (nt − 1)ζ
⩽W t

i ⩽
ζ

ζ + (nt − 1)ζ
, (7.19)

and thus
nt

1 + κZ(nt − 1)Vt ⩽ Ṽt ⩽
nt

1 + nt−1
κZ

Vt , (7.20)

where we recall that κZ = ζ/ζ. To conclude, let fγ : x ∈ [1,+∞) 7→ x/(1 + γ(x − 1)) with
γ ∈ R⋆+. This function is differentiable and for x ⩾ 1 we have

dfγ
dx (x) = 1− γ

(1 + γ(x− 1))2 . (7.21)

Therefore if γ = κZ > 1, fγ is nonincreasing and thus fγ(x) ⩾ limx→+∞ fγ(x) = 1/γ = 1/κZ ,
and if γ = 1/κZ < 1, fγ is nondecreasing and thus fγ(x) ⩽ fγ(1) = limx→+∞ fγ(x) = 1/γ = κZ .
We conclude by plugging x = nt in the above equations. ■

Regret analysis. We now sketch a bound on the cumulative pseudo regret for Algorithm 6.
Fix T ∈ N, and for t ⩽ T , we letX⋆

t = argmaxx∈Xt⟨θ
⋆, x⟩ and recall thatXt = argmaxx∈Xt⟨θ̃t, x⟩.

We first decompose the pseudo regret (as in Chapter 5) to make appear the estimator θ̂t that
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appears in the definition of the LinDS policy:

RT =
T∑
t=1
⟨θ⋆, X⋆

t −Xt⟩ ⩽
T∑
t=1

∣∣∣〈θ⋆ − θ̃t, X⋆
t

〉∣∣∣+ ∣∣∣〈θ⋆ − θ̃t, Xt

〉∣∣∣+ 〈
θ̃t, X

⋆
t −Xt

〉
︸ ︷︷ ︸

⩽0

⩽
T∑
t=1

∣∣∣〈θ⋆ − θ̃t, X⋆
t

〉∣∣∣+ ∣∣∣〈θ⋆ − θ̃t, Xt

〉∣∣∣ , (7.22)

where the last inequality follows from the definition of Xt as the greedy action with respect to
θ̃t. We further split the regret term at round t by introducing the deterministic estimator θ̂t:

RT ⩽
T∑
t=1

∣∣∣〈θ⋆ − θ̂t, X⋆
t

〉∣∣∣+ ∣∣∣〈θ⋆ − θ̂t, Xt

〉∣∣∣+ ∣∣∣〈θ̂t − θ̃t, X⋆
t

〉∣∣∣+ ∣∣∣〈θ̂t − θ̃t, Xt

〉∣∣∣ . (7.23)

Note that the first two terms are equivalent to the analysis of LinUCB (Theorem 5.18), relying
on the time-uniform concentration of the deterministic estimator and the elliptic potential
lemma, contributing to Õ(

√
T ) regret (up to polylogarithmic terms in T ). The remaining two

terms are controlled by the strong approximation result of equation (7.17), i.e.

〈
θ̂t − θ̃t, Xt

〉
=
〈

1
√
nt

¯̃
Ht(θ̂t, θ̃t)−1Gt

(
Ψ
θ̂t

)
, Xt

〉
+
〈

1
√
nt

¯̃
Ht(θ̂t, θ̃t)−1vt, Xt

〉
, (7.24)

and similarly withX⋆
t instead ofXt. We start with the second term. By the law of large numbers,

the matrix ¯̃
Ht(θ̂t, θ̃t)−1 converges almost surely, and in particular ¯̃

Ht(θ̂t, θ̃t)−1 = O(1), and by
Assumption 5.17, Xt is bounded, therefore the contribution of that term to the cumulative
pseudo regret is O(

∑T
t=1 vt/

√
t). The approximation error vt scales as log(t)−(1−r)/(2r), so that

this sum scales as Õ(
√
T ) and thus does not increase the order of the dominating term in the

pseudo regret bound (up to polylogarithmic terms). Under Lemma 7.4, we have r = 1/2 and
the exact scaling is given by the following technical lemma.

Lemma 7.8 . Let T ⩾ 2, then∑T
t=2 1/

√
t log(t) = O(

√
T/ log(T )).

Proof of Lemma 7.8. We evaluate the imaginary error function erfi: z ∈ R⋆+ 7→ 2/
√
π
∫ z

0 e
u2
du

at z =
√

log(T )/2, i.e. erfi(
√

log(T )/2) = 2/
√
π
∫√log(T )/2

0 eu
2
du. The change of variable

u =
√

log(x)/2 yields erfi(
√

log(T )/2) =
∫ T

1 dx/(2
√

2πx log(x)). The imaginary error function
admits the asymptotic expansion when z → +∞ (Abramowitz and Stegun, 1968, Section 7.1)
erfi(z) = (1/(

√
πz) +O(1/z3))ez2 , therefore ∫ T1 dx/

√
x log(x) = O(

√
T/ log(T )). We conclude

by a sum-integral comparison argument. ■

211



We finally study the contribution of the Gaussian term. With Assumptions 5.8 and 7.2,
we observe that ¯̃

Ht(θ̂t, θ̃t)−1Gt/
√
nt ≈ N

(
0,Θ(V −1

t )
)
(Lemma 7.7). Conditionally on Xt, the

covariance matrix of the approximating Gaussian process is VP[∂L(Y, ⟨θ̂t, Xt⟩) | Xt]XtX
⊤
t ,

which is typically controlled by σ2XtX
⊤
t for some σ ∈ R⋆+ assuming a sub-Gaussian bound

in the spirit of Assumption 5.10. In other words, up to a small approximation error, the
randomised estimator θ̃t is approximately Gaussian centred around the deterministic estimator
θ̂t, with covariance proportional to the global Hessian. Interestingly, this is exactly the setting of
linear Thompson sampling with Gaussian prior. In particular, such a Gaussian prior achieves
both the concentration (e.g. Agrawal and Goyal (2013, Lemma 1)) and anticoncentration
(Abeille and Lazaric, 2017, Appendix A) properties required in the regret analysis, provided
the variance of the prior is high enough. In our case, a natural way to inflate the variance is
through the choice of the exploration bonuses ((X̃t

i , Ỹ
t
i ))qi=1: for instance, if actions and rewards

are bounded by L > 0 (Assumption 5.17) and B > 0 respectively, a sensible heuristic would be
to choose constant bonuses (X̃i, Ỹi) in ({±L}d, B) (or use a slowly growing function of t for
the exploration reward, in the spirit of RDS, see Chapter 6).

On that account, we propose the following conjecture for the pseudo regret of LinDS.

Conjecture 7.9 (Pseudo regret upper bound for LinDS-CR). Let δ ∈ (0, 1) and T ∈ N. Under
Assumptions 5.8, 5.10, 5.17 and 7.2, if the reward distributions have bounded support in [B,B] ⊂ R
and the family F = {(x, y) ∈ X × [B,B] 7→ ∂L(y, ⟨θ, x⟩)x, θ ∈ Θ} satisfies the (BR) condition,
then there exists m ∈ N and ((X̃i, Ỹi))qi=1 ∈ (Rd × R)q such that Algorithm 6 enjoys similar first
order pseudo regret guarantees as linear TS with Gaussian prior, i.e. with probability at least 1− δ, its
pseudo regret is upper bounded by

RT ⩽ Õ
(
d

3
2
√
T
)
or, if |Xt| ⩽ K for all t ∈ N, RT ⩽ Õ

(√
dT logK

)
, (7.25)

where Õ hides polylogarithmic terms in T .

Of note, the main theoretical roadblock to prove this conjecture is the lack of a multidi-
mensional strong approximation principle for weighted bootstrap under general conditions
(we remark that an approximation rate of O(log(t)−β) for some β ∈ R⋆+ would be sufficient
to maintain Õ(

√
T ) pseudo regret). In the unstructured K-armed bandit case however, we

may apply Theorem 7.5 to each of theK univariate estimation equations (7.7) under the (BR)
condition, without requiring a multidimensional extension. We leave the technical details, in
particular the tuning of the exploration bonus for future works.
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Note that the first upper bound adds an extraO(
√
d) dependency compared to the minimax

lower bound of Theorem 1.10, which is a standard caveat of the Thompson sampling analysis.

Remark 7.10 . In particular with the quadratic loss, this gives a minimax regret bound for the BDS
scheme studied in Chapter 6, which complements the instance-dependent analysis of Theorem 6.15.

7.4 Numerical experiments

We reproduce the three experiments of Section 5.4 in Chapter 5, with the addition ofAlgorithm 6.
For the K-armed bandit settings (experiments 1 and 3), we used q = K exploration actions
X̃k = ek (the k-th vector of the canonical basis of RK for k ∈ [K], and following the empirical
merits of RDS (Chapter 6), we tuned the exploration rewards as Ỹ t

k =
√

log(1 +Nk
t−1) for arm

k at time t ∈ N. For the fully contextual setting (experiment 2), we used a single exploration
action X̃1 = (L)d, i.e. the vector where each coordinate is the upper bound on the norm of
regular actions (Assumption 5.17), and a corresponding exploration reward Ỹ t

1 =
√

log(1 + t).
This choice of a single exploration bonus was motivated by the geometry of the decision sets
in this setting. Indeed, vectors in Xt = {X1

t , X
2
t } are drawn from Gaussian distributions with

full rank covariance matrices, and thus, almost surely, neither of them are orthogonal with the
fixed vector X̃1. Hence, that single vector induces exploration in both directions X1

t and X2
t .

In all three experiments, LinDS-CR exhibited the best performances, with quickly flattening
pseudo regret median curves (Figure 7.1). Beyond the strong practical quality of randomised
algorithms, as evidenced in Chapter 6, we believe this is also a byproduct of the simplicity of
the DS scheme. In LinUCB-CR and its variant, exploration is tuned manually by analysing the
concentration of the rewards, and therefore these algorithms pay the price of the possible lack of
sharpness in the parameters of that concentration (variance σ, conditioning κ, Hessian matrices
Vt orHt — see Appendix D.2 — etc.). Alternatively, they can be made more exploitative, e.g.
by reducing the variance parameter σ (that typically controls the radius of the confidence
ellipsoids), at the cost of invalidating the theoretical guarantees. In stark contrast, the only
degrees of freedom in the design of LinDS-CR are the exploration variables, the effect of which
decreases naturally over time (m exploration rewards of magnitude O(1) or O(

√
log t) versus t

observations). Hence, LinDS-CR is much less prone to overly conservative parametrisations
(incidentally, it is also easier to implement as it eschews all matrix computations and inversions).
Notwithstanding, we acknowledge that LinDS-CR is solely backed by a heuristic regret bound
and that choosing efficient exploration actions, in particular in high dimensions, may be a
highly nontrivial problem, that possibly depends on the geometry of the actions sets.
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Figure 7.1 – Left: two-armed Gaussian expectile bandit. Center: two-armed linear expectile bandit with
R3 contexts and expectile-based asymmetric noises. Right: two-armed Bernoulli entropic risk bandit.
Thick lines denote median cumulative pseudo regret over 500 independent replicates. Dotted lines
denote the 25 and 75 pseudo regret percentiles. Shaded areas denote the 5 and 95 percentiles.

Conclusion

We have proposed an extension of Dirichlet sampling to linear bandits (both risk-neutral
and risk-aware). While we lack the theoretical tools to formally analyse the resulting LinDS
algorithm, it is supported by a probabilistic heuristic, leveraging strong approximation, and
exhibits strong empirical performances. We hope this fosters new applications of Dirichlet
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sampling as a general-purpose design principle for sequential learning (as opposed to a specific
scheme for the simple multiarmed bandit problem).
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Take-home message:

�To solve stochastic bandits, we have ac-
cess to a range of efficient randomised al-
gorithms, both in theory and practice.

We have generalised algorithms based on posterior sampling for stochastic bandits to cover
existing and novel model specifications, with strong practical performances and in some cases
optimal instance-dependent pseudo regret guarantees.

• With no specification other than light tailed, we have obtained near-logarithmic regret
bounds, supported by robust results on different experimental settings.

• The principle of Dirichlet sampling naturally extends to (risk-aware) linear bandits, with
promising empirical results and theoretical insights that call for further research.

We believe that Dirichlet sampling is a strong general-purpose principle to design randomised
algorithms for sequential learning. We however acknowledge that deterministic approaches
may remain of interest to practitioners concerned with the explainability and reproducibility
of the recommended decisions.
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Part V

Contributions to statistical analysis in
bariatric surgery





Chapter 8

Development and validation of an
interpretable machine learning
calculator for predicting five
year-weight trajectories after bariatric
surgery: a multinational retrospective
SOPHIA study (�)

I guess my biggest problem is I’ve been
cursed with the ability to do the math.

— “Detox”, House, M.D.

The main part of this chapter (Sections 8.2 to 8.5) was published in The Lancet Digital
Health in August 2023. Earlier results were communicated at congresses and gatherings on
obesity: the 2022 IFSO-EC Congress on Obesity, the 2022 Think-Tank EGID meeting, the 2022
SOFFCO-MM, the 2022 San Diego Obesity Week, the 2022MSSG AFERO, the 2023 IFSO World
Congress on Bariatric and Metabolic Surgery and the Clubster NSLwebinar on chronic diseases. To
broaden its outreach, the publication in the Lancet was followed by a press release in several
generalist media outlets in France and beyond (Ireland, Italy); see also https://www.inria.fr/
en/surgery-obesity-machine-learning-personalized-medicine for an earlier interview.

Compared to the rest of this thesis, which focused heavily on mathematics and stochastic
bandits, we intend this part to be oriented towards a more medical research-inclined readership.
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In this regard, we have kept the concise structure of the published article; we have however
extended the mathematical details regarding the preprocessing (interpolation of visit dates)
and the smoothing of weight trajectories in Appendix G.

We conclude this chapter by mentioning an independent work on the causal analysis of
the impact of robotic assistance in bariatric surgery, presented at the 2023 annual meeting of
the American Surgical Association (ASA) and later published in Annals of Surgery, as well as
oingoing follow-up efforts to extend the weight trajectory prediction model to other types of
interventions (OAGB), other populations (paediatric bariatric surgery) and other predictors
(polygenic risk scores).
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Outline and contributions

Background. Weight loss trajectories after bariatric surgery vary widely between individuals,
and predicting weight loss before the operation remains challenging. We aimed to develop a
model using machine learning to provide individual preoperative predictions of the five-year
weight loss trajectories after surgery.

Methods. In this multinational retrospective observational study, we enrolled adult partici-
pants (aged 18 years or older) from ten prospective cohorts (including ABOS [NCT01129297],
BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the
Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass
[NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a
5 year follow-up after Roux-en-Y gastric bypass, sleeve gastrectomy or gastric band. Patients
with a previous history of bariatric surgery or large delays between scheduled and actual visits
were excluded. The training cohort comprised patients from two centres in France (ABOS and
BAREVAL). The primary outcome was BMI at 5 years. A model was developed using LASSO
to select variables and CART to build interpretable regression trees. The performances of the
model were assessed through the median absolute deviation (MAD) and root mean squared
error (RMSE) of BMI.
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Findings. 10,231 patients were included from 12 centres in 10 countries were included in the
analysis, corresponding to 30,602 patient-years. Among participants in all 12 cohorts, 7701
(75.3%) were female, 2530 (24.7%) were male. Among 434 baseline attributes available in the
training cohort, seven variables were selected: height, weight, intervention type, age, diabetes
status, diabetes duration, and smoking status. At 5 years, the overall mean values (95% CI)
of MAD and RMSE of BMI across external testing cohorts were 2.8 (2.6; 3.0) kg/m2 and 4.7
(4.4; 5.0) kg/m2, respectively, while the mean (SD) difference between predicted and observed
BMI was -0.3 (4.7) kg/m2. This model is incorporated in an easy to use and interpretable
web-based prediction tool to help inform clinical decisions before surgery, which is available at
this address: https://bariatric-weight-trajectory-prediction.univ-lille.fr.

8.1 Preliminary: a brief introduction to bariatric surgery for non-
specialists

Obesity. Overweight and obesity, as defined by a bodymass index (BMI) equal to respectively
25 and 30 kg/m2 or higher, form a complex, multifactorial, worldwide disease, that has grown
to pandemic proportions over the last decades,1 with a constant increase in prevalence for all
countries in the past 40 years (Ng et al., 2014). Contrary to long-standing misconceptions,
obesity cannot be reduced to a simple behavioural issue, often mocked as a consequence of
sloth and gluttony, it is rather the consequence of multiple causal factors (environmental, social,
psychological, genetic). In addition to a strained physical condition, it is associated with a vast
range of comorbidities (diabetes, hypertension, sleep apnea, fatty liver) and social exclusion.

Status of bariatric surgery in the world. Weight loss surgery, also known as bariatric surgery,
is a set of surgical techniques that aim to

modify the stomach and intestines to treat obesity and related diseases. The oper-
ations may make the stomach smaller and also bypass a portion of the intestine.
This results in less food intake and changes how the body absorbs food for energy
resulting in decreased hunger and increased fullness. These procedures improve
the body’s ability to achieve a healthy weight. (American Society for Metabolic and
Bariatric Surgery, 2023)

In France, individuals living with severe obesity (class III, i.e. BMI equal to 40 kg/m2

or higher) are eligible for bariatric surgery when first-line therapy proved insufficient or
inadequate (Haute Autorité de Santé, 2009). It is also available for patients with BMI 35 kg/m2

1See for instance the editorial of the June 2021 issue of The Lancet Gastroenterology & Hepatology, available at
https://www.thelancet.com/journals/langas/article/PIIS2468-1253(21)00143-6/fulltext.
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or higher associated with at least one comorbidity susceptible to be improved after surgery,
for instance type 2 diabetes, high blood pressure or nonalcoholic steatohepatitis (NASH, the
most severe form of the fatty liver disease). When surgery is performed specifically to improve
such related comorbidities, it is often called metabolic surgery. Similar guidelines are applied
in most countries following the 1991 National Institutes of Health consensus development
conference. Recently, the American Society of Metabolic and Bariatric Surgery (ASMBS) and
the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) have
lowered to respectively 30 and 35 kg/m2 the BMI thresholds for bariatric surgery for patients
with and without related comorbidities (Eisenberg et al., 2023); of note, an updated guideline
for surgery in France is under development by theHaute Autorité de Santé. In France, over 60,000
bariatric interventions are performed each year, which represents a twenty times increase
over the past twenty years, (Oberlin and De Peretti, 2018), meaning that 1% of the total adult
population is currently living with the consequence of a bariatric procedure. To handle such a
large and growing population requiring lifelong care, it is paramount to inform and develop
cooperation between actors of the health system, not only specialised bariatric surgery centres
but also general hospitals, organised in Territorial Hospital Groups (Gauthiez, 2017), and
practitioners, who are often unfamiliar with the specificities of the bariatric postoperative care.

Description of the main interventions. Among the three most common operations, the least
invasive one is the adjustable gastric banding (AGB), which consists in placing a ring-shaped
silicon device around the upper part of the stomach to reduce its effective volume. Its impact on
weight loss and associated diseases has proven limited, and its popularity has been declining in
the past fifteen years. The Roux-en-Y gastric bypass (RYGB) is a procedure in which a small part
of the stomach (the gastric pouch) is directly connected to the small intestine, leaving most of
the stomach (the gastric remnant) unused. In addition to restricting the functional volume of
the digestive tract, it also alters the way food is processed by the intestine (an organ often called
“the second brain”), triggering a hormonal response that inhibits hunger, increases satiety and
favours weight loss. It is sometimes associated with long-term complications such as ulcers,
rapid gastric emptying leading to sickness (“dumping syndrome”), gallstone formations and
nutritional deficiencies. Nowadays, this operation is often performed by laparoscopy (“keyhole
surgery”) to minimise invasiveness, as opposed to a laparotomic approach (“open surgery”).
Finally, the sleeve gastrectomy (SG) consists in removing a large portion of the stomach, thus also
limiting its functional volume and forcing a faster transition to the small intestine. Technically
simpler than the RYGB, it is however non-reversible and has a lower impact on metabolism. It
is associated with a higher risk of severe acid reflux. It is typically performed laparoscopically
and has become the most common bariatric intervention in the past decade. A schematic
representation of all three operations is reported in Figure 8.1.
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observational and mechanistic studies on the effects of 
RYGB (Figure 2), AGB and VSG (Tables 1 and 2).

Food intake and underlying mechanisms
Lifestyle modification in the form of low-calorie diets 
can be very effective in the induction of weight loss; 
however, 80–90% of the population fail to maintain long-
term weight loss due to robust and evolutionary pre-
programmed compensatory processes that come into play 
and resist a drift of body fat stores below the established 
set point.11 Whilst on a low-calorie diet, patients usually 
report an increase in hunger, a decrease in satiety and 
pre-occupation with energy-dense fatty and sweet food.12,13

These findings are very much in contrast with the 
eating behaviour after bariatric surgery. Patients report 
that they are generally less hungry and reach satiation 
faster during a meal.14,15 Even though these procedures 
were originally designed to cause mechanical and con‑
sequently caloric restriction, patients rarely report 
such symptoms. Caloric restriction usually leads to a 
compensatory increase in the consumption of energy-
dense food,13 but this occurrence is not observed in 
patients or animals after RYGB.16,17 Additional evidence 
against the contribution of restriction comes from the 

Key points

■■ Bariatric surgery is the most effective treatment for weight loss and its long-
term maintenance; the most commonly performed procedures are laparoscopic 
gastric bypass, adjustable gastric banding and vertical sleeve gastrectomy

■■ Bariatric surgery improves obesity-related comorbidities and reduces overall 
and cardiovascular mortality

■■ Gastric bypass works by reducing hunger, increasing satiation, changing food 
preferences and increasing diet-induced energy expenditure

■■ Adjustable gastric banding works probably through the reduction in hunger, 
which might be mediated through vagal signalling

■■ Some of the clinical and physiological effects of vertical sleeve gastrectomy are 
similar to gastric bypass

■■ Understanding the mechanisms of action of these procedures could accelerate 
their optimization and the development of novel, and hopefully safer, 
medications for obesity and type 2 diabetes mellitus

responses after RYGB and VSG to caloric restriction. 
When humans and animals lose excessive weight after a 
surgical complication or an experimental manipulation, 
respectively, they eventually compensate for this effect 
by increasing their food intake to pre-surgical levels.18 
This step enables them to gain weight and follow their 
predicted weight trajectory after surgery. Intriguingly, 
patients and animals for whom the operations have 
‘failed’ and they have regained most of the initial weight 
loss can also consume the same amount of calories as 
preoperatively, even though the size of their gastric 
pouch has not increased substantially.19,20

Hypothalamic signalling
The arcuate nucleus of the hypothalamus contains two 
groups of neurons with opposite effects. The first group 
synthesize pro-opiomelanocortin-derived peptides, 
among which melanocyte-stimulating hormone acts 
via the melanocortin receptor 4 (MC4R) on the peri
ventricular nucleus, lateral hypothalamus and the 
ventromedial nucleus to reduce food intake and increase 
energy expenditure. The second group of neurons 
synthesize neuropeptide Y, agouti-related protein 
(AgRP) and γ‑aminobutyric acid, which increase food 
intake and reduce energy expenditure by inhibiting pro-
opiomelanocortin, but also by projecting to the peri
ventricular nucleus, lateral hypothalamus, ventromedial 
nucleus and dorsomedial nucleus. The arcuate nucleus 
is also in direct contact with blood, enabling it to be 
responsive to nutrients and circulating gut hormones.21

The expression of pro-opiomelanocortin, AgRP 
and neuropeptide Y has not been directly assessed in 
animal models of RYGB as yet. The expression of AgRP 
remained unchanged in rats undergoing VSG compared 
with sham surgery, whereas it increased in rats pair-fed 
to the VSG group;18 this finding might suggest that the 
calorically restricted rats were hungry and the VSG rats 
were not. However, in the same experiment, there was 
no change in the expression of pro-opiomelanocortin or 
neuropeptide Y after VSG. In humans, RYGB has been 
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Figure 8.1 – Schematic representation of the three main bariatric surgery operations: (a) Roux-en-Y
gastric bypass (RYGB), (b) adjustable gastric banding (AGB) and (c) sleeve gastrectomy (SG). Credits
to Miras and Le Roux (2013).

8.2 Introduction

The prevalence of obesity has increased globally over the last two decades (Collaborators, 2017).
Obesity is a heterogeneous condition associated with several complications and metabolic
manifestations across individuals, ultimately increasing the risk of all-cause mortality (Aune
et al., 2016). Bariatric surgery, although not first-line therapy, has emerged as an effective
treatment for sustained weight loss (Carlsson et al., 2020), resulting in long-term improvement
in obesity-related complications (Colquitt et al., 2014), and prolonged life expectancy (Syn
et al., 2021). Despite a comprehensive preoperative assessment of each candidate, it is chal-
lenging to forecast the weight loss outcomes following the intervention. Indeed, weight loss is
heterogeneous as regards changes over time, differences between procedures, and between
individuals (Courcoulas et al., 2018; Peterli et al., 2018).

A reasonable estimation of the expected weight loss trajectory after bariatric surgery would
help inform clinical decisions by patients and healthcare providers. Therefore, multiple models
have been proposed to predict postoperative weight loss (Karpińska et al., 2021). For such
models to be clinically relevant, they need to predict at least five years of weight loss outcome
(Colquitt et al., 2014). However, most previous studies were restricted to the early postoperative
period (Karpińska et al., 2021) or undermined by the high proportion of patients lost to follow-
up (Puzziferri et al., 2014), or both. Some prediction models also incorporated early weight
loss (before 6 months), to predict longer outcomes (beyond 2 years, see Tettero et al. (2022);
Manning et al. (2015)), and can therefore not be used before the operation.

Previous attempts to predict longer-term weight loss after bariatric surgery have used
multivariable regressions (Karpińska et al., 2021). However such methods assume that the
relationship between the dependent and the independent variable is linear, which may not
always be the case. Additionally, multivariable regressionsmay lead to difficulties in accounting
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for interactions (Batterham et al., 2016). Moreover, although coefficients in linear regression
and the odds in logistic regression are relatively easy to understand, they are not easy to
apply in clinical decision-making. In contrast, machine learning methods have the potential
to distinguish subtle, nonlinear patterns in data that are often not accessible using traditional
approaches like logistic regression (Finks et al., 2012). Likewise, machine learning (ML)
models have outperformed logistic regression in preoperative risk stratification using National
Surgical Quality Improvement Program data (Bertsimas et al., 2018). Currently only a few
studies have applied artificial intelligence (neural network) to predict early weight loss after
bariatric surgery, but none of them were externally validated (Bektaş et al., 2022).

Therefore, the aims of the present study were: first, to use ML to develop a system pre-
dicting postoperative weight loss trajectory, utilising information gathered by protocol-driven,
comprehensive preoperative assessment and repeated postoperative weight assessments in a
large prospective cohort study of patients submitted to bariatric surgery; second, to validate
the performance of the proposed model globally, using multiple external prospective cohorts
and randomised controlled trials; and third, to incorporate the results into an easy-to-use and
interpretable web-based tool providing individual preoperative prediction of postoperative
weight loss trajectory.

Research in context

Evidence before this study. Obesity is a heterogeneous condition that increases the risk of
all-cause mortality. Bariatric surgery, while not first-line therapy, is an effective treatment for
sustained weight loss improving obesity-related complications and life expectancy. However,
despite comprehensive preoperative assessment of each candidate, long-term weight loss
outcomes are heterogeneous as regards to changes over time, differences between procedures,
and between individuals. In January 2021, a review of existing literature was conducted using
the following search terms: bariatric surgery, postoperative weight loss, weight loss prediction,
and prediction model. We included studies that investigated models of weight loss after Roux-
en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and adjusted gastric banding (AGB) and
used a prospective or retrospective design. Most previous studies were restricted to the early
postoperative period and/or undermined by the high proportion of patients lost to follow-
up. Some prediction models also incorporated early weight loss (before 6 months), to predict
longer outcomes (beyond 2 years), and can therefore not be used before the operation. Previous
attempts to predict longer-term weight loss after bariatric surgery have used multivariable
regressions. However, such methods assume that the relationship between the dependent and
the independent variable is linear, which may not always be the case.
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Added value of this study. In the present study, we developed amachine learningmodel that
provides accurate individual weight trajectories expected during 5 years after bariatric surgery,
based on seven simple preoperative variables, including age, weight, height, smoking history,
T2D status and duration, and the type of intervention. These variables are readily available in
a variety of clinical settings without interpretation and do not require laboratory tests. The
model was incorporated into an easy-to-use and interpretable web-based tool. It is the first to
provide preoperative predictions of weight trajectories up to 5 years after surgery based on
machine learning, simultaneously for three of the most common types of surgery, RYGB, SG,
and AGB. The present study also showed the impact of diabetes duration and smoking, which
were not previously included in weight loss surgery prediction models.

Implications of all the available evidence. This model could help to refine individual weight
loss trajectory prediction in routine clinical practice, appearing as an accurate and simple
strategy to inform clinical decisions for both healthcare providers and patients prior to surgery,
enabling precision medicine and individualised patient management.

8.3 Methods

Study design and participants

In this multinational retrospective observational study, we used data from 10 cohorts of adult
patients submitted for the first time to Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy
(SG), and adjusted gastric banding (AGB), from eight countries. All patients had up to 5
years of postoperative data available and were aged 18 years or older. We excluded patients
with a previous history of bariatric surgery, as the preoperative weights measured before
reintervention already accounted for the effect of past interventions, which would have added
a bias in the calculated weight loss outcomes. We also excluded patients with large delays
between scheduled and actual visits related to postoperative complications. In case of missing
follow-up visits, patients were kept in the analysis but censored at the corresponding dates.
Patients not expected at a given time (recent interventions) were also censored after the last
completed visit (full details are deferred to Appendix G.1).

Training cohort. This cohort consisted of patients who were prospectively enrolled at the
time of primary bariatric surgery in two longitudinal cohort studies evaluating the long-
term outcome of bariatric surgery, ABOS (NCT01129297) in Lille (France), and BAREVAL
(NCT02310178) in Montpellier (France), between February 10, 2006 and November 2, 2020,
and April 8, 2014 and April 28, 2020, respectively.
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External testing cohorts. The prediction model was validated, using six cohorts including
France (Projet régional de REcherche Clinique en Obésité Sévère [PRECOS], NCT03517072;
Lyon, NCT02139813), the Netherlands (Nederlandse Obesitas Kliniek [NOK], see Tettero et al.
(2022)), Sweden (the Swedish Obese Subjects [SOS] study, Sjöström et al. (1992); Carlsson
et al. (2020)), Italy (NCT01581801 and NCT00888836, see Mingrone et al. (2021)), Singapore
(Singapore General Hospital [SGH], see Tan et al. (2021)), Brazil (Center for the treatment of
Obesity and Diabetes [COD], Hospital Oswaldo Cruz, Sao Paulo, Brazil, see Cohen et al. (2020,
2022)), and Mexico (Zerrweck et al., 2021).

Additional testing cohort. Additional external validation was conducted in participants of
two registered and previously published randomised, open-label, multicentre trials which
compared patients submitted to RYGB with SG in Finland (SleevePass, NCT00793143, see
Salminen et al. (2018, 2022)) and Switzerland (Swiss Multicenter Bypass or Sleeve Study [SM-
BOSS], NCT00356213, see Peterli et al. (2018)). The individual-level 5 year data of these two
studies has been merged into a single analysis (Wölnerhanssen et al., 2021). Details about
study protocols and data collection for these two cohorts are provided in Appendix G.3. Study
participants in all cohorts gave written informed consent, and self-reported sex data and were
provided with two options (male or female). All centres obtained ethics approval for their
respective studies.

Outcomes

We denote by Wt the weight of a study participant measured at time t after surgery (t = 0
represents the preoperative weight, t > 0 represents postoperative follow-up visits). The body
mass index (BMI) was defined at time t from the weightWt (kg) and the height ht (m) as

BMIt = Wt

h2
t

kg/m2 . (8.1)

The primary study outcome was the prediction of BMI at t = 5 years after bariatric surgery
(monthM60). Secondary outcomes were weight loss at earlier postoperative visits (months M1,
M3, M12, M24), expressed as weight (kg) or percent of total weight loss (TWL), calculated
as:

TWLt = W0 −Wt

W0
× 100 , (8.2)

and percent of excess weight loss (EWL), calculated with the formula:

EWLt = BMI0 − BMIt
BMI0 − 25 × 100 . (8.3)
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Model development

To derive the model, the training cohort was divided into two subsets: a training subset
consisting of 80% of randomly selected patients, and an internal testing subset comprising 20%
of patients.

We first performed a preprocessing of all patients’ features.As the ABOS cohort had a large
number of preoperative attributes per patient, we ran a feature selection algorithm on this
patient subgroup to extract the most statistically relevant ones concerning outcome prediction
using the Least Absolute Shrinkage and Selection Operator (LASSO, see Lim and Hastie
(2015)).

To develop the model, we further leveraged a class of ML algorithms called decision trees
to learn meaningful subgroups of patients that share statistical similarities in their baseline
characteristics, and second, to fit a TWL prediction model for each subgroup. For instance,
decision trees can predict weight loss when they are trained on a heterogeneous cohort of
different bariatric interventions such as RYGB, SG andAGB, according to the type of intervention
as well as using other variables such as the age at intervention, BMI and other clinical features.

To calibrate the decision trees, we used LASSO-extracted features as input for the Classifi-
cation and Regression Trees (CART) algorithm (Breiman et al., 1984). A workflow diagram of
the machine learning process is displayed in Figure G.3. The algorithm was calibrated on the
training subset of the training cohort. We further compared the predicted TWL to the observed
outcomes of patients in the testing subset of the training cohort (internal validation). Details
of the model development are reported in Appendix G.4.

Additionally, we compared that approach with other methods: classical linear models,
linear mixed effect model, random forest model, and CART on all variables without LASSO
using instead pruning for feature selection (Appendix G.5).

Model validation in external cohorts

The model was externally validated by comparing the observed (TWLit) and predicted (T̂WL
i

t)
total weight loss at each visit t for each participant i (among n) of eight distinct testing cohorts
(NOK, SGH, SOS, PRECOS, Roma, Lyon, COD and Mexico). For better readability, weight loss
was also computed as BMI (kg/m2) by converting predicted TWL into predicted weights by
using the formula:

Ŵt = W0

1− T̂WL
i

t

100

 kg . (8.4)
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The performances of the prediction model were calculated at each visit date and expressed
by the median absolute deviation (MAD, defined as the median of (|TWLit − T̂WL

i

t|)ni=1 ) which
measures dispersion of predicted TWL around the true values and is robust to outliers.2 We
also calculated the root mean squared error (RMSE, defined as

√
1/n

∑n
i=1(TWLit − T̂WL

i

t)2 ,
which jointly measures the model prediction bias and variance, but is more sensitive to outliers
as the square amplifies them. These two metrics were also expressed in terms of normalised
ratios as % of observed BMI for each visit. We used Bland-Altman plots with actual versus
predicted BMI at each specific time point (M12, M24 and M60) to assess model calibration.

Model validation in randomised controlled trials

In addition, we used the individual data from the two randomised clinical trials (SleevePass
and SM-BOSS) to replicate with our model, the previously reported comparison of RYGB
versus SG in terms of weight loss (Wölnerhanssen et al., 2021). The original report combined
and analysed weight follow-up data from the two studies for up to 5 years using a linear
mixed model. In our study, we replaced the observed individual weight loss values with those
predicted at each time point by our ML model and analysed them using the same linear mixed
model described in the original report in order to compare the predicted and observed mean
(95% CI) difference in weight loss between the two operations.

Statistical analysis

Patients’ characteristics were reported for each cohort as mean (SD) for continuous traits and n
(%) for categorical variables. Comparison of median weight loss between two groups were
performed usingMann-WhitneyU test, and between three ormore groups using Kruskal-Wallis
one-way ANOVA. MAD and RMSE were displayed as their estimates and 95% confidence
intervals (CI), estimated by bootstrap (BCa method, n = 10,000 replications). Weight loss
and BMI median trajectories of participants submitted to each operation in each cohort were
illustrated as a function of time using a nonlinear smoothing of the values observed at discrete
times (see Appendix G.2), which is not part of the validation and performance assessment.
The trajectories of patients are displayed along with prediction intervals of predicted BMI,
calculated as [prediction + 25th percentile of error, prediction + 75th percentile of error].

Patient features containing more than 50% of missing values were excluded from the
analysis. The remaining missing values were handled in two ways. For the LASSO analysis, the
predictive mean matching method was used based on key characteristics at baseline: weight,

2Technically, what we use is the median absolute error (MAE), whereas MAD is commonly defined as the median
of absolute deviations from the median, which is counterpart to standard deviation for absolute errors. We
purposefully use this terminology here to avoid confusion with the mean absolute error.
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sex, age, operation type, and presence of type 2 diabetes and its duration (Van Buuren and
Groothuis-Oudshoorn, 2011). We imputed n = 10 sets of data, and selected variables by
pooling the variable selected by LASSO in each dataset. The decision tree algorithm uses
surrogate variables for the CART analysis in the case of missing data (Therneau et al., 2015).

The analysis was performed using the R software version 3.6.3, the library rpart for the
CART implementation, and the libraries glmnet and glinternet for the LASSO implementation.
An online tool was developed based on two components: a front-end graphical user interface
coded with JavaScript using the React library, and a back-end prediction and smoothing model
coded in Python using the Flask microweb framework. We used the transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD AI) guidelines
(Collins et al., 2021) to report the prediction model’s development and validation.

For comparison, we also analysed results from previously published postoperative weight
loss prediction models (Karpińska et al., 2021) in Appendix G.6.

8.4 Results

Characteristics of training and testing cohorts

The training cohort from France (n=1493), and the testing cohorts from Europe (n=7137),
America (n=167), Asia (n=977), and the two randomised controlled trials used for validation
(n=457), represented a total of 10,231 patients from 12 centres in 10 countries, corresponding
to 30,602 patient-years. The baseline characteristics of participants of each cohort and the
proportion of each type of operation performed are summarised in Table 8.1. The overall
trajectories of the median (IQR) BMI and TWL observed during the five years after each
operation are summarised in Figure 8.2. Individual weights at baseline (SD) ranged from 65
to 295 (25.6) kg and BMI from 26.7 to 94.1 (7.5) kg/m2. Age at intervention ranged from 18
to 74 years. Among participants, 7,701 (75.3%) were female and 2,882 (28.2%) had type 2
diabetes at baseline. RYGB was the most frequent operation (n=6691, 65.4%), followed by SG
(n=2872, 28.1%) and AGB (n=668, 6.5%). At 5 years, the median (IQR) TWL was 26.8% (19.8;
34.0), ranging from -13.3% to 62.7%. Overall, the general shapes of weight loss trajectories for
each operation were similar among cohorts, with a nadir weight loss reached between 1 and 2
years, followed by limited weight regain afterward: median (IQR) 18.7% (4.1; 33.9) of maximal
weight loss across operations. Weight regain was significantly greater after SG compared to
RYGB (p<0.0001): 21.3% (5.3; 39.1) versus 15.0% (4.6; 27.1). At 5 years, RYGB resulted in
significantly higher median (IQR) total weight loss than SG and AGB (p<0.0001): 28.2% (21.7;
35.1) versus 23.6% (15.2; 31.6) and 14.9% (7.2; 25.3).
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Figure 8.2 – Smoothed observed median BMI (left) and total weight loss trajectories (right) with
corresponding IQR for each operation, for the training cohort, testing cohorts, and the randomised
controlled trial cohorts.
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Development of the predictive weight loss model

Feature selection. Among the 447 attributes available at baseline in ABOS, 62 (14%) were
excluded because ofmissing data, class imbalanced, or free text input. Among the 385 remaining
variables, the LASSO algorithm selected seven features that were associated with TWL% at
least at one postoperative visit: preoperative weight, height, type of intervention, age at intervention,
current smoking history, T2D status, and diabetes duration. The hierarchical group-LASSOmethod
selected the same features, aswell as two additional interactions: one between type of intervention
and T2D, and one between type of intervention and T2D duration. Training CART using the 9
variables selected by hierarchical group-LASSO did not modify the decision trees. The final
CART algorithm therefore used the seven features selected by LASSO for the TWL regression
task.

Feature stratification. At all postoperative times, the first and most discriminant branch of
decision trees divided the population by the type of intervention, with AGB being separated
from RYGB at all times. At one year, the second descendant branch separated patients by age.
The following descendant branch distinguished between SG and RYGB, only in older patients,
while smoking status distinguished younger patients. At two years, the second descendant
branch distinguished SG from RYGB. The following branch separated SG patients by age and
RYGB patients according to their diabetes status. At 5 years, AGB and SG were not separated.
The second descendant branch was T2D status (RYGB patients) and age (other patients).
Overall, RYGB and younger age were consistently associated with greater weight loss. Diabetes
status and longer diabetes duration were always associated with less weight loss. Smoking
was associated with greater weight loss, but only during the first year. Figure 8.3 illustrates the
corresponding trees at the main postoperative dates (M12, M24 and M60).
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Figure 8.3 – Regression trees for the prediction of TWL at month M12, M24 and M60.
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Internal validation. The model’s prediction performances were evaluated at 1, 2 and 5 years
in the testing subset of the training cohort (Figure 8.4). At 5 years, the estimates (95% CI)
of MAD and RMSE of BMI were 3.1 (2.7 - 3.4) kg/m2 and 4.9 (3.9 - 5.7) kg/m2, respectively,
corresponding to normalised estimates (95% CI) of MAD and RMSE of 8.9% (7.8% - 9.7%) and
14.0% (11.2% - 16.3%).

Prediction model performance in testing cohorts

The performances of themodel at 1 year, 2 years, and 5 years in the testing cohorts are detailed in
Figure 8.4, as well as in Tables 8.2 and 8.3. At 5 years, the overall mean weighted values of MAD
and RMSE of BMI across cohorts were 2.8 kg/m2 and 4.7 kg/m2, respectively, corresponding to
8.8% and 14.7% of BMI (normalised indices). The performances of the model were significantly
higher in RYGB (MAD 2.8, RMSE 4.4) than in SG (MAD 3.5, RMSE 5.6) and AGB (MAD 6.1,
RMSE 6.7), p<0.0001. Overall, the mean (SD) difference between predicted and observed BMI
at 5 years was -0.3 (4.3) kg/m2. The model showed satisfying calibration at all dates, as shown
in Figure G.4, with no major bias identified.

Performance of the model in randomised controlled clinical trials

We tested the model’s performance to predict the overall outcome of randomised controlled
trials comparing weight loss after RYGB and SG during 5 years. The results of our synthetic
study based on predicted weights were in overall agreement with those of the published
research, concluding to a significantly higher weight loss following RYGB as compared to SG.
The mean (95% CI) difference between the two groups was 14.7 (13.7; 15.7) percent of EWL
and 6.6 (6.2; 6.9) percent TWL in the synthetic study versus 7.0 (3.5; 10.5) percent of EWL and
3.2 (1.6; 4.7) percent TWL in the combined analysis of the two original studies (Wölnerhanssen
et al., 2021).
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Figure 8.4 – MAD (left) and normalised MAD (right) of predicted BMI outcomes, averaged by cohort
size (top), individual validation cohorts (centre), and by operation (bottom).
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Table 8.2 – Comparison of predicted outcomes in validation cohorts.
BMI difference in kg/m2 (SD) RMSE in kg/m2 (95% CI) Normalized RMSE in % of BMI (95% CI)
M12 M24 M60 M12 M24 M60 M12 M24 M60

Testing subset of
ABOS+BAREVAL
(n=293)

-0.2 (4.1) -0.5 (4.7) -1.0 (4.8) 4.1
(3.8; 4.4)

4.7
(4.0; 5.4)

4.9
(3.9; 5.7)

12.3
(11.4; 13.1)

14.0
(12.0; 16.1)

14.0
(11.2; 16.3)

External validation

NOK
(n=5888) 0.2 (3.3) -0.1 (4.1) -0.0 (4.7) 3.3

(3.2; 3.4)
4.1

(4.0; 4.2)
4.7

(4.5; 4.8)
11.2

(10.8; 11.3)
13.9

(13.5; 14.2)
15.0

(14.5; 15.5)

SGH
(n=977) -2.5 (3.7) -0.8 (4.0) -0.9 (4.0) 4.4

(4.2; 4.8)
4.1

(3.7; 4.6)
4.0

(3.6; 4.6)
14.5

(13.7; 15.5)
13.2

(12.1; 14.8)
12.4

(11.0; 14.2)

SOS
(n=642) 1.8 (4.4) 0.9 (4.9) -1.1 (4.9) 4.8

(4.4; 5.1)
5.0

(4.6; 5.3)
5.0

(4.7; 5.4)
15.1

(13.9; 16.1)
15.9

(14.6; 16.8)
15.1

(13.9; 16.3)

PRECOS
(n=237) -0.7 (4.5) -0.0 (4.7) -1.6 (6.0) 4.5

(4.0; 5.0)
4.7

(4.3; 5.3)
6.2

(5.6; 6.8)
13.2

(11.8; 14.7)
13.9

(12.5; 15.5)
17.2

(15.7; 19.0)

Roma
(n=200) -0.4 (3.8) 1.3 (4.0) 1.1 (4.6) 3.8

(3.3; 4.4)
4.2

(3.6; 5.2)
4.7

(4.3; 5.3)
12.6

(10.9; 14.6)
14.1

(12.1; 17.4)
15.0

(13.6; 16.8)

Lyon
(n=170) -1.2 (4.1) -1.4 (4.8) -0.5 (5.8) 4.3

(3.7; 4.9)
5.0

(4.3; 6.0)
5.8

(5.1; 6.9)
13.5

(11.9; 15.8)
16.0

(13.7; 19.4)
16.7

(14.8; 19.8)

COD
(n=126) -0.4 (3.1) -1.4 (2.2) -1.7 (2.2) 3.1

(2.8; 3.5)
2.6

(2.3; 2.9)
2.8

(2.5; 3.1)
12.7

(11.3; 14.3)
10.6

(9.6; 11.8)
10.6

(9.6; 11.7)

Mexico
(n=41) -0.9 (4.2) -1.0 (3.5) -0.3 (5.5) 4.3

(3.4; 5.5)
3.6

(2.7; 4.6)
5.4

(4.4; 7.1)
15.4

(12.3; 19.7)
12.9

(9.9; 16.4)
18.8

(15.2; 24.6)

SleevePass
(n=240) -1.0 (4.4) -0.2 (4.7) 0.2 (5.1) 4.5

(4.1; 4.9)
4.7

(4.3; 5.1)
5.1

(4.7; 5.7)
13.2

(12.1; 14.5)
13.6

(12.4; 15.0)
14.2

(12.9; 15.8)

SM-BOSS
(n=217) -1.1 (3.6) 0.1 (4.4) 0.2 (5.0) 3.7

(3.4; 4.2)
4.4

(4.0 ; 4.9)
4.9

(4.5; 5.7)
12.4

(11.2; 13.8)
14.4

(13.1; 16.0)
15.5

(14.0; 17.7)

Average
(weighted by
cohort sizes)

-0.1 (3.5) -0.1 (4.2) -0.3 (4.7) 3.7
(3.5; 3.9)

4.2
(4.0; 4.5)

4.7
(4.4; 5.0)

12.0
(11.4; 12.6)

14.0
(13.2; 14.8)

14.7
(13.8; 15.7)

Table 8.3 – Comparison of predicted outcomes by operation in validation cohorts.
BMI difference in kg/m2 (SD) RMSE in kg/m2 (95% CI) Normalized RMSE in % of BMI (95% CI)

M12 M24 M60 M12 M24 M60 M12 M24 M60

RYGB -0.0 (3.2) -0.4 (3.9) -0.3 (4.5) 3.2
(3.2; 3.3)

3.9
(3.9; 4.0)

4.5
(4.3; 4.6)

11.0
(10.8; 11.2)

13.5
(13.2; 13.8)

14.6
(14.1; 15.0)

SG -0.4 (4.3) 1.0 (4.8) 0.9 (5.6) 4.3
(4.2; 4.5)

4.9
(4.7; 5.2)

5.7
(5.4; 6.0)

13.2
(12.7; 13.8)

14.9
(14.2; 15.6)

16.2
(15.3; 17.2)

AGB 1.7 (3.9) 0.7 (4.1) -2.8 (4.3) 4.7
(4.2; 5.4)

4.7
(4.1; 5.3)

6.0
(5.4; 6.7)

13.6
(11.9; 15.3)

13.6
(12.0; 15.3)

16.6
(14.9; 18.4)
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Comparison with alternative models

The performances of our decision tree model were compared in training and testing cohorts
with benchmark models based on simple regression, linear mixed effect, random forest, and
CART with pruning. The decision tree approach outperformed simple regression at M12, M24
andM60 in both internal and external test data. The linearmixedmodel using the seven selected
variables, and modelling time as restricted cubic splines, with random intercept and slope, did
not outperform the decision tree model on both internal and external test data. Random forest
resulted in only marginally lower MAD estimates (confidence intervals largely overlapped).
CART with pruning selected only six variables: weight, height, age, T2D status and duration,
and the type of intervention, as compared to the seven variables with LASSO+CART, which
additionally selected smoking history. Triaging the variables with LASSO in the first place
resulted in better performances at M12, the only time point where smoking history appears in
the decision trees. Full results are reported in Figure G.5.

Comparison with models previously published in the literature

We identified 12 models that have been previously proposed to predict weight loss following
one or more of the three interventions analysed in the present study, during 1 to 5 years
(Baltasar et al., 2011; Wise et al., 2016; Goulart et al., 2016; Seyssel et al., 2018; Janik et al., 2019;
Velázquez-Fernández et al., 2019; Cottam et al., 2018). The accuracy of weight loss predicted by
these models, estimated by RMSE and normalised RMSE in the appropriate subset of patients
from the ABOS cohort, ranged from 3.8 to 6.1 kg/m2 and from 11.7 to 17.4 percent of BMI at one
year (6 models), compared to averages of 3.7 kg/m2 and 12.0 percent of BMI for our current
model. At 2 years, existing models ranged from 4.9 to 7.0 kg/m2 and 15.5 to 20.2 percent of
BMI (5 models), compared to 4.2 kg/m2 and 14.0 percent of BMI for our current model. Finally,
RMSE and normalised RMSE evaluated at 5 years among existing models were 5.4 kg/m2 and
15.8 percent of BMI (only 1 model), compared to 4.7 kg/m2 and 14.7 percent of BMI for our
current model. Moreover, using the Diebold-Mariano test (Harvey et al., 1997) to compare
forecasts from two competing prediction models, we established that the increased accuracy of
our model was significant compared to at least half the benchmark models. The individual
results of these models are detailed in Tables G.1 and G.2.

Online weight loss trajectory calculator

Themachine learningmodel developed in the present studywas then integrated into a software3
allowing to display the 5-year weight trajectory that can be expected for a given patient prior

3This software is owned by Inria, CHU Lille and Université de Lille, and is protected by the digital deposit
IDDN.FR.001.370002.000.S.P.2022.000.31230, Agence pour la Protection des Programmes (APP).
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to the intervention according to the seven key baseline characteristics included in the model.
The graphical output of the model was presented and discussed among investigators and
patient representatives. The resulting user-friendly calculator displays the predicted weight
trajectory at any given time, alongside prediction intervals corresponding to IQR of prediction
errors. By default, individual predicted trajectories are expressed in kg. According to the
user’s choice, results can also be displayed in kg/m2, % of TWL, or % of EWL. To improve
readability, predicted trajectories over time for each of these metrics are displayed as smooth
curves. Figure 8.5 displays two illustrative examples of BMI and TWL trajectories predicted
for individual patients from the current version of the calculator available online (https://
bariatric-weight-trajectory-prediction.univ-lille.fr, see Figure 8.6).
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Figure 8.5 – Predicted trajectory and IQR of BMI (left) and total weight loss (right) for a 30-year-old
patient with a weight of 150 kg, a height of 1·80 m, who was a non-smoker, without diabetes, undergoing
Roux-en-Y gastric bypass and sleeve gastrectomy (top); and for a 30 years old patient with a weight of
150 kg, height of 1·80 m, who was a non-smoker undergoing Roux-en-Y gastric bypass without diabetes
and with type 2 diabetes with 10 years duration (bottom).
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Figure 8.6 – Bariatric Weight Trajectory Prediction website.

8.5 Discussion

We developed a machine learning model that provides accurate individual weight trajectories
expected during 5 years after bariatric surgery, based on seven simple preoperative variables,
namely age, weight, height, smoking history, T2D status and duration, and the type of interven-
tion. These variables are readily available in a variety of clinical settings without interpretation
and do not require laboratory tests. The model was validated globally, in 8 cohorts and two
randomised controlled trials, in Europe, the Americas, and Asia, and incorporated in an
easy-to-use and interpretable web-based tool providing individual preoperative prediction of
postoperative weight loss trajectory.

This accessible and interpretable model is the first to provide preoperative predictions of
weight trajectories up to 5 years after surgery, simultaneously for three of the most common
types of surgery, i.e. RYGB, SG and AGB. Our results highlighted the association of the type
of operation and diabetes status with weight trajectories. The present study also showed the
impact of diabetes duration and smoking, which were not previously included in weight loss
surgery prediction models.

As expected, the type of surgery was the first node to appear in the decision tree. Inter-
estingly, SG and RYGB were not distinguishable at one year but separated soon after. This is
consistent with recent literature (Peterli et al., 2012). While some early reports showed similar
weight loss after RYGB and SG at one (Peterli et al., 2012) and two years (Fischer et al., 2012),
a meta-analysis of randomised clinical controlled trials (Wölnerhanssen et al., 2021) as well
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as a large matched controlled cohort study have shown the superiority of RYGB as compared
with SG at 5 years. Additionally, a synthetic emulation of the combined analysis of the two
randomised controlled trials (Wölnerhanssen et al., 2021) based on our model, resulted in a
similar conclusion to the original report, albeit resulting in a larger difference between the
two operations. This illustrates that differences in weight loss outcomes may be larger in non-
randomised settings where patient and care provider preferences drive procedure selection
(Arterburn et al., 2021).

Several studies have already suggested that weight loss is lower in patients with T2D,
particularly in those with uncontrolled diabetes (Parri et al., 2015; Shantavasinkul et al., 2016;
Diedisheim et al., 2021). In the Longitudinal Assessment of Bariatric Surgery (LABS) study, the
presence of T2D at baseline was associated with reduced weight loss after surgery (Courcoulas
et al., 2015). In the present study we found that TWL also lowers when duration of diabetes
increases. Diabetes duration is a predictor of disease severity, and a proxy of declined β-cell
function, which was also associated with lower weight loss one year post bariatric surgery
(Borges-Canha et al., 2021).

Most of the studies that looked at preoperative smoking patterns did not demonstrate
any association between smoking and postoperative weight loss (Mohan et al., 2021). A
minority of studies reported small differences in postoperative weight loss between smokers
and nonsmokers (Mohan et al., 2021); these differences became non-significant with longer
follow-up, which is consistent with our model, which splits the population based on history
of smoking only during the first year after surgery. Of note, our prediction algorithm did not
identify sex as a significant predictor of postoperative weight loss, in line with several previous
reports (Parri et al., 2015; Mousapour et al., 2021; Tankel et al., 2020).

In contrast to previous studies, relying on handpicked features and linear models, the
present study leverages a machine learning approach. LASSO is an alternative to multivariate
regression that enforces sparsity in the covariates used for prediction. Notably, all variables
selected by LASSO in the present study were clinical traits, as opposed to the many continuous
biological variables available in ABOS. The CART algorithm learns a tree stratification of
covariates that identifies relationships beyond the scope of traditional analysis techniques
(Barnholtz-Sloan et al., 2011). Tree-based models are well-suited to capture nonlinear effects of
mixed nominal, ordinal, and continuous attributes and have been recently shown to outperform
deep learning on tabular data (Grinsztajn et al., 2022). In addition, this learned stratification
of patient attributes allows for a clear interpretation of the predicted outcomes. CART also
provides critical variable thresholds and their directional influences on the outcomes. Unlike
multivariate linear regression approaches, CART learns nonparametric models that do not
require a strong specification of themapping between covariates and outcomes. These strengths
are especially valuable in addressing the data heterogeneity commonly associated with clinical
datasets. Descending in the decision tree, it is possible to draw the involvement of different
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features, the combination of which allows to define with higher accuracy the clinico-biological
characteristics of an individual with higher or lower weight loss. Another remarkable feature is
that by exploring the tree from root to leaves, CART divided the population based on diabetes
status or diabetes duration, only for patients submitted to RYGB.

Our study has several limitations. First, the machine learning algorithm selected only seven
simple clinical features. It is possible that the prediction can be improvedwithmore performant
classes of algorithms, such as random forest or deep learning (Ge and Wong, 2008). However,
such methods would require more training data and provide a less interpretable model, which
we consider as a decisive criterion for implementation in patients’ care settings. Indeed, more
complex models are not straightforwardly interpretable by humans, undermining trust (Stiglic
et al., 2020). Concerns about such black box algorithms are increasingly highlighted as one
of the primary barriers to the adoption of ML in the healthcare context (Petch et al., 2022).
Second, the extensive clinical and biological data set used for model development only included
a limited number of socioeconomic, ethnic, behavioural, and nutritional aspects, which may
influence postoperative weight loss trajectories. Likewise, we did not evaluate the added
value of genetic analyses (de Toro-Martin et al., 2018; Antoine et al., 2022) or of new disease
stratification (Raverdy et al., 2022). Third, our analysis was limited to the three most performed
operations worldwide. AGB has been less frequently performed in recent years, and several
new and rapidly increasing operations, such as one anastomosis gastric bypass or endoscopic
sleeve gastrectomy, were not included because of a scarcity of a large number of patients with
5 years of follow-up data. In addition, we did not include reoperations in our model. Fourth,
except for the SGH, COD, and Mexico cohorts, the majority of individuals enrolled in our
study were White, especially those submitted to AGB. Therefore, our results should be further
replicated in non-White populations. Finally, our study was focused primarily on weight loss
and not obesity complications, like type 2 diabetes, hypertension, or non-alcoholic fatty liver
disease (Bauvin, 2020). We also did not analyse the risks associated with surgery (Thereaux
et al., 2019), but we appreciate that these are also essential to inform clinical decision.

In summary, we have developed and validated an easy to use and interpretable model that
provides individual predictions of weight loss trajectory after bariatric surgery. We have shown
its generalisability and transportability across multiple cohorts in Europe, America, and Asia,
as well as its performance in intervention clinical trials.

Individual weight loss trajectory prediction appears to be an accurate and simple strategy
to inform clinical decisions for both healthcare providers and patients prior to surgery. Our
model can also be used postoperatively to identify patients whose actual weight loss trajectories
differ from their predicted trajectory, thus allowing the timely implementation of appropriate
clinical interventions.
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8.6 Extensions and related works

We conclude by summarising several follow-up works around the use of machine learning in
bariatric surgery and various extensions of our weight loss prediction model. Except the first
one, these studies have not yet been published and are awaiting further data collection and
analyses. Accordingly, we only provide a high-level description and share early results.

Causal analysis of the impact of robotic assistance in bariatric surgery. While the benefits
of robotic assistance were established at the beginning of surgical training, there is limited
data on the robot’s influence on experienced bariatric laparoscopic surgeons. We conducted a
retrospective study using the BRO clinical database (2008-2022), collecting data from patients
operated on in expert centres. We compared the rate of serious postoperative complications
(defined as a Clavien score equal to 3 or higher) in patients undergoing metabolic bariatric
surgery with and without robotic assistance. From a set of 14 explanatory variables, we
constructed a directed acyclic graph (DAG) from expert knowledge to identify an adjustment set
used in a multivariate linear regression to account for causality, as well as a propensity score
matching to calculate the average treatment effect (ATE) of robotic assistance. We further validated
the conclusions of these standard methods with recent techniques for causal inference, namely
targeted maximum likelihood (TMLE, Schuler and Rose (2017)) and double debiased machine learning
with boosted trees learners (DML, Chernozhukov et al. (2018)), that are able to accurately
estimate both outcomes and confounding mechanisms simultaneously.

The study included 35,043 patients (24,428 SG, 10,452 RYGB and 163 single anastomosis
duodenal-ileal bypass with sleeve gastrectomy [SADI-S]), with 938 operated on with robotic
assistance (801 SG, 134 RYGB, and 3 SADI-S), among 142 centres in France. Overall, we found
no benefit of robotic assistance regarding the risk of complications (ATE = −0.05, p = 0.794),
with no difference among derivation surgeries (RYGB and SADI-S, p = 0.322) but a negative
trend in the SG group towards a higher risk of complications (p = 0.060). Length of hospital
stay was significantly decreased in the robot group (3.7 ± 11.1 vs 4.0 ± 9.0 days, p < 0.001).
Further details may be found in the published version of this study (Caiazzo et al., 2023).

Extension to OAGB. In an effort to support the ever-growing prevalence of severe obesity,
other types of bariatric interventions have been developed to complement the existing range of
surgical options. An example of such recent advances is the laparoscopic one-anastomosis gastric
bypass (OAGB), a derivation surgery similar to RYGB. We are currently gathering a cohort of
patients to (i) investigate the accuracy of the RYGB weight predictor for this operation, and (ii)
retrain the tree-based model described above to provide OAGB-specific predictions.
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Extension to teenagers and young adults. While the ABOS cohort comprised patients aged
18 or older, young adults (25 or younger) represented only 10% of the study population, which
raises the question of the applicability of the prediction model for paediatric bariatric surgery.
Weight loss surgical interventions have been performed on teenagers in France since the late
2000s in expert centres and under strict conditions for preparation and follow-up, to address the
issue of increased prevalence of severe obesity at a young age. We have enrolled 329 patients
from 5 centres in France and we are looking to expand this dataset by collaborating with other
centres across Europe. This initial cohort was presented at the 32nd Annual Congress of the
European Childhood Obesity Group (Thivel et al., 2023). Here again, we expect to retrain the
regression model to provide predictions tailored to the case of paediatric surgery.

Added value of genetic analysis. Finally, we mention a natural extension of our model to
incorporate genetics to further personalise and refine weight loss predictions. The elementary
block of genetic information is the single nucleotide polymorphism (SNP), representing a genomic
variant at a single base position in the DNA, which can be acquired e.g. by genotyping from a
blood sample. A rigorous way to identify significant correlations between SNPs and phenotype
(i.e. the observable traits, in our case weight loss) is to perform a genome-wide association
study (GWAS). Such studies are however difficult to implement as they require large samples
of individuals to support the high-dimensional SNP statistics and prevent the discovery of
spurious correlations. An alternative to GWAS consists in calculating a polygenic risk score (PRS)
for a specific outcome, typically the average of a subset of SNPs weighted by the odds ratio or
regression weights of a logistic or linear regression on said SNPs. For instance, de Toro-Martin
et al. (2018) considered 186 SNPs previously associated with BMI and predicted the long-term
success or failure of bariatric surgery, as defined by a target of excess weight loss (EWL), for
an intervention called biliopancreatic diversion with duodenal switch in a population of n=865
patients. Denoting by SNPi ∈ R186 the vector of SNPs and by Yi the Bernoulli random variable
encoding the success of surgery for patient i ∈ {1, . . . , n}, they fitted a logistic model

E [Yi | SNPi] = σ (⟨β,SNPi⟩) , (8.5)

where β ∈ R186 and σ : z 7→ 1/(1 + exp(−z)) is the sigmoid function. The corresponding PRS
for patient iwas then derived by the formula

PRSi =
186∑
j=1

ORjSNPi,j , where ORj = eβj . (8.6)

As part of an ongoing work, we are investigating the added value of this PRS in the ABOS
cohort for predicting weight loss (which is a continuous outcome, rather than a binary one
as in the logistic model). Early results suggest a small improvement at M60 for SG and AGB,
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effectively reducing prediction bias, but no significant effect for RYGB and earlier postoperative
dates. Of note, we arrived at a similar conclusion by retraining the PRS in the ABOS cohort on
continuous weight loss prediction directly. Interestingly, RYGB is expected to be less sensitive to
genetic information as it radically alters themetabolism (more so than competing interventions);
similarly, initial weight loss (up to 2 years after surgery) is conditioned by the intervention and
the phenotype of the patient (such as the presence of type 2 diabetes), while weight regain
(between 2 and 5 years) appears to be affected by the environment and genetic variations.

244



Take-home message:

�We can forecast weight loss trajectories af-
ter bariatric surgery from a small number
of simple clinical features using a white
box model.

We have implemented a simple, highly interpretable machine learning pipeline to predict
postoperative weights in a heterogeneous population and validated it internationally. This
tree-based approach offers an alternative to the widespread linear models ubiquitous in the
medical literature on obesity. In particular, our model was able to discriminate patients based
on a small number of attributes, including:

• intervention type: gastric bypass and sleeve gastrectomy induce differentiated long
term weight trajectories, with higher weight loss potential for the former;

• age: surgery is more efficient on younger patients;

• type 2 diabetes: hinders weight loss, more so for severe (longer duration) diabetes.

We foresee two potential uses for this tool:
• At the preoperative stage: to help surgery candidates visualise and anticipate their

future weight loss;

• At the postoperative stage: to help medical staff identify complications (significant
deviations from weight trajectories predicted before surgery).

The latter may pave a way towards building a data-driven recommender system to improve
postoperative care.
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Chapter 9

Conclusion and perspectives

Anicetus villam statione circumdat refractaque ianua obvios
servorum abripit, donec ad fores cubiculi veniret; cui pauci
adstabant, ceteris terrore inrumpentium exterritis. cubiculo
modicum lumen inerat et ancillarum una, magis ac magis anxia
Agrippina, quod nemo a filio ac ne Agermus quidem: aliam fore
laetae rei faciem; nunc solitudinem ac repentinos strepitus et extremi
mali indicia. abeunte dehinc ancilla, “tu quoque me deseris?”

— Tacitus, The Annals

In this concluding chapter, we address potential future research directions for both the
mathematical foundations and the medical applications of sequential learning.

Short-term. We would like to further develop the second order sub-Gaussian concentration
studied in Chapter 4 and the Dirichlet sampling scheme for linear bandits introduced in
Chapter 7. For the former, we believe a better understanding of this new model specification
(in particular, the role of the parameter ρ) would help strengthen intuition regarding which
probability distribution fits within this new scope and facilitate its adoption as a practical
modelling alternative. For the latter, we plan to liaise with experts on strong approximation
to lift the theoretical roadblocks towards a formal regret analysis. Both are intended to be
submitted for publication in the near future.

On the medical front, we have hinted at several direct extensions of the weight trajectory
prediction model in Chapter 8, to include more operations (OAGB), more patients (paediatrics)
and more predictor variables (genetics). These are currently ongoing works and are expected
for publication in the coming year.
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Medium-term. We intend this thesis to fit within a recent trend in machine learning and
statistics that calls for more transparent and efficient empirical studies. We hope to draw
attention to the importance of safe, anytime-valid statistics, heralded by the recent advances
in E-processes. We also advocate for nonparametric methods, including Dirichlet sampling
strategies but also other subsampling and resampling schemes, permutation tests, etc., as a
powerful way to mitigate model misspecification. We hope the contributions we made in this
thesis foster more research in these directions and raise awareness among practitioners.

Furthermore, we emphasise that the weight prediction model presented in Chapter 8 is
only the first step in the collaboration between Inria Scool and Lille University Hospital. Going
further, we hope to make it a proof of concept to develop prediction models for other outcomes,
starting with blood glucose for patients living with type 2 diabetes, and progressively building
towards long-term postoperative complications. In addition to the problem of predicting,
we also intend to address the learning of follow-up policies, i.e. recommending visits and
postoperative pathways to reduce complications and optimise costs for both the medical staff
and the patients. During the course of this thesis, Inria Scool and Lille University Hospital
have obtained a grant from the French national research agency (ANR) to fund future work on
these aspects under the BIP-UP project (https://anr.fr/Project-ANR-22-CE23-0031).

Long-term. Last, a major practical limitation of the prediction model we developed for
bariatric surgery is that it only operates at the preoperative stage. Ideally, we would like
to be able to add new information after surgery, for instance weights measured during follow-
up visits, to refine the prediction at later visits. Beyond the development and validation of
such a new model, this raises the question of the integration of this tool within a digital health
platform. Indeed, healthcare policymakers in France recently promoted the use of shared
medical records (the nationwide Dossier Médical Partagé, as well as regional initiatives such as
the Prédice programme in the Hauts-de-France), which we believe could constitute a promis-
ing venue for the dissemination of our tool; for instance, weights measured at any visit to
the general practitioner or the hospital could feed automatically into a postoperative model
and update future predictions on the fly. We anticipate that this would require a significant,
long-term effort of coordination and communication across actors in academic research, health
administration, medical professionals, IT service providers, data regulation and politics.
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Appendix A

Background material on statistical
sequential decision-making models

Contents
A.1 Technical results on stochastic bandits . . . . . . . . . . . . . . . . . . . . . . 249

A.2 Technical results on statistical models. . . . . . . . . . . . . . . . . . . . . . . 258

A.3 Technical results in concentration of measures . . . . . . . . . . . . . . . . . 259

A.4 Some benchmarks for concentration . . . . . . . . . . . . . . . . . . . . . . . 271

A.1 Technical results on stochastic bandits

Comments on the definition of stochastic bandits. Alternatively to the reward process intro-
duced inDefinition 1.2, we could have defined a reward process for all arms Ỹ = (Ỹ k

t )k∈[K],t∈N ∼
ν⊗N and considered instead the reward process Ỹπ = (Ỹ πt

t )t∈N. Importantly, the process Ỹ is not
adapted to the natural bandit filtration since for t ∈ N and k ∈ K\{πt}, Ỹ k

t is not Gπt -measurable.
In other words, a bandit model represents a partial information setting: the random variable
πt is the arm pulled by the agent at time t ∈ N, and only the corresponding reward random
variable is observed, not the rewards corresponding to the arms not taken. Both formulations
are actually equivalent. Indeed, let (τk,πn )k∈[K],n∈N = (inf{t ∈ N, Nk,π

t = n})k∈[K],n∈N be the
sequence of times when each arm is pulled according to policy π. Then for k ∈ [K], Doob’s
optional skipping theorem (Kallenberg, 1997; Chow and Teicher, 2003) applied to the i.i.d.
sequence (Ỹ k

t )t∈N and increasing sequence (τk,πn )n∈N shows that (Ỹ k
τk,πi

)ni=1
D= (Ỹ k

i )ni=1, i.e. they
are equally distributed as ν⊗n

k for all n ∈ N, and thus the processes Yπ and Ỹπ are equivalent.
Both the global (Y, running time t) and local (Ỹ, counting pullsNk

t = n) points of viewmay be
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convenient depending on the situation. For clarity, we use the following notations throughout
this thesis, where k ∈ [K] represents an arm.

• Global: at time t ∈ N,
– reward history: Ykt = (Ỹ k

τki
)N

k
t

i=1
D= (Y k

i )N
k
t

i=1 ∼ ν
⊗Nk

t
k ;

– empirical measure ν̂kt = 1
Nk
t

Nk
t∑

i=1
δ
Ỹ k
τk
i

D= 1
Nk
t

Nk
t∑

i=1
δY ki

;

– empirical mean µ̂kt = 1
Nk
t

Nk
t∑

i=1
Ỹ k
τki

D= 1
Nk
t

Nk
t∑

i=1
Y k
i .

• Local: at sample size n ∈ N,
– reward history: Yk(n) = (Ỹ k

τki
)ni=1

D= (Y k
i )ni=1 ∼ ν

⊗n
k ;

– empirical measure ν̂k(n) = 1
n

n∑
i=1

δ
Ỹ k
τk
i

D= 1
n

n∑
i=1

δY ki
;

– empirical mean µ̂k(n) = 1
n

n∑
i=1

Ỹ k
τki

D= 1
n

n∑
i=1

Y k
i .

Going further, to avoid cluttering, we only use the second notation Y, thus implicitly referring
to the skipped process (Ỹ k

τkn
)n∈N when adopting the global point of view. Moreover, for T ∈ N,

we use the notations YπT = (Y πt
t )Tt=1 and ν⊗T

π ∈ M+
1 (RT ) to denote the distribution of this

sequence. Note that this is not a product measure (the sequence YπT is not independent) even
though ν is, since the policy π introduces a coupling between the arms. In simpler words, if for
instance π is designed to select arms that generated high rewards in previous rounds, future
rewards are partially caused by past rewards — if arm k is pulled at time t, it is because arm k

performed well at times s < t.

Equivalence between high probability and expected pseudo regret bounds.
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Lemma A.1 . Let T ∈ N. Assume that Eπ,ν⊗T
π

[Rπ,ρ,νT ] ⩽ f(T ) ∈ R⋆+. Then for any δ ∈ (0, 1), we
have

Pπ,ν⊗T
π

(
Rπ,ρ,νT ⩽

f(T )
δ

)
⩾ 1− δ . (A.1)

Conversely, if for all δ ∈ (0, 1), Pπ,ν⊗T
π

(
Rπ,ρ,νT ⩽ g(δ, T )

)
⩾ 1− δ, the following bounds hold.

(i) If there exists ∆̄ ∈ R⋆+ such that max
1⩽t⩽T

(
max
k∈[K]

ρt(νkt )− min
k∈[K]

ρt(νkt )
)

⩽ ∆̄, then

Eπ,ν⊗T
π

[Rπ,ρ,νT ] ⩽ g

( 1
T
, T

)
+ ∆̄ . (A.2)

(ii) If there exists g−1
T : u ∈ R⋆+ → R⋆+ such that g(g−1

T (u), T ) ⩽ u for all u ∈ R⋆+, then

Eπ,ν⊗T
π

[Rπ,ρ,νT ] ⩽
∫ +∞

0
g−1
T (u)du . (A.3)

(iii) If there exists g(T ) ∈ R⋆+ such that g(δ, T ) =
√

2 log(1/δ)g(T ) for all δ ∈ (0, 1), then

Eπ,ν⊗T
π

[Rπ,ρ,νT ] ⩽
√
π

2 g(T ) . (A.4)

Proof of Lemma A.1. First, note that Rπ,ρ,νT is a nonnegative random variable. The first result
follows immediately from Markov’s inequality, i.e. for any u ∈ R⋆+, we have

Pπ,ν⊗T
π

(
Rπ,ρ,νT ⩾ u

)
⩽

Eπ,ν⊗T
π

[Rπ,ρ,νT ]
u

⩽
f(T )
u

, (A.5)

and we can set u = f(T )/δ for any δ ∈ (0, 1). Conversely, for (i), we have

Rπ,ρ,νT = Rπ,ρ,νT 1Rπ,ρ,ν
T ⩽g(δ,T ) +Rπ,ρ,νT 1Rπ,ρ,ν

T >g(δ,T )

⩽ g(δ) +Rπ,ρ,νT 1Rπ,ρ,ν
T >g(δ,T )

⩽ g(δ) + ∆̄T1Rπ,ρ,ν
T >g(δ,T ) . (A.6)

Taking the expectation on both sides and setting δ = 1/T yields the result. For (ii), we use the
classical identity E[Y ] =

∫+∞
0 P(Y ⩾ u)du for a nonnegative random variable Y to obtain

Eπ,ν⊗T
π

[Rπ,ρ,νT ] =
∫ +∞

0
Pπ,ν⊗T

π

(
Rπ,ρ,νT ⩾ u

)
du ⩽

∫ +∞

0
Pπ,ν⊗T

π

(
Rπ,ρ,νT ⩾ g(g−1

T (u), T )
)
du
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⩽
∫ +∞

0
g−1
T (u)du . (A.7)

Finally for (iii), we use the above inequality with g−1
T : u ∈ R⋆+ 7→ e

− u2
2g(T ) such that

Eπ,ν⊗T
π

[Rπ,ρ,νT ] ⩽
∫ +∞

0
e

− u2
2g(T )du =

√
π

2 g(T ) , (A.8)

where we used the expression of the c.d.f. of the Gaussian distribution N (0, g(T )). ■

The O(
√

log 1/δ) dependency of the high probability regret bound is standard and is a
typical byproduct of concentration inequalities at level δ (see Section 1.4).

Pseudo regret decomposition.

Proof of Proposition 1.5. The first formula follows from a simple inversion of sums:

Rπ,ρ,νT =
T∑
t=1

ρ⋆(ν)− ρ(νπt) =
T∑
t=1

∑
k∈[K]

(ρ⋆(ν)− ρ(νk))1πt=k =
∑
k∈[K]

∆ρ,ν
k Nk

T , (A.9)

and noting that ∆ρ,ν
k⋆ = 0 by definition of the optimal arm k⋆. The second one is immediate

using the linearity of expectation and the fact that ∆ρ,ν
k is a constant for each arm k ∈ [K]. ■

Instance-dependent lower bound for multiarmed bandits. (�).

Proof of Theorem 1.6. Let ν′ ∈ F be another measure such that ν is absolutely continuous with
respect to ν′, and let Yπ,νT = (Y πt,ν

t )Tt=1 and Yπ,ν
′

T = (Y πt,ν′

t )Tt=1 be sequences of rewards drawn
from T rounds of the bandit model with measure ν and ν′ respectively. We assume that π
is a deterministic policy (the general case follows from simple conditional arguments on the
external randomisation (G⊥

t )t∈N). The fundamental change of measure inequality of Maillard
(2019b, Lemma 3.3) shows that

Eν⊗T
π

[
log dν⊗T

π

dν′⊗T
π

(
Yπ,ν,πT

)]
= KL(ν⊗T

π ∥ ν′⊗T
π ) ⩾ sup

g : RT→[0,1]
kl
(
EY′∼ν′⊗T

π
[g(Y′)],EY∼ν⊗T

π
[g(Y)]

)
,

(A.10)

where we recall the definition of the Bernoulli Kullback-Leibler divergence:

kl : [0, 1]× [0, 1] −→ R

(p, q) 7−→ p log p
q

+ (1− p) log 1− p
1− q . (A.11)
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Moreover, the following likelihood factorisation result holds:

Eν⊗T
π

[
log dν⊗T

π

dν′⊗T
π

(
Yπ,ν,πT

)]
= Eν⊗T

π

[
T∑
t=1

log dνπt
dν ′

πt

(Y πt,ν
t )

]
(independent arms)

= Eν⊗T
π

 ∑
k∈[K]

T∑
t=1

log dνk
dν ′

k

(Y k,ν
t )1πt=k


=
∑
k∈[K]

T∑
t=1

Eν⊗T
π

[
Eν⊗T

π

[
log dνk

dν ′
k

(Y k,ν
t )1πt=k

∣∣∣∣∣ πt
]]

=
∑
k∈[K]

T∑
t=1

Eν⊗T
π

[
1πt=kEν⊗T

π

[
log dνk

dν ′
k

(Y k,ν
t )

]]

=
∑
k∈[K]

T∑
t=1

Eν⊗T
π

[
1πt=kKL(νk ∥ ν ′

k)
]

=
∑
k∈[K]

Eν⊗T
π

[
Nk,π
T

]
KL(νk ∥ ν ′

k) . (A.12)

We now fix a suboptimal arm k ∈ [K] \ {k⋆}. Combining the two results above and singling
out the number of pulls to arm k, which yields:

Eν⊗T
π

[
Nk,π
T

]
⩾ sup

g : RT→[0,1]

kl
(
EY′∼ν′⊗T

π
[g(Y′)],EY∼ν⊗T

π
[g(Y)]

)
−
∑
j∈[K]\{k} Eν⊗T

π

[
N j,π
T

]
KL(νj ∥ ν ′

j)
KL(νk ∥ ν ′

k)
.

(A.13)

Let ε ∈ [0, 1) and define the event Ωε = {Nk,π
T > T 1−ε} and g = 1Ωε . By Markov’s inequality,

we have

EY∼ν⊗T
π

[g(Y)] = Pν⊗T
π

(
Nk,π
T > T 1−ε

)
⩽ T−(1−ε)Eν⊗T

π

[
Nk,π
T

]
= o(1) , (A.14)

since π is strongly consistent over F . Now, because ρ is confusable over F , ν′ can be chosen
so that ν ′

j = νj for j ∈ [K] \ {k} and ρ(ν ′
k) > ρ⋆(ν). Using again Markov’s inequality and the

trivial identity T = Nk,π
T +

∑
j∈[K]\{k}N

j,π
T , we have

log
(
1− Pν′⊗T

π
(Ωε)

)
= logPν′⊗T

π

 ∑
j∈[K]\{k}

N j,π
T ⩾ T − T 1−ε


⩽ − log

(
T − T 1−ε

)
+ log

 ∑
j∈[K]\{k}

Eν′⊗T
π

[
N j,π
T

]
= − log T + o(log T ) , (A.15)

253



since the uniform efficiency also applies to ν′ ∈ F . Therefore, the kl terms simplifies asymptot-
ically when T → +∞:

kl
(
EY′∼ν′⊗T

π
[g(Y′)],EY∼ν⊗T

π
[g(Y)]

)
= Pν⊗T

π
(Ωε) log

Pν⊗T
π

(Ωε)
Pν′⊗T

π
(Ωε)

+
(
1− Pν⊗T

π
(Ωε)

)
log

(
1− Pν⊗T

π
(Ωε)

1− Pν′⊗T
π

(Ωε)

)
= log T + o (log T ) . (A.16)

Finally, since νj = ν ′
j for j ∈ [K] \ {k}, the corresponding KL terms vanish, which gives

lim inf
T→+∞

Eν⊗T
π

[
Nk,π
T

]
log T ⩾

1
KL(νk ∥ ν ′

k)
. (A.17)

This inequality holds for any measure ν ′
k that satisfies the confusability property of ρ, therefore

we can take the sup of such measures, which gives the lower bound on the expected number of
pulls. The lower bound on the expected pseudo regret follows immediately fromProposition 1.5.

■

Minimax lower bound for contextual bandits. (�).

Proof of Theorem 1.10. We follow the steps of Lattimore and Szepesvári (2020, Theorems 24.1
and 24.2), but extend the proofs beyond Gaussian bandit models. In particular, we construct
an explicit instance of linear bandit parametrised by some θ ∈ Rd that suffers Ω(d

√
T ) expected

pseudo regret. Let ∆ ∈ R⋆+ and fix θ ∈ {±∆}d. For t ∈ N, under the contextual bandit
model νθ, by definition of the optimal action, we recall that X⋆

t = argmaxx∈X ⟨θ, x⟩. For a fixed
i ∈ {1, . . . , d}, we consider θ̄i ∈ {±∆}d built from θ by flipping its i-th coordinate, i.e. θj = θ̄ij
for j ̸= i and θ̄ii = −θi. Note that this defines an equivalence relation on {±∆}d where θ ∼ θ′ if
and only if θ′ = θ̄i, which induces a partition {Di

n}2
d−1
n=1 of {±∆}d where Di

n = {θn, θ̄in} for all
n ∈ {1, . . . , 2d−1}.

Case (i): X = Bd∥·∥∞
(0, 1). We have X⋆

t = (X⋆
t,i)di=1 and X⋆

t,i = sign(θi) for all i ∈ {1, . . . , d},
and thus the pseudo regret takes the form

EX,θ[RX,ρ,νθ
T ] = EX,θ

[
T∑
t=1

ρ(νθ(X⋆
t ))− ρ(νθ(Xt))

]
= EX,θ

[
T∑
t=1
⟨θ,X⋆

t −Xt⟩
]

= EX,θ

[
T∑
t=1

d∑
i=1

(sign(θi)−Xt,i)θi

]
. (A.18)
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Therefore, regret is accumulated along the coordinate iwhenever Xt,i is not aligned with θi.
Moreover, each summand can be lower bounded as (sign(θi) − Xt,i)θi ⩾ ∆1sign(θi )̸=sign(Xt,i).
Hence, it is natural to consider the event

Eθ,i =
(

T∑
t=1

1sign(θi )̸=sign(Xt,i) ⩾
T

2

)
, (A.19)

and similarly for Eθ̄i,i. Simple algebra coupled with the definition of the total variation distance
and Pinsker’s inequality (recalled in Section 1.1) yields the following inequalities:

PX,θ̄i(Eθ,i)− PX,θ(Eθ,i) ⩽ δTV(PX,θ,PX,θ̄i)

⩽

√
1
2KL(PX,θ ∥ PX,θ̄i)

= PX,θ̄i(Eθ,i) + PX,θ̄i(Ēθ,i)− 1 +
√

1
2KL(PX,θ ∥ PX,θ̄i) , (A.20)

where Ēθ,i is the complement event of Eθ,i. Since θi and θ̄ii are of opposite signs by construction,
we have Ēθ,i = Eθ̄i,i. Therefore, we deduce that

PX,θ(Eθ,i) + PX,θ̄i(Eθ̄i,i) ⩾ 1−
√

1
2KL(PX,θ ∥ PX,θ̄i)

= 1−

√√√√1
2

T∑
t=1

EX,θ

[
log dνθ(Xt)

dνθ̄i(Xt)
(Yt)

]

= 1−

√√√√1
2

T∑
t=1

EX,θ

[
EX,θ

[
log dνθ(Xt)

dνθ̄i(Xt)
(Yt)

∣∣∣∣∣ Xt

]]

⩾ 1−

√√√√1
2

T∑
t=1

EX,θ

[
g

( 1
σ
⟨θ − θ̄i, Xt⟩

)]

= 1−

√√√√1
2

T∑
t=1

EX,θ

[
g

(2∆Xt,i

σ

)]

= Ω
(
T∆2

σ2

)
. (A.21)

which holds if ∆ = O(σT−1/2). Note that this inequality involves two parameters θ and θ̄i
simultaneously. To disentangle this, we sum across all possible 2d parameters in {±∆}d by
pairing each θ with its corresponding θ̄i. Formally, using the partition {Dn}2

d−1
n=1 , we have

1
2d

d∑
i=1

∑
θ′∈{±∆}d

PX,θ(Eθ,i) = 1
2d

d∑
i=1

2d−1∑
n=1

PX,θn(Eθn,i) + PX,θ̄in(Eθ̄in,i) ⩾
1
2d

d∑
i=1

2d−1Ω(T∆2)
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= Ω
(
dT∆2

σ2

)
. (A.22)

In others words, the average across all θ of∑d
i=1 PX,θ(Eθ,i) is lower bounded by Ω(dT∆2/σ2)

and therefore at least one θ must satisfy ∑d
i=1 PX,θ(Eθ,i) ⩾ Ω(dT∆2/σ2). For this particular

instance of θ, this corresponding bandit model suffers an expected pseudo regret of

EX,θ[RX,ρ,νθ
T ]d ⩾ ∆

d∑
i=1

EX,θ

[
T∑
t=1

1sign(θi )̸=sign(Xt,i)

]
⩾
T∆
2

d∑
i=1

PX,θ (Eθ,i)

(Markov’s inequality)

⩾ Ω
(
dT 2∆3

σ2

)
. (A.23)

We conclude by tuning the hyperparameter ∆ ∈ R⋆+, with the constraint that ∆ = O(σT−1/2).
In particular, ∆ = σT−1/2 provides the Ω(σd

√
T ) lower bound.

Case (ii): X = Bd∥·∥2
(0, 1). It follows from the properties of the Euclidean scalar product that

X⋆
t = θ⋆/∥θ⋆∥. The specific form of θ also ensures that ∥θ∥2 = ∆

√
d. We deduce that

EX,θ[RX,ρ,νθ
T ] = EX,θ

[
T∑
t=1
⟨θ,X⋆

t −Xt⟩
]

= EX,θ

[
T∑
t=1
∥θ∥2 −

d∑
i=1

θiXt,i

]

= ∆EX,θ

[
T∑
t=1

d∑
i=1

1√
d
− sign(θi)Xt,i

]

⩾
∆
√
d

2 EX,θ

[
T∑
t=1

d∑
i=1

( 1√
d
− sign(θi)Xt,i

)2
]
, (A.24)

where the last line follows from simple algebra using the fact that ∥Xt∥22 ⩽ 1 for all t ∈ N. Since
the right-hand side is a sum of T nonnegative terms, it is lower bounded by the sum of the first
τ terms for some stopping τ such that τ ⩽ T almost surely, i.e.

EX,θ[RX,ρ,νθ
T ] ⩾ ∆

√
d

2

d∑
i=1

EX,θ

[
τ∑
t=1

( 1√
d
− sign(θi)Xt,i

)2
]
. (A.25)

In particular, we may define the stopping time τi = T ∧ inf{t ∈ N,
∑t
s=1X

2
s,i ⩾ T/d} and

let U±
i =

∑τi
t=1(1/

√
d − Xt,i)2. The term U+

i can be upper bounded using the inequality
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(a− b)2 ⩽ 2(a2 + b2) for all a, b ∈ R:

0 ⩽ U+
i ⩽ 2

τi∑
t=1

1
d

+X2
t,i ⩽

2τi
d

+ 2
τi∑
t=1

X2
t,i ⩽

2T
d

+ 2


τi−1∑
t=1

X2
t,i︸ ︷︷ ︸

⩽T/d

+ X2
τi,i︸ ︷︷ ︸

⩽|Xτi |
2
2⩽1

 ⩽
4T
d

+ 2 .

(A.26)

Hence, by the properties of the total variation distance and Pinsker’s inequality, we have that

|EX,θ[U+
i ]− EX,θ̄i [U

+
i ]| ⩽ (4T/d+ 2)

√
1
2KL(PX,θ ∥ PX,θ̄i) . (A.27)

We now use the generic divergence decomposition theorem with stopping times exposed in
Lattimore and Szepesvári (2020, Exercises 15.7 and 15.8) to obtain the following bounds:

KL(PX,θ ∥ PX,θ̄i) ⩽ EX,θ

[
τi∑
t=1

log dνθ(Xt)
dνθ̄i(Xt

(Yt)
]

= EX,θ

[
τi∑
t=1

g

(2∆Xt,i

σ

)]

= O
(

∆2

σ2 EX,θ

[
τi∑
t=1

X2
t,i

])
, (A.28)

and thus, by construction of the stopping time τi,

KL(PX,θ ∥ PX,θ̄i) ⩽ O
(
T∆2

σ2d

)
. (A.29)

Putting these together, we obtain the following inequality:

EX,θ[U+
i ] ⩾ EX,θ̄i [U

+
i ]− Ω

(
∆
σ

(
T

d

) 3
2
)
. (A.30)

Adding EX,θ̄i [U
−
i ] on both sides yields

EX,θ[U+
i ] + EX,θ̄i [U

−
i ] ⩾ EX,θ̄i [U

+
i + U−

i ]− Ω
(

∆
σ

(
T

d

) 3
2
)

= 2EX,θ̄i

[
τi
d

+
τi∑
t=1

X2
t,i

]
− Ω

(
∆
σ

(
T

d

) 3
2
)

⩾
2T
d
− Ω

(
∆
σ

(
T

d

) 3
2
)
. (A.31)
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Finally, we use the same partitioning argument as in case (i) to obtain the following bound on
the expected pseudo regret averaged over all possible θ ∈ {±∆}d:

1
2d

∑
θ∈{±∆}d

EX,θ[RX,ρ,νθ
T ] ⩾ ∆

√
d

2d+1

d∑
i=1

∑
θ∈{±∆}d

EX,θ[U
sign(θi)
i ]

= ∆
√
d

2d+1

d∑
i=1

2d−1∑
n=1

EX,θn [U sign(θn,i)
i ] + EX,θ̄in [U

sign(θ̄in,i)
i ]

⩾
∆
√
d

4

(
2T − Ω

(
∆T

3
2

σ
√
d

))
(A.32)

Setting ∆ = σ
√
d/T turns the right-hand side into Ω(σd

√
T ) for T large enough. Finally, since

the average over {±∆}d of the expected pseudo regret is lower bounded by this quantity, at
least one θ ∈ {±∆}d must satisfy this lower bound, which concludes the proof. ■

A.2 Technical results on statistical models.

Control of the variance for sub-Gaussian distributions.

Proof of Lemma 1.12. Let µ = EY∼ν [Y ] and γ : λ ∈ R 7→ EY∼ν [exp(λ(Y − µ))] − exp(λ2R2/2).
The sub-Gaussian condition implies that γ(λ) ⩽ 0 for all λ ∈ R, and a second order expansion
around λ = 0 shows that γ(λ) = λ2/2(EY∼ν [(Y −µ)2]−R2)+o(λ2). Therefore, the dominating
term must be nonpositive, which is precisely the statement of the lemma. ■

Obstruction to logarithmic pseudo regret.

Proof of Lemma 1.13. Note that bounded distributions are sub-Gaussian, sub-Gaussian distribu-
tions are light tailed, and light tailed distributions have finite moments of any order, therefore
it is sufficient to show the result for the smallest of these families, i.e. F = ∪B,B∈RF[B,B].

Let ν ∈ F . µ = EY∼ν [Y ] and µ⋆ > µ. We construct an explicit sequence of distributions
(ν ′
n)n∈N ∈ FN such that (i) EY∼ν′

n
> µ⋆ and (ii) KL(ν ∥ ν ′

n)→ 0. Indeed, for n ∈ N⋆, we define

∆ = µ⋆ − µ and ν ′
n = (1− 1

n
)ν + 1

n
δµ+2n∆ . (A.33)

Assuming n is large enough, µ+ 2n∆ lies outside the upper bounded set Supp ν, in which case
the density of ν with respect to ν ′

n becomes 1/(1−1/n)1Supp ν , and thus KL(ν ∥ ν ′
n) = log 1

1−1/n .
Moreover, the expectation of ν ′

n is µ + 2∆ > µ⋆, and therefore 0 ⩽ Kinf (ν;µ⋆) ⩽ log 1
1−1/n .

Since this upper bound holds for any n ∈ N⋆, we deduce that Kinf (ν;µ⋆) = 0. ■
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A.3 Technical results in concentration of measures

Fixed sample concentration and the Cramér-Chernoff method

Proof of Proposition 1.15. We propose an alternative to the classical proof of this result, based on
a supermartingale construction, in order to highlight the profound link between martingales
and concentration which we will constantly use in the sequel. Indeed,Mλ

s = exp(λSs − sψ(λ))
for s ∈ {1, . . . , t} and λ ∈ I defines a (Gs)ts=1-adapted, integrable process which satisfies

E
[
eλSs+1−(s+1)ψ(λ)

∣∣∣ Gs] = E

 Mλ
s︸︷︷︸

Gs-measurable

exp (λ(Ss+1 − Ss)− ψ(λ))

∣∣∣∣∣∣∣ Gs


= Mλ
s E [exp (λ(Ss+1 − Ss)− ψR(λ)) | Gs]

⩽Mλ
s , (A.34)

therefore (Mλ
s )ts=1 defines a nonnegative supermartingale. Now, by Markov’s inequality we

have P(Mλ
t ⩾ 1/δ) ⩽ E[Mλ

t ]δ ⩽ δ. Rewriting this in terms of St yields the inequality

∀λ ∈ I+, P
(
St ⩾ t

ψ(λ) + 1
t log 1

δ

λ

)
⩽ δ . (A.35)

Optimising in λ ∈ I+ the right-hand side in the probability makes appear the Fenchel-Legendre
transformψ⋆,+. Indeed, following Pinelis (2013, Proposition 1.5), its generalised inverse satisfies
the relation (ψ⋆,+)−1(v) = infλ∈I+(ψ(λ)+v)/λ for any v ∈ R+ (note that ψ⋆,+ is nondecreasing
on R⋆+ and continuous by convexity, therefore its generalised inverse exists). Hence, we have

P
(
St ⩾ t(ψ⋆,+R )−1

(1
t

log 1
δ

))
⩽ δ . (A.36)

The reverse bound follows from a symmetric argument using ψ⋆,− instead. ■

Proof of Corollary 1.16. We apply Proposition 1.15 with St =
∑t
s=1 Ys − µ, I = R and ψ : λ ∈

R 7→ R2λ2/2. A straightforward calculation shows that ψ⋆,+R : R+ 7→ u2/(2R2) (attained at
λ = u/R2 in the definition of the Fenchel-Legendre transform), which yields the expected
result. In particular, isolating µ shows that µ ⩽ µ̂t −R

√
2/t log(1/δ) holds with probability at

most δ. A similar calculation for ψ⋆,− gives µ ⩾ µ̂t +R
√

2/t log(1/δ) with probability at most
δ. We conclude by invoking a union bound on both events. ■

Time-uniform concentration and the method of mixtures

Method of mixtures.
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Proof of Theorem 1.20. First, (Mt)t⩾t0 is a nonnegative supermartingale, hence the random vari-
ableM∞ = limt→+∞Mt is almost surely well-defined (Doob’s supermartingale convergence
theorem, Williams (1991, Chapter 11)), and thusMτ is almost surely well-defined. By Fatou’s
lemma, we have that

Mτ = E[lim inf
t→+∞

Mt∧τ ] ⩽ lim inf
t→+∞

E[Mt∧τ ] ⩽ E[Mt0 ] ⩽ 1 . (A.37)

Then, Markov’s inequality provides the following bound:

P
(
Mτ ⩾

1
δ

)
⩽ E[Mτ ]δ ⩽ δ . (A.38)

The order-preserving property of the generalised inverse implies that

P
(
Sτ ⩾ F−1

τ

(1
δ

))
⩽ P

(
Mτ ⩾

1
δ

)
⩽ δ . (A.39)

In particular for the (Gt)t⩾t0-stopping time τ = inf{t ⩾ t0, St ⩾ F−1
t (1/δ)}, we have

P (τ <∞) = P
(
∃t ⩾ t0, St ⩾ F−1

t

(1
δ

))
= P

(
Sτ ⩾ F−1

τ

(1
δ

))
⩽ δ . (A.40)

We obtain the reverse bound in the case where the (Ft)t⩾t0 are nonincreasing. ■

Proof of Corollary 1.21. We consider the same nonnegative supermartingale construction as in
the proof of Proposition 1.15, i.e. if logEY∼ν [exp(λ(Y − µ))] ⩽ ψ(λ) for λ = I ⊆ R, we define
for t ∈ N, St =

∑t
s=1 Ys−µ andMλ

t = exp(λSt− tψ(λ)). However, contrary to Proposition 1.15,
we cannot optimise λwithout breaking the supermartingale property. Indeed, for a given t ∈ N,
the optimal λ = λ⋆t satisfies the (ψ⋆,+)−1(log(1/δ)/t) = (ψ(λ⋆t ) + log(1/δ)/t)/λ⋆t and therefore
depends on the time t (the process (Mλ

t )t∈N is only a supermartingale for a fixed λ ∈ R).
Instead, we consider a mixture supermartingale by randomising over possible values of λ.

Formally, let (Gt)t∈N the natural filtration of the process (St)t∈N, Λ a random variable indepen-
dent on (Gt)t∈N and consider the σ-algebra G∞ = σ(

⋃
t∈N Gt). We define the mixture process by

Mt = E[MΛ
t | G∞], which preserves the nonnegative supermartingale property since

E [Mt+1 | Gt] = E
[
E
[
MΛ
t+1

∣∣∣ G∞
] ∣∣∣ Gt] = E

[
MΛ
t+1

∣∣∣ Gt] (tower property)
⩽ E

[
MΛ
t

∣∣∣ Gt] (supermartingale)
= E

[
E
[
MΛ
t

∣∣∣ G∞
] ∣∣∣ Gt] (tower property)

= Mt . (A.41)

Moreover, E[M0] = E[E[MΛ
0 | Λ]] ⩽ E[1] = 1, therefore we may apply Theorem 1.20.
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It remains to compute an explicit expression forMt. If we denote by νΛ the measure of the
mixing random variable Λ, thenMt =

∫
I M

λ
t dνΛ(λ). In the sub-Gaussian case with R = 1, we

choose Λ ∼ N (0, 1/α) and thusMt = Ft(St) with

Ft : R −→ R+

y 7−→
√
α

2π

∫ ∞

−∞
eλy− tλ2

2 −αλ2
2 dλ . (A.42)

To compute this integral, we resort to the standard “completion of the square” method, abun-
dantly used in the calculation of conjugate prior in Bayesian statistics. Indeed, let σ̄2 = 1/(t+α),
then for λ ∈ R and y ∈ R, we have

t+ α

2 λ2 − λy = 1
2σ̄2

(
λ− σ̄2y

)2
− σ̄2y2

2 , (A.43)

and consequently, by identifying the density of N (σ̄2y, σ̄2) we obtain

Ft(y) =
√
ασ̄e

σ̄2y2
2

1√
2πσ̄

∫ ∞

−∞
e− (λ−σ̄2y)

2σ̄2 dλ︸ ︷︷ ︸
=1

= e
y2
t+α√

1 + t
α

. (A.44)

We obtain the bound for R = 1 by inverting Ft(y) = 1/δ for δ ∈ (0, 1) and y ∈ R+. i.e. for any
random time τ in N:

P

Sτ ⩾

√
2(τ + α) log

(1
δ

√
1 + τ

α

) . (A.45)

For an arbitrary R ∈ R⋆+, it is straightforward to show that (Yt/R)t∈N is an i.i.d. sequence
of 1-sub-Gaussian random variables with mean µ/R, and therefore the general result can be
deduced by scaling. Finally, we obtain the reverse bound by considering y ∈ R− instead, and
the expression of the confidence sequence results from a simple union bound. ■

Tuning of the mixing parameter.

Proof of Lemma 1.23. We find the optimal mixing parameter α⋆ by differentiating the mapping
α ∈ R⋆+ 7→ (t0 + α) log(

√
1 + t0/α/δ), which gives log(

√
1 + t0/α⋆/δ) = t0/(2α⋆). After simple

algebra, we obtain wew = −δ2/e with w = 1 + t0/α
⋆. Since −δ2/e ∈ (−1/e, 0), the unique

solution in w ∈ R to this equation is given by the Lambert functionW−1. ■

We also report in Figure A.1 a numerical experiment to illustrate the effect of the mixing
parameter α on the width of the corresponding sub-Gaussian confidence sequence.
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Figure A.1 – Comparison of the time-uniform sub-Gaussian confidence envelopes for varying mixing
parameter α ∈ [0.1, 10], as a function of the sample size t, over 1000 independent replicates. Grey lines
are trajectories of empirical means µ̂t, drawn for N (µ, 1) with µ = 0. Thick black dashed line: µ.

Extension to multivariate distributions.

Proof of Proposition 1.26. As in the one-dimensional method of mixtures of Corollary 1.21, we
first leverage the sub-Gaussian property to construct a nonnegative supermartingale. Indeed,
for λ ∈ Rd and t ∈ N, we letMλ

t = exp(λ⊤St − R2/2∥λ∥2
V 0
t

), where we let V 0
t =

∑t−1
s=1XsX

⊤
s .

This defines a (Gt)t∈N-adapted and integrable process and

E
[
Mλ
t+1

∣∣∣ Gt] = E
[
exp

(
λ⊤St+1 −

R2

2 ∥λ∥
2
V 0
t+1

) ∣∣∣∣∣ Gt
]

= E
[
exp

(
λ⊤St −

R2

2 λ⊤V 0
t λ+ ηtλ

⊤Xt −
R2

2 λ⊤
(
XtX

⊤
t

)
λ

) ∣∣∣∣∣ Gt
]

= E

 Mλ
t︸︷︷︸

Gt-adapted

exp
(
ηtλ

⊤Xt −
R2

2
(
λ⊤Xt

)2
)

︸ ︷︷ ︸
⩽1

∣∣∣∣∣∣∣∣∣∣
Gt


(R-sub-Gaussian control with parameter λ⊤Xt ∈ R)

⩽Mλ
t . (A.46)
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Hence (Mλ
t )t∈N is a nonnegative supermartingale. Let Λ a Rd-valued random variable indepen-

dent of the rest andMt = E[MΛ
t | G∞] with G∞ = σ(

⋃
t∈N Gt). As in the proof of Corollary 1.21,

(Mt)t∈N remains a (Gt)t∈N-nonnegative supermartingale. If R = 1, we choose for mixing
measure Λ ∼ N (0, 1/α) and thusMt = Ft(St) with

Ft : Rd −→ R+

y 7−→
(
α

2π

) d
2
∫
Rd
eλ

⊤y− 1
2 (λ⊤(V 0

t +αId)λ)dλ . (A.47)

By completing the square in the exponential and letting λ̄ = (V α
t )−1y, we obtain the following

expression for y ∈ Rd:

Ft(y) =
(
α

2π

) d
2

exp
(1

2 λ̄
⊤V α

t λ̄

)∫
Rd
e− 1

2 (λ−λ̄)⊤
V αt (λ−λ̄)dλ (Multivariate Gaussian integral)

=
√

αd

detV α
t

exp
(1

2 λ̄
⊤V α

t λ̄

)
. (A.48)

Note that V α
t ≽ αId and is therefore positive definite (since α > 0), and in particular invertible.

Consequently, this expression further simplifies as:

Ft(y) =
√

αd

detV α
t

exp
(1

2∥y∥
2
(V αt )−1

)
. (A.49)

From there, we follow the framework of Theorem 1.20 to obtain the concentration bound for
any N-valued (Gt)t∈N-stopping time. In particular, the choice of τ = inf{t ∈ N, ∥St∥2(V αt )−1 ⩾

(2 log(1/δ) + log(detV α
t /α

d))} provides the time-uniform result. Finally, we recover the general
case R ∈ R⋆+ by considering (ηt/R)t∈R instead. ■

Extension to continuous time. As a testament to the flexibility and the generality of the
method of mixtures, we briefly extend it to continuous time stochastic processes. We refer to
Revuz and Yor (2013) for background material on stochastic differential equations.
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Proposition A.2 (Time-uniform concentration for SDE). Let two mappings b : R+ × R → R
and σ : R+ × R → R⋆+ such that the stochastic differential equation (SDE) represented by dSt =
b(t, St)dt+ σ(t, St)dWt admits a unique strong solution (St)t∈R+ with initial condition S0 (possibly
random) with respect to the (augmented) natural filtration (Gt)t∈R+ of the Brownian motion (Wt)t∈R+

(e.g. (t, y) 7→ b(t, y) and (t, y) 7→ σ(t, y) are Lipschitz continuous in y uniformly in t). Assume
that almost surely, (i) for all t ∈ R+, the mapping Ψ: (t, y) ∈ R+ × R 7→

∫ y
S0
dy′/σ(t, y′) is

well-defined, continuously differentiable in t and twice continuously differentiable in y, and (ii) the
SDE dS̄t = (b(t, St)/σ(t, St)−1/2∂yσ(t, St)−

∫ St
S0
∂tσ(t, Sy)/σ2(t, y)dy)dt admits a unique strong

solution with initial condition S̄0 = 0. Then, for a given α ∈ R⋆+,
(i) the process (Mλ

t )t∈R defined byMt = exp(λ(Ψ(t, St)− S̄t)− λ2t/2) for λ ∈ R and t ∈ R+ is
a nonnegative martingale;

(ii) for δ ∈ (0, 1), we have the following inequality

P

∀t ∈ R+, Ψ(t, St)− S̄t ⩽

√√√√2(t+ α) log
(

1
δ

√
1 + t

α

) ⩾ 1− δ . (A.50)

In particular, if b = bθ⋆ and σ = σθ⋆ for θ⋆ ∈ Θ ⊆ R, we denote by Ψθ, (S̄θt )t∈R+ and Pθ the
corresponding mapping, process and measure associated with θ ∈ Θ and define for t ∈ R+ the set

Θ̂δ
t,α =

θ ∈ Θ,
∣∣∣Ψθ(t, St)− S̄θt

∣∣∣ ⩽
√√√√2(t+ α) log

(
2
δ

√
1 + t

α

) . (A.51)

Then (Θ̂δ
t,α)t∈R+ is a time-uniform confidence process at level δ for θ⋆, in the sense that

Pθ⋆
(
∀t ∈ R+, θ

⋆ ∈ Θ̂δ
t,α

)
⩾ 1− δ , (A.52)

Proof of Proposition A.2. Standard applications of Itô’s formula (thanks to the regularity as-
sumptions on Ψ) shows that the process defined for t ∈ R+ by S̃t = Ψ(t, St) (known as the
Lamperti transform of St) satisfies the equality S̃t = S0 + S̄t +Wt for all t ∈ R+ almost surely.
Furthermore, the Doleans-Dade formula shows thatMλ

t = exp(λWt − λ2t/2) defines a non-
negative martingale for any λ ∈ R. The rest follows from the method of mixtures with mixing
measure N (0, 1/α) as per Theorem 1.20. ■
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Corollary A.3 (Time-uniform confidence processes for classical SDE). Fix α ∈ R⋆+ and t ∈ R⋆+,
and let y0 ∈ R, σ ∈ R⋆+, µ ∈ R and κ ∈ R⋆+.

• Brownian motion. Let dSt = µdt+ σdWt, S0 = y0 and define

µ̂t = St − y0
t

and Θ̂δ
t,α =

µ̂t ± σ
√√√√2
t

(
1 + α

t

)
log

(
2
δ

√
1 + t

α

) . (A.53)

• Geometric Brownian motion. Let dSt = µStdt+ σStdWt, S0 = y0 and define

µ̂σt = 1
t

log St
y0

+ σ2

2 and Θ̂δ
t,α =

µ̂σt ± σ
√√√√2
t

(
1 + α

t

)
log

(
2
δ

√
1 + t

α

) . (A.54)

• Ornstein-Uhlenbeck. Let dSt = κ(µ− St)dt+ σdWt, S0 = y0 and define

µ̂κt = St − y0e
−κt

1− e−κt and

Θ̂δ
t,α =

µ̂κt ± σ

1− e−κt

√√√√2α
( 1

2κα +
(

1− 1
2κα

)
e−2κt

)
log

(
2
δ

√
1 + 1

2κα (e2κt − 1)
) .

(A.55)

In all cases, (Θ̂δ
t,α)t∈R⋆+ is a time-uniform confidence process for µ at level δ.

Proof of Corollary A.3. The case of Brownian motion follows directly from the Gaussian method
of mixture, noting thatMλ

t = exp(λ(St − µt)− λ2σ2/2) defines a nonnegative martingale for
all λ ∈ R and t ∈ R+ (i.e. exactly as in the discrete time Gaussian case).

For the geometric Brownian motion, the Lamperti transformation takes the (stationary)
form Ψ: y ∈ R⋆+ 7→

∫ y
y0
dy′/(σy′) = log(y)/σ, the results follows directly from Proposition A.2.

For theOrnstein-Uhlenbeck process, we simplify the problem by considering the transforma-
tion S̃t = eκt(St−µ)/σ, which satisfies the SDE dS̃t = eκtdWt with S̃0 = (y0−µ)/σ. Integrating
this SDE yields the equation S̃t = S̃0 + Zt with Zt =

∫ t
0 e

κsdWs. By the properties of Itô inte-
gration with a deterministic integrand, (Zt)t∈R+ is a martingale with Gaussian marginals with
variance σ2

κ,t =
∫ t

0 e
2κsds = (e2κt−1)/(2κ) (Itô isometry). Therefore,Mλ

t = exp(λZt−λ2σ2
κ,t/2)

defines a nonnegative martingale. We conclude by invoking the Gaussian method of mixtures
with mixing measure N (0, 1/α) and rearranging the terms. ■
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Remark A.4 (The time-uniform Ornstein-Uhlenbeck confidence process does not shrink).
Note that when t→ +∞, in the Ornstein-Uhlenbeck case, |Θ̂δ

t,α| ∼ σ
√
t. In particular, the interval

Θ̂δ
t,α does not shrink around the point estimate µ̂κt . This is actually quite intuitive: solving the SDE

yields the representation St = µ+ e−κt(y0 − µ) + σ/
√

2κW1−e−2κt , and therefore asymptotically St
behaves like a Gaussian random variable N (µ, σ2/(2κ)). Consequently, St will cross any constant
barrier in t with probability 1 if t is large enough, which makes it impossible to have a time-uniform
constant (let alone shrinking) confidence process. The other two processes, which are nonstationary,
exhibit the shrinking rate O(

√
log(t)/t), which is standard for the method of mixtures. Note that the

averaged integrated Ornstein-Uhlenbeck process ∫ t0 Ssds/t would lead to a similar concentration.

Optimal time-uniform concentration rate.

Proof of Proposition 1.28. First, note that it enough to prove the lim sup bound with R = 1, the
other cases being deduced easily by symmetry by considering St/R or −St. Again, we make
use of the nonnegative supermartingale defined for t ∈ T and λ ∈ R byMλ

t = exp(λSt− tλ2/2).
It follows from Corollary 1.21 or Corollary A.3 that for any δ ∈ (0, 1),

P
(

sup
s∈[0,t]∩T

Mλ
s ⩾

1
δ

)
⩽ δ (A.56)

We now construct three sequences (tn)n∈N ∈ (cT )N, (λn)n∈N ∈ (R⋆+)N and (δn)n∈N ∈ (0, 1)N

to help us prove the asymptotic upper bound. First, we set choose a geometric time grid, i.e.
tn = (1 + η)n for some η ∈ R⋆+ and n ∈ N. We want the sequence of probabilities defined
by the above equation for tn to be summable, i.e. ∑n⩾1 δn < ∞; a natural choice is thus
δn = (log tn)−(1+ε) = O(n−(1+ε)) for some ε ∈ R⋆+. We now choose λn to make appear the
log log term of the upper bound, i.e. λn = (1 + ε)

√
2 log log(tn)/tn. By extracting Ss from the

expression ofMλn
s for s ∈ [0, tn] ∩ T , we obtain the following bound:

P

 sup
s∈[0,tn]∩T

Ss −
λns

2 ⩾

√
tn log log tn

2

 = O
( 1
n1+ε

)
. (A.57)

Consequently, the Borel-Cantelli lemma shows that almost surely a finite number of these occur,
i.e. there exists a random variable N in T such that sups∈[0,tn]∩T Ss − λns

2 ⩾
√

tn log log tn
2 for all

n ⩾ N . For t ∈ [tn, tn+1] ∩ T , we therefore have the following control:

St ⩽

√
tn log log tn

2 + λntn+1
2 = (1 + (1 + η)(1 + ε))

√
tn log log tn

2
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⩽ (1 + (1 + η)(1 + ε))

√
t log log t

2 , (A.58)

which holds for any ε, η ∈ R⋆+. Hence, by letting n→ +∞, we have that almost surely:

lim sup
t→+∞

St√
2t log log t

⩽ 1 . (A.59)

■

Catching the optimal rate with mixtures (�)

Proof of Proposition 1.29. Let (ut)t∈N be an arbitrary (for now) nondecreasing sequence. The
strategy to control P (Sτ ⩾ uτ ) is to split the event {Sτ ⩾ uτ} over the geometric grid (tn)n∈N
and apply the supermartingale transform Fαn . Compared to the standard method of mixtures,
this allows to use a split-dependent hyperparameter αn rather than a constant α. We have:

P (Sτ ⩾ uτ ) ⩽
+∞∑
n=1

P (∃t ∈ [tn−1, tn), St ⩾ ut)

=
+∞∑
n=1

P
(
∃t ∈ [tn−1, tn), Mαn−1

t ⩾ F
αn−1
t (ut)

) (x 7→ F
αn−1
t (x) is nondecreasing)

⩽
+∞∑
n=1

P
(
∃t ∈ [tn−1, tn), Mαn−1

t ⩾ F
αn−1
tn (utn−1)

)
(t 7→ F

αn−1
t is nonincreasing and ut is nondecreasing)

⩽
+∞∑
n=1

E
[
M

αn−1
tn−1

]
F
αn−1
tn (utn−1)

(Theorem 1.20)

⩽
+∞∑
n=1

1
F
αn−1
tn (utn−1)

. (Mαn−1 is a supermartingale)

(A.60)

It remains to choose the sequence (ut)t∈N such that the series above converges to δ. A natural
choice is Fαn−1

tn (utn−1) = 1
δ ζ(η)nη, which leads to

utn−1 =
(
F
αn−1
tn

)−1
(
ζ(η)nη

δ

)
and ut = utn−1 for t ∈ [tn−1, tn) , (A.61)

where (Fαn−1
tn

)−1 is the inverse of (Fαn−1
tn

)−1 if it is strictly increasing, and the appropriate
pseudo-inverse (which is well-defined since it is a nondecreasing function by assumption)
otherwise. Finally, note that t ∈ [tn−1, tn) is equivalent to n = ⌈log t/ log ∆⌉ = nt. We conclude
by invoking the supermartingale construction of Theorem 1.20. ■

267



Proof of Corollary 1.30. In the R-sub-Gaussian case with (St)t∈N = (
∑t
s=1 Ys)t∈N, inverting the

supermartingale mapping of Proposition 1.29 yields the expression (similar to Corollary 1.21)
(Fαt )−1 : y ∈ R⋆+ 7→ (R

√
2(t+ α) log(y

√
1 + t/α)), and thus

ut = R

√√√√2(tnt + αntn−1) log
(
ζ(η)nηt
δ

√
1 + tnt

αntn−1

)
. (A.62)

Optimising αn−1 to tighten the bound at t = tn yields αn−1 = γδtn = argminα(Fαtn)−1(ζ(η)nη/δ)
with γδ = −1/(1+W−1(−δ2/e)). By plugging this in the above bound, we obtain the expression

ut = R

√√√√2(1 + γδ)tnt log
(
ζ(η)nηt
δ

√
1 + 1

γδ

)
. (A.63)

In particular, making αntn−1 proportional to tnt cancels out the dependency on t in the term
tnt/αntn−1 = 1/γδ, and thus ut = O(

√
t log(nt/δ)) = O(

√
t log(log(t)/δ)) for t → +∞. We

conclude by considering (µ̂t)t∈N = (St/t)t∈N and the bounds (±ut/t)t∈N. ■

Generic UCB algorithm for multiarmed bandits

Generic pseudo regret bound.

Proof of Theorem 1.33. We write (Θ̂δ
k,n)n∈N = ([LCBδ

k,n,UCBδ
k,n])n∈N and define the following

good events for k ∈ [K] and k⋆ = argmaxk∈[K] ρk:

G1
k =

{
ρ⋆ < min

1⩽t⩽T
UCBδ

k⋆,Nk⋆
t

}
, G2

k =
{
ρ⋆ > UCBδ

k,τδ
k

}
, and Gk = G1

k

⋂
G2
k . (A.64)

On the event Gk, assume that Nk
T > τ δk , then there exists t ⩽ T such that Nk

t−1 = τ δk and πt = k

(there exists a time at which arm k has been played τ δk time and the policy recommended to
play arm k one more time). In that case, we have

UCBδ
k,Nk

t−1
= UCBδ

k,τδ
k
< ρ⋆ < UCBδ

k⋆,Nk⋆
t−1

. (A.65)

Therefore UCBδ
k,NK

t−1
< UCBδ

k⋆,Nk⋆
t−1

, and thus arm k cannot be played at time t, which contra-
dicts πt = k. Consequently, we have Nk

T ⩽ τ δk on the event Gk.
We now control the probability of the complement event Ḡk = Ḡ1

k ∪ Ḡ2
k . By definition of the

confidence sequence for arm k⋆, we have

P
(
Ḡ1
k

)
= P

(
∃t ∈ {1, . . . , T}, ρ⋆ ⩾ UCBδ

k⋆,Nk⋆
t

)
⩽ P

(
∃t ∈ N, ρ⋆ /∈ Θ̂δ

k⋆,Nk⋆
t

)
⩽ P

(
∃n ∈ N, ρ⋆ /∈ Θ̂δ

k⋆,n

)
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⩽ δ . (A.66)

For the second complement event, we note that ρ⋆ = ρk + ∆k and

P
(
Ḡ2
k

)
= P

(
ρk ⩽ UCBδ

k,τδ
k
−∆k

)
= P

ρk ⩽ LCBδ
k,τδ

k
+ UCBδ

k,τδ
k
− LCBδ

k,τδ
k
−∆k︸ ︷︷ ︸

<0 by definition of τδk


⩽ P

(
ρk /∈ Θ̂δ

k,τδ
k

)
⩽ δ . (A.67)

Therefore, using a simple union bound yields P(Ḡk) ⩽ 2δ. The bound in probability follows
from another union argument over all arms k ∈ [K]. Moreover, using the trivial inequality
Nk
T ⩽ T , we obtain

Eπ,ν⊗T
π

[
Nk
T

]
= Eπ,ν⊗T

π

[
Nk
T1Gk

]
+ Eπ,ν⊗T

π

[
Nk
T1Ḡk

]
⩽ Eπ,ν⊗T

π

[
τ δk

]
+ TEπ,ν⊗T

π

[
1Ḡk

]
⩽ Eπ,ν⊗T

π

[
τ δk

]
+ 2δT . (A.68)

■

Sub-Gaussian UCB.

Proof of Corollary 1.34. For α ∈ R⋆+, the width of the R-sub-Gaussian confidence sequence at
sample size n ∈ N is 2R

√
2/n(1 + α/n) log(2

√
1 + n/α/δ), which is asymptotically equivalent

to D(n) = 2R
√

1/n log(4n/(αδ2)) for n→ +∞. For x ∈ R+, we solve the equation D(x) = ∆k,
which after simple algebra yields, with γ = ∆2

k/(4R2),

−γxe−γx = −γαδ
2

4 . (A.69)

For δ = 1/T and T large enough, the right-hand side is in (−1/e, 0), and therefore the solution
to this equation is given by the first negative branch of the LambertW function:

x = −1
γ
W−1

(
− γα

4T 2

)
. (A.70)

Substituting γ and using the asymptoticW−1(z) = log(−z)− log(− log(−z)) for z → 0− yields
the result. ■

Iterated logarithm UCB.
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Proof of Corollary 1.35. We use the same technique as in the proof of Corollary 1.34 and seek to
find the solution in x ∈ R+ to the equation C√log(log(x)/δ)/x = ∆k. For δ = 1/T , we obtain

log(x)e−γx = 1
T
, (A.71)

where γ = ∆2
k/C

2. Let ω : R⋆+ → R⋆+ defined implicitly by logω(z)e−γω(z) = 1/T . This does
not correspond to a known special function, so we have to do an ad hoc asymptotic analysis
(details are essentially the same as the proof of the asymptotic expansion of the LambertW
function). To this end, we write for z ∈ R⋆+,

ω(z) = 1
γ

log
( logω(z)

z

)
= 1
γ

log

 log
(

1
γ log

(
logω(z)

z

))
z


= 1
γ

log 1
z

+ 1
γ

log log
(1
γ

log
( logω(z)

z

))
. (A.72)

When z → 0+, we obtain ω(z) = 1/γ log(1/z) + 1/γ log log(1/γ log(1/z)) + o(log log log(1/z))
(after carefully bounding the remainder). We conclude by substituting γ. ■

Obstruction to O(
√

log(n)/n) concentration rate.

Proof of Corollary 1.36. Assume the opposite, i.e. almost surely there existsC ∈ R⋆+ such that for
all n0 ∈ N, there exists n ⩾ n0 satisfying the inequality |Θδ

n| ⩽ Cn−α log(n/δ)β . The sequence
(Θ̂δ

n)n∈N can be made nonincreasing by taking the running intersections, and so this inequality
implies that |Θδ

n| ⩽ Cn−α log(n/δ)β for all n ∈ N large enough. Now, consider a two-armed
bandit model (ν1 ⊗ ν2,F ⊗ F) such that ∆ = ρ(ν1)− ρ(ν2) > 0. Then the policy implemented
by Algorithm 1 with UCBδ

k,n = max Θ̂δ
n(Yk(n)) and Yk(n) = (Y k

i )ni=1 an i.i.d. sample drawn from
νk, for k ∈ {1, 2} and n ∈ N, suffers a pseudo regret bounded by O(log T ). Indeed, solving
for x ∈ R⋆+ the equation Cx−α log(x/δ)β = ∆ yields xe−γxα/β = δ with γ = (∆/C)1/β . Letting
ω(z) be the solution to ω(z)e−ω(z)α/β = z ∈ R⋆+ yields

ω(z) =
(1
γ

log
(
ω(z)
z

)) β
α

=
(1
γ

log 1
z

+ β

αγ
log

(1
γ

log
(
ω(z)
z

))) β
α

, (A.73)

which, similarly the the proofs above, yieldsω(z) = (1/γ log(1/z))β/α+o((log(1/z))β/α). Setting
δ = 1/T and applying the analysis of Theorem 1.33 shows that the number of pulls to arm 2
is asymptotically upper bounded by O(log(T )β/α) = O(log T ). This is incompatible with the
lower bound of Theorem 1.6 since KF ,ρ

inf (ν2; ρ1) = 0. ■

Heavy tailed UCB.
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Proof of Corollary 1.37. Again, we seek to findx ∈ R⋆+ such thatCM1/(1+ε)(1/x log(x/δ))ε/(1+ε) =
∆k, i.e. −γxe−γx = −γδwith γ = M−1/ε(∆k/C)1+1/ε. We conclude by invoking the asymptotic
expansion ofW−1 just as in the proof of Corollary 1.34. ■

Heavy tailed UCB corrupted by Nature.

Proof of Corollary 1.38. Let nδ,δ′

k = ⌈log(4/(δδ′))/η⌉ and define the good event

Hk =
{
|Θδ

k,nδ,δ
′

k

| ⩽ Cκ
1

1+ε η
ε

1+ε

}
⊆

⋂
n⩾nδ,δ

′
k

{
|Θδ

k,n| ⩽ Cκ
1

1+ε η
ε

1+ε
}

⊆
⋂

n⩾nδ,δ
′

k

{
|Θδ

k,n| < ∆k

}
, (A.74)

where the first inclusion holds since (Θ̂δ
k,n)n∈N is nonincreasing for the set inclusion.

Using the notations of the proof of Theorem 1.33, we obtain

E
π,νη⊗T

π

[
Nk
T

]
= E

π,νη⊗T
π

[
Nk
T1Gk

]
+ E

π,νη⊗T
π

[
Nk
T1Ḡk

]
⩽ E

π,νη⊗T
π

[
τ δk

]
+ E

π,νη⊗T
π

[
Nk
T1Ḡk1Hk

]
+ E

π,νη⊗T
π

[
Nk
T1Ḡk1H̄k

]
= E

π,νη⊗T
π

[
τ δk1Hk

]
+ E

π,νη⊗T
π

[
τ δk1H̄k

]
+ E

π,νη⊗T
π

[
Nk
T1Ḡk1Hk

]
+ E

π,νη⊗T
π

[
Nk
T1Ḡk1H̄k

]
.

(A.75)

On Hk, we have |Θδ

k,nδ,δ
′

k

| < ∆k and therefore τ δk ⩽ nδ,δ
′

k . Moreover, still on Hk, we have the
upper bound P

π,νη⊗T
π

(Ḡk ∪Hk) ⩽ 2δ (the proof reads identically to that of Theorem 1.33). On
the complement event H̄k, which holds with probability at most δ′, we use the trivial upper
bounds τ δk ⩽ T and Nk

T ⩽ T . Combining these arguments, we obtain

E
π,νη⊗T

π

[
Nk
T

]
⩽ nδ,δ

′

k + (3δ + δ′)T ⩽
1
η

log
( 4
δδ′

)
+ 1 + (3δ + δ′)T . (A.76)

We conclude by setting δ = δ′ = 1/T . ■

A.4 Some benchmarks for concentration

Hedged capital. We reproduce here the construction of Waudby-Smith and Ramdas (2023),
which eschews the need for a suitablemixingmeasurewhile still preserving the supermartingale
property by using predictable weights and provide state-of-the art concentration for bounded
distributions.
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Proposition A.5 (Hedged capital concentration). Let B,B ∈ R, and (Yt)t∈N an i.i.d. sequence
drawn from ν ∈ F[B,B]. We define form ∈ [B,B], t ∈ N and δ ∈ (0, 1) the following quantities:

Kt(m) = K+
t (m) ∨ K−

t (m) ,

K+
t (m) =

t∏
s=1

(
1 + λ+

s (m)Ys −m
B −B

)
and K−

t (m) =
t∏

s=1

(
1− λ−

s (m)Ys −m
B −B

)
,

λ+
t (m) = |λt| ∧

B −B
2(m−B) and λ−

t (m) = |λt| ∧
B −B

2(B − ¸m)
,

λt =

√√√√ 2 log 2
δ

σ̂2
t−1t log(t+ 1)

, σ̂2
t =

(B−B)2

4 +
∑t
s=1(Ys − µ̂s)2

t+ 1 and µ̂t =
B+B

2 +
∑t
s=1 Ys

t+ 1 ,

Θ̂δ
t =

{
m ∈

[
B,B

]
, Kt(m) < 1

δ

}
. (A.77)

Then (Θ̂δ
t )t∈N is a time-uniform confidence sequence at level δ for µ.

We refer to Waudby-Smith and Ramdas (2023, Theorem 3) for more details and the proof
of this result. Note that similarly to many of the confidence sequences introduced in this thesis
(Chapters 3 and 4), the sets Θ̂δ

t are computed numerically rather than using an explicit formula.
In the hedged capital case, these sets are provably convex, so it is sufficient to apply a numerical
root search to find the boundary points, determined by the equation Kt(m) = 1/δ.

To better understand their construction, we also adapt it to the sub-Gaussian case, and
compare it with the sub-Gaussian method of mixtures (Corollary 1.21).
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Proposition A.6 (Sub-Gaussian hedged capital concentration). Let R ∈ R⋆+, (Yt)t∈N an i.i.d.
sequence drawn from ν ∈ FG,R and (Gt)t∈N the corresponding natural filtration. For any (Gt)t∈N-
predictable process (λt)t∈N, we define

Kλt : R −→ R+

m 7−→
t∏

s=1
exp

(
λs(Ys −m)− R2λ2

s

2

)
. (A.78)

Then (Kλt (µ))t∈N defines a nonnegative supermartingale. Moreover, we consider

µ̂λt =
∑t
s=1 λsYs∑t
s=1 λs

and Θ̂δ
t =

[
µ̂λt ±

R2∑t
s=1 λ

2
s + 2 log 2

δ∑t
s=1 λs

]
. (A.79)

Then (Θ̂δ
t )t∈N is a time-uniform confidence sequence at level δ for µ. In particular, we recommend

λt =

√√√√ 2 log 2
δ

σ̂2
t−1t log(t+ 1)

, σ̂2
t = R+

∑t
s=1(Ys − µ̂s)2

t+ 1 and µ̂t = 1
t

t∑
s=1

Ys (A.80)

Proof of Proposition A.6. We first prove that (Kλt (µ))t∈N is a nonnegative supermartingale. In-
deed, for t ∈ N, we have

E
[
Kλt+1(µ)

∣∣∣ Gt] = E

 Kλt (µ)︸ ︷︷ ︸
Gt-measurable

exp
(
λt+1(Yt+1 − µ)−

R2λ2
t+1

2

) ∣∣∣∣∣∣∣ Gt


= Kλt (µ)E
[
exp

(
λt+1(Yt+1 − µ)−

R2λ2
t+1

2

) ∣∣∣∣∣ Gt, λt+1

]
︸ ︷︷ ︸

⩽1

(λt+1 is Gt-measurable)
⩽ Kλt (µ) . (A.81)

We then notice that Θ̂δ
t = {m ∈ R, Kλt (m) < 2

δ} ∩ {m ∈ R, K−λ
t (m) < 2

δ}, and we conclude by
invoking Theorem 1.20. Finally, the recommended tuning of the predictable sequence (λt)t∈N

follows the a simple heuristic. Let t ∈ N and assume λ1 = · · · = λt = λ⋆. Optimising the width
of the confidence set at time t, namely |Θ̂δ

t | =
R2(λ⋆)2+2/t log(2/δ)

λ⋆ yields λ⋆ =
√

2/(R2t) log 2
δ . We

then simply substitute Rwith a standard predictable estimator (biased towards R) and replace
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twith t log(t) as suggested in Waudby-Smith and Ramdas (2023) in order to mimick the law of
iterated logarithm. ■

Note that both methods produce a weighted mean estimator µ̂λt rather than the classical
empirical mean µ̂t. In particular, µ̂λt is dependent of the order of the observations (Ys)ts=1. It is
possible to remove this exogenous dependency by averaging over shuffled sequences (Yσ(s))ts=1
for σ ∈ St, at the cost of making the confidence sequences even less explicit.

In Figure A.2, we empirically compare the sub-Gaussian hedged capital approach of Propo-
sition A.6 with the method of mixtures of Corollary 1.21 for various mixing parameter α in four
different sub-Gaussian distributions: N (0, 1) (R = 1), Beta(0.5, 1) (R = 1/2), the triangular
distribution over [−1, 1] peaked at 0 (R = 1), and finally an example of simulated real-world
distribution representing maize grain yield, which we previously used in Chapter 5, Figure 4.6b
(see also Section 6.4 in Chapter 6 for more details on the DSSAT simulator). In all cases, the
method of mixtures performed better, resulting in tighter confidence sequences. This illustrates
that the hedged capital approach shines in nonparametric settings where, contrary to the
sub-Gaussian case, no natural mixing measure are available, such as the bounded support case.

Discrete mixtures with inverted stitching. Another construction suggests a compromise
between time peeling and the method of mixtures with Gaussian priors by considering discrete
mixingmeasure. The proposition below is a special instance of Howard et al. (2021, Theorem 3).

Proposition A.7 (Sub-Gaussian discrete mixture with inverted stitching concentration). Let
R ∈ R⋆+, (Yt)t∈N an i.i.d. sequence drawn from ν ∈ FG,R. For δ ∈ (0, 1), we consider (µ̂t)t∈N =
(1/t

∑t
s=1 Ys) and

(
Θ̂δ
t

)
t∈N

=


µ̂t ± 1.7R

√√√√ log log(2t) + 0.72 log
(

5.2
α

)
t



t∈N

(A.82)

Then (Θ̂δ
t )t∈N is a time-uniform confidence sequence at level δ for µ.

Interestingly, this time-uniform confidence boundmatches the optimal concentration rate of
the law of iterated logarithms (Proposition 1.28). However, as argued in Section 1.4, this often
comes at the cost of higher leading term, illustrated here by the seemingly ad hoc constants 1.7,
0.72 and 5.2, making the improvement over the standard method of mixtures only noticeable
for extremely large sample sizes. We confirm this remark in Figure A.3 where we compare this
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discrete mixture bound to the classical Gaussian method of mixture (Corollary 1.21). Indeed,
the tighter rate O(

√
log log(t)/t) rate only shows for large t (note that if we know in advance

the approximate final sample size T , setting α = 0.12T makes the sub-Gaussian mixture bound
sharper around t = T , thus further postponing the time where the discrete mixture shines).

(a) Gaussian. (b) Beta.

(c) Triangular. (d) DSSAT.

Figure A.2 – Comparison of median confidence envelopes around the mean for distributions N (0, 1),
Beta(0.5, 1), triangular on (−1, 0, 1) and a simulated DSSAT yield distribution, as a function of the
sample size t, over 1000 independent replicates. Grey lines are trajectories of empirical means µ̂t.
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Figure A.3 – Left: Comparison of confidence envelopes around the mean for N (0, 1), as a function of
the sample size t, over 1000 independent replicates. Grey lines are trajectories of empirical means µ̂t.
Right: ratio of the upper discrete mixture bound to the various sub-Gaussian mixture bounds (less than
1 means the discrete mixture is tighter).
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Appendix B

Bregman deviations of generic
exponential families

This chapter presents supplementary material for Chapter 3.

Contents
B.1 Bregman concentration with global Legendre regularisation (y) . . . . . 277

B.2 Specification to illustrative exponential families (y) . . . . . . . . . . . . . 284

B.3 Empirical comparison with existing time-uniform confidence sequences
(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

B.4 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

B.1 Bregman concentrationwith global Legendre regularisation (y)

In this section, we state an alternative result to Theorem 3.3 that extends to the case of sequence
(Yt)t∈N of randomvariables that are not independent, each having possibly different distribution
from others.
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Theorem B.1 (Method of mixtures with global Legendre regularisation, general case). Let
(Gt)t∈N be a filtration, (Ft)t∈N and (ht)t∈N two sequences of functions such that for each t ∈ N,
(i) Yt is Gt-measurable,

(ii) Ft and ht are Gt−1-measurable,

(iii) given Gt−1, Yt ∼ pθ⋆,t where pθ⋆,t ∈ G belongs to an exponential family with parameter θ⋆,
feature function Ft and base function ht.

Let Lt be the log-partition function corresponding to pθ⋆,t. For any Legendre (i.e. strictly convex and
continuously differentiable) function L0 : Θ→ R such that exp(−L0) is integrable, we introduce the
parameter estimate and Bregman information gain

θ̂t,L0 =
(

t∑
s=0
∇Lt

)−1( t∑
s=1

Fs(Ys)
)
, (B.1)

γt,L0 = log

 ∫
Θ exp (−L0(θ′)) dθ′∫

Θ exp
(
−
∑t
s=0 BLs(θ′, θ̂t,L0)

)
dθ′

 , (B.2)

and then, for any δ ∈ (0, 1], consider the set

Θ̂t,L0(δ) =
{
θ0 :

t∑
s=0
BLs

(
θ0, θ̂t,L0

)
− L0(θ0) ⩽ log 1

δ
+ γt,L0

}
. (B.3)

Then
(
Θ̂δ
t,L0

)
t∈N

is a time-uniform confidence sequence at level δ for θ⋆, i.e.

Pθ⋆
(
∀t ∈ N, θ⋆ ∈ Θ̂δ

t,L0

)
⩾ 1− δ , (B.4)

or equivalently, for any random time τ in N,

Pθ⋆
(
θ⋆ ∈ Θ̂δ

τ,L0

)
⩾ 1− δ . (B.5)

In contrast to Theorem 3.3 that involves a local regularisation using the true parameter θ⋆ ∈ Θ
of the family and a constant c > 0, here we make use of a global regularisation, in the form
of the Legendre function L0. Concretely, the regularised parameter estimate θ̂t,L0 and the
Bregman information gain γt,L0 do not depend on the true parameter θ⋆, thus making for a
more explicit confidence set Θ̂t,L0 . The tradeoff here is that the choice of regulariser is limited
by the integrability assumption on exp(−L0), which is critical to build an appropriate prior for
the method of mixtures.
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Proof of Theorem B.1. The proof of this result follows a similar line of proof as we used for
Theorem 3.3. However the use of L0 instead of c induces a few changes that we detail below.
In particular, we use a different prior to build the mixture of martingales.

Martingale and mixture martingale construction. For any λ ∈ Rd and t ∈ N, we define

Mλ
t = exp

(
t∑

s=1

(
λ⊤ (Fs(Ys)− Eθ⋆ [Fs(Ys)])−BLs,θ⋆(λ)

))
, (B.6)

where we introduced BLs,θ⋆(λ) = Ls(θ⋆ + λ)− Ls(θ⋆)− ⟨λ,∇Ls(θ⋆)⟩ for convenience.
Note thatMλ

t is nonnegative and

Eθ⋆
[
exp

(
λ⊤Fs(Ys)

)]
= exp (Ls(θ⋆ + λ)− Ls(θ⋆)) , (B.7)

Eθ⋆
[
exp

(
λ⊤Eθ⋆ [Fs(Ys)]

)]
= exp

(
λ⊤Ls(θ⋆)

)
. (B.8)

Note that Mλ
t is Gt-measurable and in fact Eθ⋆ [Mλ

t | Gt−1] = Mλ
t−1. Therefore (Mλ

t )t∈N is a
nonnegative martingale adapted to the filtration (Gt)t∈N and actually satisfies the equality
Eθ⋆

[
Mλ
t

]
= 1. For any prior density q(θ) over θ ∈ Θ, we now define a mixture of martingales

Mt =
∫

Λθ⋆
Mλ
t q(θ + λ)dλ . (B.9)

where Λθ⋆ = {λ, θ⋆ + λ ∈ Θ}. Then (Mt)t∈N is also a martingale and also satisfies the equality
Eθ⋆ [Mt] = 1. Now consider the prior density

q(θ⋆ + λ) = c0 exp (−L0(θ⋆ + λ)) , (B.10)

where c0 = 1∫
Θ exp(−L0(θ′))dθ′ (which is well-defined since exp(−L0) is integrable over Θ). We

then have

Mt = c0

∫
Λθ⋆

exp
(
λ⊤St −

t∑
s=1
BLs,θ⋆(λ)− L0(θ⋆ + λ)

)
dλ , (B.11)

where we denote St =
∑t
s=1 (Fs(Ys)− Eθ⋆ [Fs(Ys)]). Now, from the formula of parameter

estimate, we have
t∑

s=1
∇Ls(θ̂t,L0) +∇L0(θ̂t,L0) =

t∑
s=1

Fs(Ys) . (B.12)
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This yields

St =
t∑

s=1

(
∇Ls(θ̂t,L0)−∇Ls(θ)

)
+∇L0(θ̂t,L0) . (B.13)

Legendre function and Bregman properties. We now introduce the regularisation function
L1:t(θ⋆) =

∑t
s=1 Ls(θ⋆). Note that L1:t is also a Legendre function and its associated Bregman

divergence satisfies, for any θ, θ′ ∈ Θ,

BL1:t(θ′, θ) =
t∑

s=1

(
Ls(θ′)− Ls(θ)− (θ′ − θ)⊤∇Ls(θ)

)
=

t∑
s=1
BLs(θ′, θ). (B.14)

In this notation, we can rewrite∑t
s=1 BLs,θ⋆(λ) = BL1:t,θ⋆(λ) and St = ∇L1:t(θ̂t,L0)−∇Lt(θ⋆) +

∇L0(θ̂t,L0). We then obtain

Mt = c0 exp (−L0(θ⋆))
∫

Λθ⋆
exp

(
λ⊤xt − BL1:t,θ⋆(λ) + λ⊤x0 − BL0,θ⋆(λ)

)
dλ , (B.15)

where we have introduced x0 = ∇L0(θ̂t,L0)−∇L0(θ⋆) and xt = ∇L1:n(θ̂t,L0)−∇L1:t(θ⋆).
We now have from the Bregman duality property recalled in Lemma 3.1 that

sup
λ∈Λθ⋆

(
λ⊤xt − BL1:t,θ⋆(λ)

)
= B⋆L1:t,θ⋆(xt) (B.16)

= B⋆L1:t,θ⋆(∇L1:t(θ̂t,L0)−∇L1:t(θ⋆)) = BL1:t(θ⋆, θ̂t,L0) . (B.17)

Furthermore, any optimal λmust satisfy

∇L1:t(θ⋆ + λ)−∇L1:t(θ⋆) = xt =⇒ ∇L1:t(θ⋆ + λ) = ∇L1:t(θ̂t,L0) . (B.18)

One possible solution is λ⋆ = θ̂t,L0 − θ⋆, in which case we deduce that

λ⊤xt − BL1:t,θ⋆(λ)

= λ⊤xt − BL1:t,θ⋆(λ) + BL1:t(θ⋆, θ̂t,L0)−
(
λ⋆⊤xt − BL1:t,θ⋆(λ⋆)

)
= BL1:t(θ⋆, θ̂t,L0) + (λ− λ⋆)⊤∇Lt(θ⋆ + λ⋆) + BL1:t,θ⋆(λ⋆)− BL1:t,θ⋆(λ)− (λ− λ⋆)⊤∇L1:t(θ⋆)

= BL1:t(θ⋆, θ̂t,L0) + (λ− λ⋆)⊤∇L1:t(θ⋆ + λ⋆) + L1:t(θ⋆ + λ⋆)− L1:t(θ⋆ + λ) . (B.19)

Similarly, we have

λ⊤x0 − BL0,θ⋆(λ) = BL0(θ⋆, θ̂t,L0) + (λ− λ⋆)⊤∇L0(θ⋆ + λ⋆) + L0(θ⋆ + λ⋆)− L0(θ⋆ + λ) .
(B.20)
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Martingale rewriting and conclusion. Plugging in (B.20) and (B.19) in (B.15), we now
obtain

Mt = c0 exp

 ∑
s∈{0,1:t}

BLs(θ⋆, θ̂t,L0)− L0(θ⋆)


×
∫

Λθ⋆
exp

 ∑
s∈{0,1:t}

(
(λ− λ⋆)⊤∇Ls(θ⋆ + λ⋆) + Ls(θ⋆ + λ⋆)− Ls(θ⋆ + λ)

) dλ
= c0 exp

 ∑
s∈{0,1:t}

BLs(θ⋆, θ̂t,L0)− L0(θ⋆)


× exp

− ∑
s∈{0,1:t}

(
(θ⋆ + λ⋆)⊤∇Ls(θ⋆ + λ⋆)− Ls(θ⋆ + λ⋆)

)
×
∫

Λθ⋆
exp

 ∑
s∈{0,1:t}

(
(θ⋆ + λ)⊤∇Ls(θ⋆ + λ⋆)− Ls(θ⋆ + λ)

) dλ
= c0
ct

exp

 ∑
s∈{0,1:t}

BLs(θ⋆, θ̂t,L0)− L0(θ⋆)


×
∫

Λθ⋆ exp
(∑

s∈{0,1:t}

(
(θ⋆ + λ)⊤∇Ls(θ⋆ + λ⋆)− Ls(θ⋆ + λ)

))
dλ∫

Θ exp
(∑

s∈{0,1:t} ((θ′)⊤∇Ls(θ⋆ + λ⋆)− Ls(θ′))
)
dθ′

= c0
ct

exp
(

t∑
s=1
BLs(θ⋆, θ̂t,L0) + BL0(θ⋆, θ̂t,L0)− L0(θ⋆)

)
, (B.21)

where we have introduced

ct =
exp

(∑
s∈{0,1:t}

(
(θ⋆ + λ⋆)⊤∇Ls(θ⋆ + λ⋆)− Ls(θ⋆ + λ⋆)

))
∫

Θ exp
(∑

s∈{0,1:t} ((θ′)⊤∇Ls(θ⋆ + λ⋆)− Ls(θ′))
)
dθ′

. (B.22)

A simple application of Theorem 1.20 yields, for any random time τ in N,

Pθ⋆
(

τ∑
s=1
BLs(θ⋆, θ̂τ,L0) + BL0(θ⋆, θ̂τ,L0)− L0(θ⋆) ⩾ log

(
cτ
c0δ

))
= Pθ⋆

(
Mτ ⩾

1
δ

)
⩽ δEθ⋆ [Mτ ]

= δ . (B.23)

Finally, since λ⋆ = θ̂τ,L0 − θ⋆, we have the more explicit form

cτ
c0

=
∫

Θ exp (−L0(θ′)) dθ′

∫
Θ exp

(
−

∑
s∈{0,1:τ}

BLs(θ′, θ⋆ + λ⋆)
)
dθ′

(B.24)
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=
∫

Θ exp (−L0(θ′)) dθ′∫
Θ exp

(
−
∑τ
s=1 BLs(θ′, θ̂τ,L0)− BL0(θ′, θ̂τ,L0)

)
dθ′

. (B.25)

We conclude on the time-uniform confidence sequence as in Theorem 3.3. ■

The general result of Theorem B.1 specifies straightforwardly to the case when all observa-
tions have same law, yielding the following corollary that we state now for completeness.

Corollary B.2 (Method of mixtures with global Legendre regularisation, i.i.d. case). Let t ∈ N
and µ̂t = 1/t

∑t
s=1 F (Ys). For all Legendre function L0 such that exp(−L0) is integrable over Θ, let

θ̂t,L0 =
(
∇L+ 1

t
∇L0

)−1
(µ̂t) , (B.26)

γt,L0 = log

 ∫
Θ exp (−L0(θ′)) dθ′∫

Θ exp
(
−tBL

(
θ′, θ̂t,L0

)
− BL0

(
θ′, θ̂t,L0

))
dθ′

 , (B.27)

and then, for any δ ∈ (0, 1], consider the set

Θ̂δ
t,L0 =

{
θ0 : tBL

(
θ0, θ̂t,L0

)
+ BL0

(
θ0, θ̂t,L0

)
⩽ log 1

δ
+ L0(θ0) + γt,L0

}
. (B.28)

Then
(
Θ̂δ
t,L0

)
t∈N

is a time-uniform confidence sequence at level δ for θ⋆.

Choice of Legendre function L0. A natural choice for the Legendre regulariser L0 is to use
the log-partition function of the exponential family at hand. If L0 = cL, where c > 0 is a scaling
coefficient, the formula above simplify to

θ̂t,L0 = θ̂t
1 + c

t

and γt,L0 = log

 ∫
Θ exp (−cL(θ′)) dθ′∫

Θ exp
(
−(t+ c)BL

(
θ′, θ̂t,L0

))
dθ′

 , (B.29)

where θ̂t = (∇L)−1 (µ̂t) is the standard MLE of the parameter θ0.
In the special case of the one-dimensional Gaussian family G =

{
N (θ, σ2), θ ∈ R

} where
the variance σ2 is known, the log-partition function regulariser defined by L0(θ) = θ2

2σ2 satisfies
the integrability assumption ∫R e−cL0(θ)dθ <∞ with c > 0. Straightforward calculations show
that the resulting confidence set is the same as the one derived from Theorem 3.3 with local
regularisation c (see Appendix B.2). For many other standard families however, this integrabil-
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ity assumption may fail, as in the case of the exponential distributions G =
{
E(−θ), θ ∈ R∗

+
},

for which L(θ) = − log(−θ) (see Appendix B.2).
For other choices of Legendre function, computing the regularised parameter estimate θ̂t,L0

and the information gain γt,L0 requires inverting the function ∇L+ 1
t∇L0 and computing a

tedious integral, both of which seldom result in closed-form expressions. For these reasons,
we recommend as a first step the use of local regularisation (Theorem 3.3) over Legendre
regularisers.

Application to linear contextual bandits. We now detail an application of Theorem B.1 to
build vector confidence sets for linear bandit using a quadratic Legendre regulariser. We
consider the setting of linear bandits (see Chapter 1), but with possibly action-dependent
variance (heteroscedastic noise). We recall that an algorithm for this problem chooses, at
each round t ∈ N, an action Xt ∈ Xt, and subsequently observes a random reward Yt =
⟨θ⋆, ϕ(Xt)⟩+ εt, where ϕ : X → Rd is a (fixed) feature map, and θ⋆ ∈ Rd is a vector of weights
unknown to the algorithm. The noise εt ∼ N (0, σ2

Xt
I) is assumed to be Gaussian with known,

action-dependent variance σ2
Xt
. The goal is to select such actions to maximise the expected

cumulative reward E[
∑T
t=1⟨θ⋆, ϕ(Xt)⟩] up to a (possibly known beforehand) horizon T . An

optimistic policy X = (Xt)t∈N for this problem selects actions sequentially depending on
the available history of past actions and rewards. Naturally, for each t ∈ N, this amounts to
controlling the deviation between the unknown parameter θ⋆ and a suitable estimate θ̂t built
from t observations (Xs, Ys)s⩽t.

Under this statistical model, the feature and log-partition functions are given respectively by
Ft(x) = xϕ(Xt)/σ2

Xt
and Lt(θ) = 1/(2σ2

Xt
) ∥θ∥2ϕ(Xt)ϕ(Xt)⊤ . Let us define the (Hessian) matrix

Vt =
t−1∑
s=1

1
σ2
Xt

ϕ(Xt)ϕ(Xt)⊤ , (B.30)

and introduce the Legendre functionL0(θ) = 1/2 ∥θ∥2V0
, where V0 is some fixed positive definite

matrix. Then, the parameter estimate and the Bregman information gain take the form

θ̂t,L0 = (Vt + V0)−1
t−1∑
s=1

Ys
σ2
Xs

ϕ(Xs) , γt,L0 = log det(V0 + Vt)1/2

det(V0)1/2 . (B.31)

Note that, the notion of Bregman information gain coincides with the classical information gain
for (sub-Gaussian) linear bandits (Srinivas et al., 2010; Russo and Van Roy, 2016). Then the
confidence sequence (Θ̂δ

t,L0
)t∈N of Theorem B.1 associated with the adapted bandit filtration is

(
Θ̂δ
t,L0

)
t∈N

=
({

θ0 ∈ Θ, ∥θ − θt,L0∥2Vt+V0 ⩽ ∥θ∥2V0 + 2 log det(V0 + Vt)1/2

δ det(V0)1/2

})
t∈N

. (B.32)
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Under the assumption that the noise process (εt)t∈N is conditionally σXt-sub-Gaussian,
Abbasi-Yadkori et al. (2011) obtained a high probability confidence sequence defined as

(
Θ̃δ
t,L0

)
t∈N

=

θ0 ∈ Θ, ∥θ − θt,L0∥Vt+V0 ⩽ ∥θ∥V0 +
√

2 log det(V0 + Vt)1/2

δ det(V0)1/2



t∈N

. (B.33)

Interestingly, since√a+ b ⩽
√
a+
√
b for all a, b ∈ R⋆+, it is clear that Θt,L0(δ) ⊂ Θ̃t,L0(δ) for all

t ∈ N, yielding a slight improvement over the standard multivariate Gaussian mixture bounds.

B.2 Specification to illustrative exponential families (y)

In this section, we provide the technical derivations to specify our generic concentration result
to a few classical distributions. The results are summarised in Table 3.1. In what follows, (Yt)t∈N
denotes an i.i.d. sequence drawn from the exponential family at hand with a fixed parameter
θ⋆ ∈ Θ, and t ∈ N a fixed integer.

Gaussian with unknown mean, known variance

Consider Y ∼ N (µ, σ2), where µ is unknown and σ is known. This corresponds to an exponen-
tial family of distributions, with parameter θ⋆ = µ, feature function F (y) = y

σ2 and log-partition
function L(θ) = θ2

2σ2 . The Bregman divergence between two parameters θ′ and θ associated
with L is given by BL(θ′, θ) = KL(pµ ∥ pµ′) = (µ−µ′)2

2σ2 . We further have L′(θ) = θ
σ2 = µ

σ2 and
L′′(θ) = 1

σ2 , implying that L′ is invertible. Denoting St =
∑t
s=1 Ys, we obtain that

µ̂t,c(µ) = θ̂t,c(θ) = St + cµ

t+ c
. (B.34)

The Bregman deviations simplify as follows

(t+ c)BL(θ, θ̂t,c(θ)) = (t+ c)(θ̂t,c(θ)− θ)2

2σ2 = 1
t+ c

(St − tµ)2

2σ2 . (B.35)

Now, on the other hand, let us see that the information gain is explicitly given by

γt,c(µ) = 1
2 log t+ c

c
. (B.36)

We obtain from Theorem 3.3 with probability at least 1− δ, for all t ∈ N,

1
t+ c

(St − tµ)2

2σ2 ⩽ log 1
δ

+ 1
2 log t+ c

c
. (B.37)
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Gaussian with known mean, unknown variance

We consider Y ∼ N (µ, σ2), where µ is known and σ is unknown. This corresponds to a
one-dimensional exponential family model with parameter θ⋆ = − 1

2σ2 ∈ R∗
−, feature function

F (y) = (y − µ)2 and log-partition function L(θ) = −1
2 log (−2θ). The first two derivatives

of L are given by L′(θ) = − 1
2θ and L′′(θ) = 1

2θ2 , which shows that L′ is invertible on the
domain Θ = R∗

−. The Bregman divergence between two parameters θ′ and θ is therefore
BL(θ′, θ) = 1

2 log (θ/θ′) + 1
2 (θ′/θ − 1).

Let Qt =
∑t
s=1 (Ys − µ)2. A short calculation shows that the following expression holds:

θ̂t,c(θ) = − t+ c

c/θ − 2Qt
. (B.38)

To compute the Bregman information gain, note that the above expression and a change of
variable implies

∫ 0

−∞
exp

(
−cBL

(
θ′, θ

))
dθ′ = −θ (2/c)c/2+1 ec/2Γ (c/2 + 2) . (B.39)

Combining the last two lines yields

γt,c(θ) = log θ

θ̂t,c(θ)
− (1+log 2) t2 − ( c2 +1) log c+ ( t+c2 +1) log(t+c)−

log Γ
(
t+c
2 +2

)
log Γ

(
c
2 +2

) (B.40)

= log c−2θQt
t+c − (1+log 2) t2 − ( c2 +1) log c+ ( t+c2 +1) log(t+c)−

log Γ
(
t+c
2 +2

)
log Γ

(
c
2 +2

)
(B.41)

= log Qt/σ
2 + c

t+c − (1+log 2) t2 − ( c2 +1) log c+ ( t+c2 +1) log(t+c)−
log Γ

(
t+c
2 +2

)
log Γ

(
c
2 +2

) .
(B.42)

Moreover, we deduce from the expression of θ̂t,c(θ) and the Bregman divergence that:

BL(θ′, θ̂t,c(θ)) = −1
2 log

(
cθ′/θ − 2θ′Qt

t+c

)
+ 1

2

(
cθ′/θ − 2θ′Qt

t+c − 1
)
. (B.43)

So, we have

(t+ c)BL(θ, θ̂t,c(θ)) = − t+ c

2 log
(
Qt/σ

2 + c

t+c

)
+ Qt/σ

2 + c

2 − t

2 . (B.44)
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After some simple algebra and using the natural parametrisation θ = − 1
2σ2 , we derive from

Theorem 3.3 that with probability at least ⩾ 1− δ, for all t ∈ N,

− ( t+c2 +1) log Qt/σ
2 + c

t+c + Qt
2σ2

⩽ log 1
δ
− t

2 log 2− ( c2 +1) log c+ ( t+c2 +1) log(t+c) + log Γ
(
c

2 +2
)
− log Γ

(
t+c

2 +2
)
.

(B.45)

Gaussian with unknown mean and variance

We consider Y ∼ N (µ, σ2), where both µ ∈ R and σ > 0 are unknown. These distributions

form a two-dimensional exponential family with parameter θ⋆ =
(
θ⋆1
θ⋆2

)
=
(

µ
σ2

− 1
2σ2

)
belonging

to the domain Θ = R × R∗
−. The corresponding feature and log-partition functions writes

F (y) =
(
y

y2

)
andL(θ) = −1

2 log(−θ2)− θ2
1

4θ2
respectively. The gradient andHessian ofL follows

from straightforward calculations and write:

∇L(θ) =

 − θ1
2θ2

− 1
2θ2

+ θ2
1

4θ2
2

 ,∇2L(θ) =

− 1
2θ2

θ1
2θ2

2
θ1

2θ2
2

1
2θ2

2
− θ2

1
2θ3

2

 . (B.46)

In particular, Tr ∇2L(θ) = − 1
2θ2

+ 1
2θ2

2
− θ2

1
2θ3

2
> 0 and det∇2L(θ) = − 1

4θ3
2
> 0, therefore the

symmetric matrix∇2L(θ) is positive definite (both its eigenvalues are positive). The inverse of
the gradient mapping ∇L : Θ → P , where the image set is P =

{
(x, y) ∈ R2, y > x2}, can be

explicitly computed as:

(∇)−1 L
(
x

y

)
= 1
y − x2

(
x

−1
2

)
. (B.47)

The expression of the Bregman divergence between two parameters θ and θ′ can be calculated
from the above results and reads:

BL(θ′, θ) = 1
2 log θ2

θ′
2

+ θ′
2

2θ2
− θ′

2

(
θ′

1
2θ′

2
− θ1

2θ2

)2
− 1

2 . (B.48)

Let St =
∑t
s=1 Ys and Qt =

∑t
s=1 Y

2
s and Vt,c = 1

t+cQt −
(

1
t+cSt

)2. We have that

θ̂t,c(θ) = 1
Vt,c − c

t+c
1

2θ2
+ tc

(t+c)2
θ2

1
4θ2

2
+ c

(t+c)2
θ1
θ2
St

 1
t+cSt −

c
2(t+c)

θ1
θ2

−1
2

 . (B.49)
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To compute the Bregman information gain, we need to evaluate the integral ∫Θ exp (−cBL(θ′, θ)) dθ′.
As the integrand is nonnegative, we can integrate first along θ′

1 (Fubini’s theorem), which
writes:∫

Θ
exp

(
−cBL(θ′, θ)

)
dθ′ =

∫ 0

−∞

∫ ∞

−∞
exp

(
− c2 log

(
θ2
θ′

2

)
− c

2
θ′

2
θ2

+ cθ′
2

(
θ′

1
2θ′

2
− θ1

2θ2

)2
+ c

2

)
dθ′

1dθ
′
2

= e
c
2

∫ 0

−∞

(
θ′

2
θ2

) c
2
e

− c
2
θ′

2
θ2

∫ ∞

−∞
exp

(
cθ′

2

(
θ′

1
2θ′

2
− θ1

2θ2

)2)
dθ′

1dθ
′
2 .

(B.50)

Letm = θ1
2θ2

and s = 1√
−2cθ′

2
. The integral with respect to θ′

1 can be rewritten using the change

of variable y = θ′
1

2θ′
2
as:

∫ ∞

−∞
exp

(
cθ′

2

(
θ′

1
2θ′

2
− θ1

2θ2

)2)
dθ′

1 = −2θ′
2
√

2πs
∫ ∞

−∞

1√
2πs

e− (y−m)2

2s2 dy︸ ︷︷ ︸
=1

. (B.51)

Therefore, the above calculation simplifies to:
∫

Θ
exp

(
−cBL(θ′, θ)

)
dθ′ = 2

√
π

c
e
c
2

∫ 0

−∞

(
θ′

2
θ2

) c
2
e

− c
2
θ′

2
θ2

√
−θ′

2dθ
′
2 , (B.52)

which after a linear change of variable on θ′
2 can be related to the Gamma function as follows:

∫
Θ

exp
(
−cBL(θ′, θ)

)
dθ′ = 2

√
π

c

(2
c

) c+1
2 +1

Γ
(
c+ 1

2 + 1
)

(−θ2)
3
2 . (B.53)

The Bregman information gain is thus:

γt,c(θ) = −
(1+log 2

2

)
t−

(
c

2 + 2
)

log c+
(
t+c

2 + 2
)

log(t+c)

+ log Γ
(
c+3

2

)
− log Γ

(
t+c+3

2

)
+ 3

2 log θ2

θ̂t,c(θ)2
, (B.54)

with θ2
θ̂t,c(θ)2

= −2θ2Vt,c + c
t+c −

tc
(t+c)2

θ2
1

2θ2
− 2cθ1

(t+c)2Stt. Now, applying the result of Theorem 3.3
shows that with probability at least 1− δ, for all t ∈ N,

− t+c+3
2 log

(
θ2

θ̂t,c(θ)2

)
− θ2(t+c)Vt,c −

tθ2
1

4θ2
− θ2
t+cS

2
t − θ1St

⩽ log 1
δ
− t

2 log 2−
(
c

2 +2
)

log c+
(
t+c

2 +2
)

log (t+c) + log Γ
(
c+3

2

)
− log Γ

(
t+c+3

2

)
.

(B.55)
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After expanding the ratio θ2
θ̂t,c(θ)2

and substituting the natural parametrisation in terms of µ and
σ, we finally obtain that with probability at least 1− δ, for all t ∈ N,

− t+c+3
2 log

(
1
σ2Vt,c + c

t+c + tc

(t+c)2
µ2

σ2 −
2c

(t+c)2
µ

σ2St

)

+ t+c
2σ2 Vt,c + tµ2

2σ2 + 1
2(t+c)σ2S

2
t −

µ

σ2St

⩽ log 1
δ
− t

2 log 2−
(
c

2 +2
)

log c+
(
t+c

2 +2
)

log (t+c) + log Γ
(
c+3

2

)
− log Γ

(
t+c+3

2

)
.

(B.56)

To simplify this formula, we introduce the standardised sumof squaresZt(µ′, σ′) =
∑t
s=1

(
Ys−µ′

σ′

)2

for (µ′, σ′) ∈ R×R∗
+. After rearranging terms and denoting µ̂t = St/t, the above formula reads:

1
2Zt(µ, σ)− t+ c+ 3

2 log
(

t

t+cZt(µ̂t, σ) + c

t+cZt(µ, σ) + c

)
⩽ log 1

δ
− t

2 log 2−
(
c

2 +2
)

log c+ 1
2 log (t+c) + log Γ

(
c+3

2

)
− log Γ

(
t+c+3

2

)
. (B.57)

Bernoulli

We consider Y ∼ B(µ). This corresponds to an exponential family model, with parameter
θ⋆ = log µ

1−µ , feature function F (y) = y and log-partition function L(θ) = log(1 + exp(θ)).
The Bregman divergence between two parameters θ′ and θ associated with L is given by
BL(θ′, θ) = kl(µ, µ′) = µ log µ

µ′ + (1 − µ) log 1−µ
1−µ′ . We further have L′(θ) = exp(θ)

1+exp(θ) = µ

and L′′(θ) = exp(θ)
(1+exp(θ))2 = µ(1 − µ). Therefore L′ is invertible and we have the expression

θ̂t,c(θ) = (L′)−1
(

1
t+c

∑t
s=1 Ys + c

t+c
exp(θ)

1+exp(θ)

)
. Then, denoting St =

∑t
s=1 Yt, we get

µ̂t,c(µ) = L′(θ̂t,c(θ)) =
∑t
s=1 Ys + cµ

t+ c
= St + cµ

t+ c
. (B.58)

Therefore, the Bregman deviation specifies to the following closed-form formula

(t+ c)BL(θ, θ̂t,c(θ)) = (t+ c)kl(µ̂t,c(µ), µ) (B.59)

= (St + cµ) log µ̂t,c(µ)
µ

+ (t− St + c(1− µ)) log 1− µ̂t,c(µ)
1− µ . (B.60)

Now, we observe that∫
Rd

exp
(
−cBL(θ′, θ)

)
dθ′ = B(cµ, c(1− µ))

µcµ(1− µ)c(1−µ) , (B.61)∫
Rd

exp
(
−(t+ c)BL(θ′, θ̂t,c(θ))

)
dθ′ = B((t+ c)µ̂t,c(µ), (t+ c)(1− µ̂t,c(µ)))

µ̂t,c(µ)(t+c)µ̂t,c(µ)(1− µ̂t,c(µ))(t+c)(1−µ̂t,c(µ))
. (B.62)
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Therefore, we deduce that the Bregman information gain rewrites

γt,c(µ) =(St + cµ) log µ̂t,c(µ) + (t− St + c(1− µ)) log(1− µ̂t,c(µ))− cµ logµ− c(1− µ) log(1− µ)

(B.63)

+ log Γ(cµ)Γ(c(1− µ))
Γ(St + cµ)Γ(t− St + c(1− µ)) + log Γ(t+ c)

Γ(c) . (B.64)

Combining the above and using Theorem 3.3, we obtain that with probability at least 1− δ, for
all t ∈ N,

St log 1
µ

+ (t− St) log 1
1− µ + log Γ(St + cµ)Γ(t− St + c(1− µ))

Γ(cµ)Γ(c(1− µ)) ⩽ log 1
δ

+ log Γ(t+ c)
Γ(c) .

(B.65)

Interpretation. At this point, we can get more intuition about these terms using Stirling’s
approximation

Γ(z) =
√

2π
z

(
z

e

)z (
1 +O

(1
z

))
. (B.66)

Indeed, we derive the following asymptotic approximation

γt,c(θ) ≈
1
2 log t+ c

c
+ 1

2 log µ̂t,c(µ)(1− µ̂t,c(µ))
µ(1− µ) . (B.67)

Hence, we obtain with probability at least 1− δ, that for all t ∈ N,

kl (µ̂t,c(µ), µ) ⪅ 1
t+ c

(
log 1

δ
+ 1

2 log t+ c

c
+ 1

2 log µ̂t,c(µ)(1− µ̂t,c(µ))
µ(1− µ)

)
. (B.68)

Note that the last term in the right-hand side of the above equation is given by

1
2 log

Vµ̂t,c(µ) [Y ]
Vµ [Y ] , (B.69)

which shows that the Bregman information gain induces a variance-dependent bound in a
similar spirit as Bernstein’s inequality.

Exponential

We consider Y ∼ E(1/µ) with unknown mean µ. The distribution of Y is supported on
[0,+∞) with density pµ(y) = 1

µe
− y
µ . This corresponds to an exponential family model with

parameter θ⋆ = − 1
µ , feature function F (y) = y and log-partition function L(θ) = log(−1

θ ).
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The Bregman divergence between two parameters θ′ and θ associated with L is given by
BL(θ′, θ) = KL(pµ ∥ pµ′) = µ

µ′ − 1− log µ
µ′ .

We have L′(θ) = −1
θ = µ and L′′(θ) = 1

θ2 = µ2. Therefore L′ is invertible and we have

µ̂t,c(µ) := L′(θ̂t,c(θ)) = St + cµ

t+ c
. (B.70)

Therefore, we deduce that the Bregman divergence takes the following form

(t+ c)BL(θ, θ̂t,c(θ)) = (t+ c)KL(pµ̂t,c(µ) ∥ pµ) = St
µ
− (t+ c) log µ̂t,c(µ)

µ
− t . (B.71)

Now, we observe that∫
Rd

exp
(
−cBL(θ′, θ)

)
dθ′ = Γ(c+ 1)

cµ

(
e

c

)c
= Γ(c)

µ

(
e

c

)c
, (B.72)∫

Rd
exp

(
−(t+ c)BL(θ′, θ̂t,c(θ))

)
dθ′ = Γ(t+ c+ 1)

(t+ c)µ̂t,c(µ)

(
e

t+ c

)t+c
= Γ(t+ c)

µ̂t,c(µ)

(
e

t+ c

)t+c
.

(B.73)

Therefore, the Bregman information gain writes explicitly as follows

γt,c(θ) = log µ̂t,c(µ)
µ

+ log
(

Γ(c)
(
e

c

)c)
− log

(
Γ(t+ c)

(
e

t+ c

)t+c)
. (B.74)

We can now specify the inequality (t + c)BL(θ, θ̂t,c(θ)) ⩽ log(1/δ) + γt,c(θ). Combining the
above, we obtain with probability at least 1− δ, for all t ∈ N,

St
µ
− (t+ c+ 1) log

(
St + cµ

(t+ c)µ

)
⩽ (t+ c) log(t+ c) + log Γ(c)

Γ(t+ c) + log 1
δ
− c log c . (B.75)

Interpretation. As in the Bernoulli case, Stirling’s approximation provides further intuition.
First, we have the following asymptotic approximation

γt,c(θ) ≈
1
2 log t+ c

c
+ log µ̂t,c(µ)

µ
, (B.76)

and hence, with probability at least 1− δ, for all t ∈ N, we have

KL(pµ̂t,c(µ) ∥ pµ) ⪅ 1
t+ c

(
log 1

δ
+ 1

2 log t+ c

c
+ log µ̂t,c(µ)

µ

)
. (B.77)
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Note that, as for Bernoulli distributions, the last term in the right-hand side of the above
equation is given by the Bernstein-like term

1
2 log

Vµ̂t,c(µ) [Y ]
Vµ [Y ] . (B.78)

Gamma with fixed shape

We consider Y ∼ Gamma(k, λ) with fixed shape k > 0 and unknown scale λ > 0.1 The distri-
bution of Y is supported on [0,∞) with density pλ(y) = 1

Γ(k)λk y
k−1e− y

λ . This corresponds to an
exponential family model with parameter θ⋆ = − 1

λ , feature function F (y) = y and log-partition
function L(θ) = log(λk) = k log(−1

θ ). The Bregman divergence between two parameters θ′ and
θ associated with L is given by BL(θ′, θ) = KL(pλ ∥ pλ′) = k

(
λ
λ′ − 1− log

(
λ
λ′

))
.

Note that L′(θ) = −k
θ = kλ and L′′(θ) = k

θ2 = kλ. Therefore L′ is invertible, and we get

kλ̂t,c(λ) = L′(θ̂t,c(θ)) =
∑t
s=1 Ys + ckλ

t+ c
(B.79)

Therefore, the Bregman divergence takes the following form

(t+ c)BL(θ, θ̂t,c(θ)) = (t+ c)KL(p
λ̂t,c(λ) ∥ pλ)

= k(t+ c)
(∑t

s=1 Ys + ckλ

(t+ c)kλ

)
− k(t+ c) log

(∑t
s=1 Ys + ckλ

(t+ c)kλ

)
− k(t+ c) .

(B.80)

Now, we observe that
∫
Rd

exp
(
−cBL(θ′, θ)

)
dθ′ = Γ(ck)

λ

(
e

ck

)ck
, (B.81)∫

Rd
exp

(
−(t+ c)BL(θ′, θ̂t,c(θ))

)
dθ′ = Γ((t+ c)k)

λ̂t,c(λ)

(
e

(t+ c)k

)(t+c)k
. (B.82)

Therefore, the Bregman information gain writes explicitly as follows

γt,c(θ) = log
(∑t

s=1 Ys + ckλ

(t+ c)kλ

)
+ log

(
Γ(ck)

(
e

ck

)ck)
− log

(
Γ((t+ c)k)

(
e

(t+ c)k

)(t+c)k
)
.

(B.83)
1Note that Gamma(λ, k) with k = 1 is E(1/λ).
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Using the above with Theorem 3.3, we obtain with probability at least 1− δ, for all t ∈ N,

k(t+ c)
(∑t

s=1 Ys + ckλ

(t+ c)kλ

)
− (k(t+ c) + 1) log

(∑t
s=1 Ys + ckλ

(t+ c)kλ

)

⩽ log 1
δ

+ log Γ(ck)
Γ((t+ c)k) + (t+ c)k log((t+ c)k) + ck − ck log ck . (B.84)

Weibull with fixed shape

We consider Y ∼ Weibull(λ, k) with fixed shape k > 0 and unknown scale λ > 0.2 The
distribution ofY is supported on [0,∞)with density pλ(y) = k

λ

( y
λ

)k−1
e−( yλ)k . This corresponds

to an exponential family model with parameter θ⋆ = − 1
λk
, feature function F (y) = yk and log-

partition functionL(θ) = log(λk) = log(−1
θ ). The Bregman divergence between two parameters

θ′ and θ associated with L is given by BL(θ′, θ) = KL(pλ ∥ pλ′) =
(
λ
λ′

)k
− 1− log

(
λ
λ′

)k.
Note that L′(θ) = −1

θ = λk and L′′(θ) = 1
θ2 = λ2k. Therefore L′ is invertible, and we get

(λ̂t,c(λ))k = L′(θ̂t,c(θ)) =
∑t
s=1 Y

k
s + cλk

t+ c
. (B.85)

Therefore, the Bregman divergence takes the following form

(t+ c)BL(θ, θ̂t,c(θ)) = (t+ c)KL(p
λ̂t,c(λ) ∥ pλ)

= (t+ c)
(∑t

s=1 Y
k
s + cλk

(t+ c)λk

)
− (t+ c) log

(∑t
s=1 Y

k
s + cλk

(t+ c)λk

)
− (t+ c) .

(B.86)

Now, we observe that∫
Rd

exp
(
−cBL(θ′, θ)

)
dθ′ = Γ(c)

λk

(
e

c

)c
, (B.87)∫

Rd
exp

(
−(t+ c)BL(θ′, θ̂t,c(θ))

)
dθ′ = Γ(t+ c)

(λ̂t,c(λ))k

(
e

t+ c

)t+c
. (B.88)

Therefore, the Bregman information gain writes explicitly as follows

γt,c(θ) = log
(∑t

s=1 Y
k
s + cλk

(t+ c)λk

)
+ log

(
Γ(c)

(
e

c

)c)
− log

(
Γ(t+ c)

(
e

t+ c

)t+c)
. (B.89)

2Note that Weibull(λ, k) with k = 1 is E(1/λ).
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Using the above with Theorem 3.3, we obtain with probability at least 1− δ, for all t ∈ N,

(t+ c)
(∑t

s=1 Y
k
s + cλk

(t+ c)λk

)
− (t+ c+ 1) log

(∑t
s=1 Y

k
s + cλk

(t+ c)λk

)

⩽ log 1
δ

+ log Γ(c)
Γ(t+ c) + (t+ c) log(t+ c) + c− c log c . (B.90)

Pareto with fixed scale

We consider Y ∼ Pareto (α), where α > 0 is unknown.3 The distribution of Y is supported in
[1,+∞), with density pα(y) = α

yα+1 , which corresponds to a one-dimensional exponential family
model with parameter θ⋆ = −α−1 ∈ (−∞,−1), feature function F (y) = log y and log-partition
function L(θ) = − log (−1−θ). The first two derivatives of L are given by L′(θ) = − 1

1+θ and
L′′(θ) = 1

(1+θ)2 , therefore L′ is invertible on the domain (−∞,−1). Using these expressions,
the Bregman divergence between two parameters θ′ and θ writes BL(θ′, θ) = − log (−1− θ′) +
log (−1− θ) + θ′−θ

1+θ . Using the shorthand Lt =
∑t
s=1 log Ys, it follows from the definition that:

θ̂t,c(θ) = −1 + t+c
c

1+θ − Lt
. (B.91)

To compute the Bregman information gain, we rewrite the following integral thanks to an affine
change of variable in order to relate it to the Gamma function:

∫ −1

−∞
exp

(
−cBL(θ′, θ)

)
dθ′ = (−1−θ)−c e

cθ
1+θ

∫ −1

−∞

(
−1−θ′)c e− cθ′

1+θ dθ′

= (−1−θ) Γ(c)
(
e

c

)c
. (B.92)

The expression of the Bregman information then follows immediately:

γt,c(θ) = − log
(

t+c
(−1− θ)Lt + c

)
− t− c log c+ (t+c) log(t+c) + log Γ(c)− log Γ(t+c) .

(B.93)

Moreover, we deduce from the expression of θ̂t,c(θ) and the Bregman divergence that:

BL(θ′, θ̂t,c(θ)) = − log(−1− θ′) + log
(

t+c
Lt − c

1+θ

)
−

(
Lt− c

1+θ

)
(θ′+1)

t+c − 1 . (B.94)

3We assume scale is fixed to the value 1.
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Therefore, Theorem 3.3 combined with the natural parameter θ = −1 − α yields that with
probability at least 1− δ, for all t ∈ N,

αLt − (t+c+1) log (αLt + c) ⩽ log 1
δ
− c log c− log(t+c) + log Γ(c)− log Γ(t+c) . (B.95)

Chi-square

We consider Y ∼ χ2(k) or, equivalently, Y ∼ Gamma
(
k
2 ,

1
2

)
, i.e. pk(y) = ( 1

2 )
k
2

Γ( k2 )y
k
2 −1e− y

2 , x ⩾ 0,
k ∈ N (or k ∈ R∗

+ if one considers Gamma distributions). This corresponds to an exponential
family model with parameter θ⋆ = k

2 − 1, feature function F (y) = log y and log-partition
function L(θ) = (θ + 1) log 2 + log Γ(θ + 1). The Bregman divergence between two parameters
θ′ and θ associated with L is given by

BL(θ′, θ) = KL(pk ∥ pk′) = 1
2(k − k′)ψ0(k/2)− log Γ(k/2)

Γ(k′/2) , (B.96)

where ψ0(z) = d
dz log Γ(z) denotes the digamma function.

We further have L′(θ) = log 2 +ψ0(θ+ 1) and L′′(θ) = ψ1(θ+ 1), where ψ1(z) = d2

dz2 log Γ(z)
denotes the trigamma function. Therefore L′ is invertible, and the parameter estimate is given
by

log 2 + ψ0(θ̂t,c(θ) + 1) = 1
t+ c

t∑
s=1

log Ys + c

t+ c
(log 2 + ψ0(θ + 1)) , (B.97)

yielding

k̂t,c(k) := 2(1 + θ̂t,c(θ)) = 2ψ−1
0

(
1

t+ c

t∑
s=1

log Ys + c

t+ c
ψ0(k/2)− t

t+ c
log 2

)

= 2ψ−1
0

( 1
t+ c

Kt + c

t+ c
ψ0(k/2)

)
, (B.98)

whereKt =
∑t
s=1 log Ys

2 . Therefore, the Bregman divergence rewrites as follows

(t+ c)BL(θ, θ̂t,c(θ)) = (t+ c)KL(p
k̂t,c(k) ∥ Pk) (B.99)

= 1
2(k̂t,c(k)− k)

(
Kt + c ψ0

(
k

2

))
− (t+ c) log

Γ
(
k̂t,c(k)

2

)
Γ
(
k
2

) . (B.100)
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Now, we see that∫
Rd

exp
(
−cBL(θ′, θ)

)
dθ′ =

∫ 1
2 exp

(
− c2(k − k′)ψ0(k/2)

)( Γ(k/2)
Γ(k′/2)

)c
dk′ , (B.101)

∫
Rd

exp
(
−(n+ c)BL(θ′, θ̂t,c(θ))

)
dθ′ =

∫ 1
2 exp

(
− t+c2 (k̂t,c(k)− k′)ψ0(k̂n,c(k)/2)

)(Γ(k̂t,c(k)/2)
Γ(k′/2)

)t+c
dk′ .

(B.102)

Therefore, the Bregman information gain writes

γt,c(θ) = c log Γ
(
k

2

)
− (t+ c) log Γ

(
k̂t,c(k)

2

)
− c k2ψ0

(
k

2

)
+ (t+ c) k̂t,c(k)

2 ψ0

(
k̂t,c(k)

2

)

+ log
∫

(Γ (k′/2))−c exp
(
c k′

2 ψ0
(
k
2

))
dk′

∫
(Γ (k′/2))−(t+c) exp

(
(t+ c)k′

2 ψ0

(
k̂t,c(k)

2

))
dk′

= c log Γ
(
k

2

)
− (t+ c) log Γ

(
k̂t,c(k)

2

)
− c k2ψ0

(
k

2

)
+ k̂t,c(k)

2

(
Kt + cψ0

(
k

2

))

+ log
∫

(Γ (k′/2))−c exp
(
c k′

2 ψ0
(
k
2

))
dk′∫

(Γ (k′/2))−(t+c) exp
(
k′

2

(
Kt + cψ0

(
k
2

)))
dk′

= c log Γ
(
k

2

)
− (t+ c) log Γ

(
k̂t,c(k)

2

)
− c k2ψ0

(
k

2

)
+ k̂t,c(k)

2

(
Kt + cψ0

(
k

2

))
+ log J

(
c, cψ0

(
k

2

))
− log J

(
t+c,Kt+cψ0

(
k

2

))
, (B.103)

where we define the auxiliary function J(a, b) =
∫

exp
(
−a log Γ

(
k′

2

)
+ bk

′

2

)
dk′. Combining

the above with Theorem 3.3, and after some simple algebra, we obtain that with probability at
least 1− δ, for all t ∈ N,

n log Γ
(
k

2

)
− k

2Kt − log J
(
c, cψ0

(
k

2

))
+ log J

(
t+c,Kt+cψ0

(
k

2

))
⩽ log 1

δ
. (B.104)
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Remark B.3 (Discrete or continuous parameters). The integral terms ∫ dk′ in the above derive
from the martingale construction in the proof of Theorem 3.3 and the mixture distribution q(θ|α, β)
over the parameter θ ∈ Θ of the exponential family. In the case of Gamma

(
k
2 ,

1
2

)
with unknown shape

k
2 > 0, we have θ = k

2 and Θ = (0,+∞), therefore dk′ corresponds to the Lebesgue measure over
(0,+∞). When restricted to the Chi-square family, Θ = N, and dk′ is instead the counting measure,
effectively turning integrals into discrete sums. In Appendix B.3, we report figures using both versions,
see Figure B.4 and Figure B.9.
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Remark B.4 (Computing the integral J). The ratio of integrals (or infinite sums) in (B.104) can
be efficiently implemented using a simple integration scheme (or by truncation). Indeed, for a given
kmax ∈ N, b≪ 1 and B ≫ 1, we define xk′ = b+ k′

kmax
(B − b) for k′ = 0, . . . , kmax, so that

log
∫+∞

0

(
Γ
(
k′

2

))−c
exp

(
k′

2 cψ0
(
k
2

))
dk′

∫+∞
0

(
Γ
(
k′

2

))−(n+c)
exp

(
k′

2

(
cψ0

(
k
2

)
+
∑n
t=1 log Yt

2

))
dk′

≈ logsumexp
k′=1,...,kmax

(
−c log Γ

(
xk′

2

)
+ cxk′

2 ψ0

(
k

2

)
+ log (xk′ − xk′−1)

)

− logsumexp
k′=1,...,kmax

(
− (n+ c) Γ

(
xk′

2

)
+ xk′

2

(
cψ0

(
k

2 +
n∑
t=1

log Yt2

))
+ log (xk′ − xk′−1)

)
.

(B.105)

Similarly, we have

log

+∞∑
k′=1

(
Γ
(
k′

2

))−c
exp

(
k′

2 cψ0
(
k
2

))
+∞∑
k′=1

(
Γ
(
k′

2

))−(t+c)
exp

(
k′

2

(
cψ0

(
k
2

)
+
∑t
s=1 log Ys

2

))
≈ logsumexp

k′=1,...,kmax

(
−c log Γ

(
k′

2

)
+ k′

2 cψ0

(
k

2

))

− logsumexp
k′=1,...,kmax

(
− (t+ c) Γ

(
k′

2

)
+ k′

2

(
cψ0

(
k

2 +
t∑

s=1
log Ys¸2

)))
, (B.106)

The final steps correspond to the right-rectangular scheme over (b, B) with kmax steps and the truncation
to the first kmax terms respectively. Note the use of logsumexp

k′=1,...,kmax

(z) = log
kmax∑
k′=1

exp (zk′) for z ∈ Rkmax ,
which is efficiently implemented in many libraries for scientific computing and better handles summation
of large numbers. Empirically, we found that log b = −10, logB = 10 and kmax = 2000 provided
sufficient accuracy and that using finer approximation schemes did not significantly impact the numerical
results.

Poisson

We finally consider Y ∼ P (λ), where λ > 0 is unknown. We recall that the distribution of Y
is supported on N with probability mass function P (Y = k) = λke−λ

k! . This corresponds to a
one-dimensional exponential family model with parameter θ⋆ = log λ ∈ R, feature function
F (y) = y and log-partition function L(θ) = eθ (which is invertible on R). The Bregman
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divergence between two parameters θ′ and θ is therefore BL(θ′, θ) = eθ
′ − eθ − (θ′− θ)eθ. Using

the shorthand St =
∑t
s=1 Ys, it follows from the definition that:

θ̂t,c(θ) = log
(
St+ceθ

t+c

)
. (B.107)

The Bregman information gain is expressedusing the auxiliary function I(a, b) =
∫+∞

−∞ e−aeθ+bθdθ

as:

γt,c(θ) = c(1− θ)eθ − (t+c)
(
1− θ̂t,c(θ)

)
eθ̂t,c(θ) + log I

(
c, ceθ

)
− log I

(
t+c, (t+c)eθ̂t,c(θ)

)
= c(1− θ)eθ −

(
1− log

(
St+ceθ

t+c

))(
St+ceθ

)
+ log I

(
c, ceθ

)
− log I

(
t+c, St+ceθ

)
.

(B.108)

Moreover, we deduce from the expression of θ̂t,c(θ) and the Bregman divergence that:

BL(θ′, θ̂t,c(θ)) = eθ
′ −

(
St+ceθ

t+c

)
−
(
θ′ − log

(
St+ceθ

t+c

))(
St+ceθ

t+c

)
. (B.109)

Therefore, Theorem 3.3 combined with the natural parametrisation θ = log λ yields that with
probability at least 1− δ, for all t ∈ N,

tλ− St log λ ⩽ log 1
δ

+ log I (c, cλ)− log I (t+c, St+cλ) . (B.110)

Remark B.5 (Computing the integral I). Although, to the best of our knowledge, the integral I(a, b)
does not have a closed-form expression, it can be numerically estimated up to arbitrary precision. We
recommend the same implementation as discussed in Remark B.4, using the logsumexp operator for
stability, and refer to the code for further details.

B.3 Empirical comparisonwith existing time-uniform confidence se-
quences (y)

We illustrate the time-uniform confidence sequences derived from Bregman concentration on
several instances of classical exponential families detailed in 3.3. In each setting, when available,
we also report confidence sequences based on existing methods in the literature.

298



In what follows, we fix δ ∈ (0, 1) the uniform confidence level. For each confidence sequence(
Θ̂δ
t

)
t∈N

(δ), we report in the figures the intersection sequence
(
∩s⩽tΘ̂δ

s

)
t∈N

, which also holds
with confidence 1− δ, for t up to 200. Typical realisations of Bregman confidence sequences
are reported in Figure B.1 (Gaussian), Figure B.2 (Bernoulli, Poisson), Figure B.3 (Exponential,
Gamma, Weibull, Pareto), and Figure B.4 (Chi-square).

25 50 75 100 125 150 175 200
Sample size

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
=5%, =0.0, =1.0, c=1.0

(averaged over 1000 repetitions)

20 40 60 80 100
Sample size

0.5

1.0

1.5

2.0

2.5

3.0
=5%, =1.0, =1.0, c=1.0

(averaged over 1000 repetitions)

Figure B.1 – Examples of confidence upper and lower envelopes around unknown expectation µ = 0 for
N (µ, 1) (left, cf. Table 3.1) and unknown standard deviation σ = 1 forN (1, σ) (right, cf. Table 3.1), as a
function of the number of observations t. The thick lines indicate the median curve over 1000 replicates.
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25 50 75 100 125 150 175 200
Sample size

0.0

0.2

0.4

0.6

0.8

1.0
=5%, p=20%, c=1.0

(averaged over 1000 repetitions)

25 50 75 100 125 150 175 200
Sample size

0.0

0.2

0.4

0.6

0.8

1.0
=5%, p=50%, c=1.0

(averaged over 1000 repetitions)

25 50 75 100 125 150 175 200
Sample size

0.0

0.2

0.4

0.6

0.8

1.0
=5%, p=80%, c=1.0

(averaged over 1000 repetitions)

20 40 60 80 100
Sample size

1

2

3

4

5

6

7

=5%, =3.0, c=1.0
(averaged over 1000 repetitions)

Figure B.2 – Examples of confidence upper and lower envelopes around expectation µ for discrete
distributions. From top to bottom: Bernoulli(p), p ∈ {0.2, 0.5, 0.8} (cf. Table (3.1)) and Poisson(3) (cf.
Table 3.1) on several realisations (each dashed lines) as a function of the number of observations t. The
thick lines indicate the median curve over 1000 replicates.
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25 50 75 100 125 150 175 200
Sample size

0.0

0.5

1.0

1.5

2.0

2.5

3.0
=5%, =1.0, c=1.0

(averaged over 1000 repetitions)

20 40 60 80 100
Sample size

1

2

3

4

5

6

7

8

9
=5%, =3.0, c=1.0

(averaged over 1000 repetitions)

20 40 60 80 100
Sample size

1

2

3

4

5

6

7

=5%, =3.0, c=1.0
(averaged over 1000 repetitions)

20 40 60 80 100
Sample size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

=5%, =0.5, c=1.0
(averaged over 1000 repetitions)

Figure B.3 – Examples of confidence upper and lower envelopes (from top to bottom) around scale pa-
rameter λ for Exp(1) (cf. Table (3.1)), fixed shape Gamma(3, 2) (cf. Table 3.1), fixed shape Weibull(3, 2)
(cf. Table 3.1), and exponent α for Pareto( 1

2 ) (cf. Table 3.1), on several realisations (each dashed lines)
as a function of the number of observations t. The thick lines indicate the median curve over 1000
replicates.
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25 50 75 100 125 150 175 200
Sample size

2

3

4

5

6

7

8

9

10
=5%, =5.0, c=1.0

(averaged over 1000 repetitions)

25 50 75 100 125 150 175 200
Sample size

2

3

4

5

6

7

8

9

10
=5%, =5.0, c=1.0

(averaged over 1000 repetitions)

Figure B.4 – Examples of confidence upper and lower envelopes around expectation µ for (continuous
prior) Gamma (k

2
) with unknown shape k

2 > 0 and (discrete prior) Chi-square χ2(k), k ∈ N∗ (cf.
Table (3.1) and Remark B.3) on several realisations (each dashed lines), as a function of the number
of observations t. In particular for the Chi-square, confidence lower and upper bounds are ceiled and
floored to integers. The thick lines indicate the median curve over 1000 replicates.

Gaussian with unknown mean and variance

0 1 2

1

2

=5%, =1, =1, c=1.0

0 1 2

1

2

=5%, =1, =1

Figure B.5 – Example of time-uniform, joint confidence sets around (µ, σ) for N (1, 1) (cf. Table 3.1 for
t ∈ {10, 25, 50, 100} observations (smaller confidence sets correspond to larger sample sizes). The red
star indicates the true parameters (µ, σ) = (1, 1).
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We consider the two-dimensional family {N (µ, σ2) , (µ, σ) ∈ R× R∗
+
}. To the best of our

knowledge, there does not exist time-uniform joint confidence sets for (µ, σ) prior to this work.
In order to compare ourselves against some baseline, we derive a crude one based on Chi-square
quantiles and a union bound.

Let t ∈ N, δ ∈ (0, 1) and (Ys)ts=1 i.i.d. samples drawn from N (µ0, σ
2
0). The standardised

sum of squares

Zt(µ0, σ0) =
t∑

s=1

(
Ys − µ0
σ0

)2

follows a χ2(t) distribution, therefore, denoting by qχ2(t) the corresponding quantile function,
we have:

P
(
qχ2(t)

(
δ

2

)
⩽ Zt(µ0, σ0) ⩽ qχ2(t)

(
1− δ

2

))
⩾ 1− δ . (B.111)

By a union bound argument, the intersection of n such events with confidence δ
t , i.e.

Θ̂Z
s,t(δ) =

s⋂
r=1

{
(µ, σ) ∈ R× R∗

+ : qχ2(r)

(
δ

2t

)
⩽ Zr(µ, σ) ⩽ qχ2(r)

(
1− δ

2t

)}
, (B.112)

describes a confidence sequence at level δ that hold uniformly over r ∈ {1, . . . , t}.
We report our confidence sets (cf. equation 3.1) and the above on Figure B.5. The most

striking drawback of Θ̂Z
r,t(δ) is that it is not convex nor even bounded; in particular, projecting

onto the axes of µ and σ only provides trivial confidence sets, R and R∗
+ respectively, rendering

this result vacuous. To better grasp this phenomenon, let us informally consider µ = α+ µ0

and σ = α for some α > 0. We have:

Zt(µ, σ) =
t∑

r=1

(
Yr − µ0

α
− 1

)2
(B.113)

= 1
α2

t∑
r=1

(Yr − µ0)2

︸ ︷︷ ︸
≈
σ2

0
α2 t

− 2
α

t∑
r=1

(Yr − µ0)︸ ︷︷ ︸
≈ 2
α

√
t

+t . (B.114)

Hence, for α → +∞, Zt(µ0 + α, α) ≈ t. Moreover, Lemma 1 in Laurent and Massart (2000)
shows that4 qχ2(r) (1− δ/(2t)) ≈ t+2

√
t log 2t/δ+2 log 2tδ and qχ2(r) (δ/(2t)) ≈ t−2

√
t log 2t/δ

for r ∈ {1, . . . , s}. Therefore, even with increasing the sample size t, there exists arbitrary large
α such that (µ0 + α, α) may belong to Θ̂Z

s,t(δ).
4Actually, they only show upper and lower bounds respectively using the Chernoff method, which is typically

tight up to logarithmic factor here, so it does not change our conclusion regarding the unboundness of Θ̂Z
s,t(δ).
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By contrast, our Bregman confidence sets are convex and bounded, whichwe interpret as the
result of exploiting the true geometry of the two-dimensional Gaussian family. In addition to
the unboundedness, Θ̂Z

s,t(δ) is built using a crude union bound, which is not anytime (depends
on the terminal time t) and rather loose.

Bernoulli

We consider the Bernoulli distribution B(µ) for some unknown µ ∈ [0, 1]. Confidence bounds
are displayed in Figure B.6 for µ ∈ {0.2, 0.5, 0.8}. The sub-Gaussian mixture time-uniform
bound is extracted from Corollary 1.21 with mixing parameter equal to the local regularisation
parameter c and sub-Gaussian parameter R = 1/2 (Hoeffding’s lemma), i.e.

Θ̂δ
t,c =

µ̂t,c ±R
√√√√2
t

(
1 + c

t

)
log

2
√

1 + t
c

δ

 . (B.115)
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Figure B.6 – Confidence upper and lower envelopes built for B(µ), µ ∈ {0.2, 0.5, 0.8}, as a function of
the number of observations t, averaged over 1000 independent simulations. Grey lines are trajectories of
empirical means µ̂t. Confidence bounds are clipped between 0 and 1.

Gaussian

We consider Gaussian distributionsN (µ, σ2) for some unknown µ ∈ R and known variance σ2.
The confidence bounds are displayed in Figure B.7 for µ = 0.

Kaufmann-Koolen. Kaufmann and Koolen (2021) introduces a martingale construction for
exponential families to derive time-uniform deviation inequalities under bandit sampling.
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However, application of their result is limited to Gaussian distribution with known variance
and Gamma distribution with known shape, which is just a scaled version of exponential
distribution. Restricting Corollary 10 of Kaufmann and Koolen (2021) to the case of a single
arm yields P

(
∀t ∈ N, µ ∈ Θ̂δ,KK

t

)
⩾ 1− δ, with

Θ̂δ,KK
t =

{
BL (µ̂n, µ) ⩽ 2

n
log (4 + logn) + 1

n
Cg (log 1/δ)

}
, (B.116)

g : λ ∈ (1/2, 1] 7→ 2λ (1− log(4λ)) + log ζ(2λ)− 1
2 log(1− λ) , (B.117)

Cg : x ∈ (0,+∞) 7→ min
λ∈(1/2,1]

g(λ) + x

λ
, (B.118)

L(θ) = θ2

2σ2 (log-partition function of N (·, σ2)) . (B.119)

The sub-Gaussian mixture is again extracted from Corollary 1.21 with sub-Gaussian pa-
rameter equal to the (known) variance of the Gaussian distribution, i.e. R = σ.

Figure B.7 – Confidence upper and lower envelopes built for Gaussian distributionsN (0, 1) as a function
of the number of observations t, averaged over 1000 independent simulations. Grey lines are trajectories
of empirical means µ̂t.
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Exponential

We now consider exponential distributions E(1/µ) for some unknown mean µ ∈ R. We report
in Figure B.8 the confidence bounds for the case when µ = 1.

Kaufmann-Koolen. Again, Kaufmann andKoolen (2021, Corollary 12) show the similar time-
uniform bound P

(
∀t ∈ N, µ ∈ Θ̂δ,KK

t

)
⩾ 1 − δ, with the same definition as for the Gaussian

case except

g : λ ∈ (1/2, 1] 7→ 2λ (1− log(4λ)) + log ζ(2λ)− log(1− λ), (B.120)
L(θ) = log(−1/µ) (log-partition function of E(1/µ)). (B.121)

Figure B.8 – Confidence upper and lower envelopes built for Exponential distributions E(1) as a function
of the number of observations t, averaged over 1000 independent simulations. Grey lines are trajectories
of empirical means µ̂t.

Chi-square

We consider Gamma
(
k
2 ,

1
2

)
and χ2 (k) distributions for some unknown k > 0 and k ∈ N∗

respectively. They are in fact the same distributions, however we distinguish both as the
restriction on the domain for k (real or integer) bears two consequences:
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• the mixture distribution in the martingale construction is either continuous or discrete,
resulting in integrals or sums in the expression of the confidence sequence (equation 3.1);

• confidence bounds are constrained to be integers in the discrete case, thus ceiling and
flooring the lower and upper bounds respectively.

We find that the former is negligible as both the continuous and discrete mixtures yield
the same bound within numerical precision. The latter however allows to drastically shrink
the size of the confidence sequences, resulting in perfect identification the mean within 95%
confidence with less than 100 observations in half the simulations (see Figure B.9).

Key observations

On the studied examples, confidence intervals based on time-uniform Bregman concentration
are either comparable with state-of-the art methods for the corresponding setting or result in
sharper bounds, especially for small sample sizes (lower bounds for Bernoulli compared to
the hedged capital process, upper bound for Exponential compared to Kaufmann-Koolen). In
particular, due to the formulation in terms of Bregman divergence, our intervals are naturally
asymmetric when the underlying distribution is, and respect the support constraints (for
instance Bernoulli Bregman bounds are in [0, 1] without the need for clipping). Moreover, we
also provide bounds in novel settings for which, to the best of our knowledge, time-uniform
confidence sets are lacking (Chi-square, Poisson, Weibull, Pareto, mean-variance for Gaussian).
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Figure B.9 – Confidence upper and lower envelopes built for Gamma ( 5
2 ,

1
2
) (blue) and χ2 (5) (red)

distributions as a function of the number of observations t, over 1000 independent simulations (colored
lines are median of simulated bounds). Grey lines are trajectories of empirical means µ̂t.

B.4 Technical details

Proof of the pseudo regret upper bound for generic exponential families

Proof of Proposition 3.5. We first consider a time-uniform confidence sequence at level δ for
ηk = Eθk [F (Y )] = ∇L(θk) defined as Êδk,n,c = ∇L(Θ̂δ

k,n,c), i.e.

Êδk,n,c =
{
η0 ∈ ∇L (Θ) , (n+ c)BL

(
∇L−1(η0),∇L−1(η̂k,n,c(η0))

)
⩽ log 1

δ
+ γk,n,c(∇L−1(η0))

}
,

(B.122)

where η̂k,n,c(η0) = ∇L(θ̂k,n,c(∇L−1(η0))) for n ∈ N and η0 ∈ ∇L(Θ). When n → +∞, the
asymptotic behaviour of Θ̂δ

k,n,c shows that with probability at least 1− δ, θk ∈ Θ̄δ
k,n,c, where

Θ̄δ
k,n,c =

{
θ0 ∈ Θ, ∥θ0 − θ̂k,n,c(θ0)∥2

∇2L(θ̂n,c(θ0))
⩽

2
n+ c

log
(
1 + n

c

) d
2

δ
+O

( 1
n

)}
. (B.123)

For θ0, θ ∈ Θ, we let η0 = ∇L(θ0) and η = ∇L(θ), and we note that η0− η = ∇2L(θ0, θ)(θ0− θ),
where∇2L(θ0, θ) =

∫ 1
0 ∇2L(uθ0 + (1−u)θ)du is the average of the Hessian matrices of L along
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the segment [θ, θ0]. Now, we define the following two sets:

Ēδk,n,c = ∇L
(
Θ̄δ
k,n,c

)
=
{
η0 ∈ ∇L (Θ) , ∥η0 − η̂k,n,c(η0)∥2

∇2L(θ0,θ̂k,n,c(θ0))−1∇2L(θ̂k,n,c(θ0))∇2L(θ0,θ̂k,n,c(θ0))−1

⩽
2

n+ c
log

(
1 + n

c

) d
2

δ
+O

( 1
n

)}
,

(B.124)

and

Ẽδk,n,c =
{
η0 ∈ ∇L (Θ) , ∥η0 − η̂k,n,c(η0)∥2 ⩽

M√
m

√√√√ 2
n+ c

log
(
1 + n

c

) d
2

δ
+O

(
M√
mn

)}
.

(B.125)

For all n large enough, by the curvature assumption on L, we have that Êδk,n,c ⊆ Ẽδk,n,c. We
now define confidence sequences for ρ(θk) = φ(ηk) as Ĉδk,n,c = φ(Êδk,n,c) and C̃δk,n,c = φ(Ẽδk,n,c),
which also satisfy the inclusion Ĉδk,n,c ⊆ C̃δk,n,c. In order to use the generic UCB analysis of
Theorem 1.33, we note that the sample size n required to observe |Ĉδk,n,c| < ∆k is at most the
sample size required for |C̃δk,n,c| < ∆k. Note that the Lipschitz assumption on φ shows that
|C̃δk,n,c| ⩽ L|Ẽδk,n,c|. Furthermore, the UCB induced by (C̃δk,n,c)n∈N is equivalent to the R-sub-
Gaussian setting of Corollary 1.21 withR = LM/

√
m, up toO(M/

√
mn), which only affects the

higher order terms of the regret bound (using a similar reasoning on the LambertW function
as in the proof of this corollary). ■

Computing the inflating factor g(t) in Theorem 3.8

The right-hand side of the doubly time-uniform confidence set of Theorem 3.8 involves a
log g(t)/δ term instead of log 1/δ as in Theorem 3.3, which is a byproduct of the peeling-like
argument used in the proof. Ideally, g(t) should grow as slow as possible with t to avoid
unnecessary looseness in the confidence bound. That is however limited by the constraint∑∞
t=1 1/g(t) ⩽ 1, which prohibits the use of a linearly growing g(t) (since the harmonic series∑∞
t=1 1/t diverges). The choice g(t) = κ(1+t) log1+η(1+t) for some η > 0 and κ > 0 guarantees

that the series of inverses converges, although its limit is not available in closed-form. However,
it is sufficient to set κ to an upper bound on∑∞

t=1
1

(1+t) log1+η(1+t) . The following elementary
lemma explains how to compute a tight value for κ.
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Lemma B.6. Let f : t ∈ N 7→ (1 + t) log1+η(1 + t) and define Sp =
∑p
t=1 1/f(t) for p ∈ N∪{+∞}.

Then S∞ ⩽ Sp + 1
η log(1+p)η .

Proof of Lemma B.6. The function f is nondecreasing and positive, therefore for t ∈ N and
x ∈ [t, t+ 1), it holds that 1/f(t+ 1) ⩽ 1/f(x). Integrating both terms as functions of x over
the interval [t, t+ 1) yields 1/f(t+ 1) ⩽

∫ t+1
t 1/f(x)dx. Summing starting at t = p, we further

get the following sum-integral comparison:

S∞ − Sp ⩽
∫ ∞

p

dx

f(x) .

Finally, note that d
dx

1
η logη(1+x) = − 1

f(x) , and thus ∫∞
p

dx
f(x) = 1

η log(1+p)η . ■

This lemma shows that κ = Sp + 1/ log(1+p) for some p ⩾ 1 (η = 1) is a valid choice for
the definition of the inflating factor g(t), and is straightforward to compute numerically. For
p = 100, we obtain κ ≲ 2.10974 and increasing p only changes further digits.
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Appendix C

Empirical Chernoff concentration:
beyond bounded distributions

Contents
C.1 Examples of second order sub-Gaussian distributions . . . . . . . . . . . . . 313

C.1 Examples of second order sub-Gaussian distributions

In this appendix, we show that several classical distributions are second order sub-Gaussian,
with explicit ratio ρ.

Proof of Proposition 4.5. As a general remark, we first note that the family of second order sub-
Gaussian distributions is stable under translation and scaling, i.e. if ν ∈ F2

G,ρ,R, then form ∈ R
and c ∈ R⋆+, c(ν +m) ∈ F2

G,ρ,cR.

Gaussian. This case corresponds to Lemma 4.2.

Bernoulli. Let ν = pδq + qδ−p and assume p < q = 1 − p. By translation and scaling, if
this distribution is second order sub-Gaussian, then so is any distribution supported on two
points. ν is known to be R-sub-Gaussian with optimal parameter Rp =

√
1/2−p

log(q/p) , which we
extend by continuity as R1/2 = 1/4 (see Kearns and Saul (1998); Berend and Kontorovich
(2013); Raginsky et al. (2013)). It is also straightforward to note that R is equal to the standard
deviation √pq if and only if ν is symmetric, i.e. p = q = 1/2.
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For λ ∈ R⋆−, using the fact that q2 − p2 = 1− 2p+ p2 − p2 = q − p, we obtain

EY∼ν [eλY
2 ] = peλq

2 + qeλp
2 = eλp

2 (1− p(1− eλ(q−p))
)
. (C.1)

Let ρ ∈ (0, 1]. The left tail CGF control of Definition 4.1 is equivalent to ∀λ ∈ R⋆−, f(λ) ⩽ 0,
where f is defined by taking the logarithm in the above expression:

f(λ) = λp2 + log
(
1− p(1− eλ(q−p))

)
+ 1

2 log
(
1− 2λ(ρRp)2

)
. (C.2)

Using the inequality ∀x ∈ (−1,+∞), log(1 + x) ⩽ x, we further get:

f(λ) ⩽ g(λ) and g(λ) = −λ((ρRp)2 − p2)− p
(
1− eλ(q−p)

)
, (C.3)

which defines a differentiable function with dg/dλ(λ) = p2 − (ρRp)2 + p(q − p)eλ(q−p). The
function dg/dλ is nondecreasing (since q − p > 0) and limλ→−∞ dg/dλ(λ) = p2 − (ρRp)2.
Therefore, g is nondecreasing if ρRp ⩽ p, in which case we have ∀λ ∈ R⋆−, g(λ) ⩽ g(0) = 0.
Consequently, ν is (ρp, Rp)-second order sub-Gaussian with ρp = p/Rp.

By symmetry, the case p > q leads to (ρRp) ⩽ q and thus ν is (ρp, Rp)-second order sub-
Gaussian with ρp = q/Rp.

For the critical case p = q = 1
2 it is enough to notice that g(λ) = λ((ρR1/2)2− 1

4) = λ/4(ρ2−1),
and hence g(0) = 0 if ρ = 1. In this situation, ν is (1, 1/2)-second order sub-Gaussian.

Uniform. Let ν(dy) = 1/21y∈[−1,1]dy denote the uniform distribution over [−1, 1]. It is centred
(bEY∼ν [Y ] = 0) and by scaling and translation, it is sufficient to prove that it is second order
sub-Gaussian to deduce the result for all uniform distributions.

It it proved in Arbel et al. (2020) that ν is strictly sub-Gaussian, i.e. ν is R-sub-Gaussian
with R = 1√

3 =
√
VY∼ν [Y ]. For the second order control, let λ ∈ R⋆−. We have

EY∼ν
[
eλY

2] = 1
2

∫ 1

−1
eλy

2
dy =

∫ 1

0
eλy

2
dy (symmetry)

=
∫ √

−2λ

0
e−z2/2 dz√

−2λ
(z =

√
−2λy)

=
√

π

−λ
P (
√
−2λ) , (C.4)

where P : z ∈ R+ 7→ Φ(z) − 1/2 and Φ is the standard Gaussian c.d.f.. We use the sufficient
condition (iii) of Proposition 4.4. Taking the logarithm of the above expression, we obtain:

K2(λ) = 1
2 log π − 1

2 log(−λ) + logP (
√
−2λ). (C.5)
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Furthermore, the derivative of K2 is given by:

dK2
dλ (λ) = − 1

2λ −
ϕ(
√
−2λ)√

−2λP (
√
−2λ)

, (C.6)

where ϕ : z ∈ R 7→ 1√
2πe

−z2/2 is the standard Gaussian p.d.f.. Therefore, letting z =
√
−2λ for

simplicity, the sufficient condition (iii) of Proposition 4.4 can be written as f(z) ⩽ 1, with:

f(z) = z3ϕ(z)
2πP (z)3 . (C.7)

We note that dP/dz(z) = ϕ(z) and dϕ/dz(z) = −zϕ(z) for z ∈ R+, and that P (0) = 0, and
hence the Taylor expansion of P around z = 0 is P (z) = z√

2π
(
1 +O

(
z2)). Similarly, ϕ(z) =

1√
2π + O(z). Therefore, f can be extended by continuity at zero with f(0) = 1. It is also

differentiable on (0,+∞) and

df
dz (z) = z2ϕ(z)

2πP (z)4

3P (z)− z2P (z)− 3zϕ(z)︸ ︷︷ ︸
=:g(x)

 , (C.8)

dg
dz (z) = 2z

zϕ(z)− P (z)︸ ︷︷ ︸
=:h(z)

 , (C.9)

dh
dz (z) = −z2ϕ(z) ⩽ 0 . (C.10)

Consequently, h is nonincreasing with h(z) ⩽ h(0) = 0, g is nonincreasing with g(z) ⩽ g(0) = 0,
and finally f is nonincreasing with f(z) ⩽ f(0) = 1, which corresponds to the sufficient
condition to prove.

Symmetric triangular. Let ν(dy) = (1+y)1y∈[−1,0]dy+(1−y)1y∈(0,1]dy denote the symmetric
triangular distribution over [−1, 1]. It is centred (bEY∼ν [Y ] = 0) and by scaling and translation,
it is sufficient to prove that it is second order sub-Gaussian to deduce the result for all symmetric
triangular distributions. It it also proved in Arbel et al. (2020) that ν is strictly sub-Gaussian
with parameter R =

√
VY∼ν [Y ] = 1/

√
6. For λ ∈ R⋆−, we have

EY∼ν
[
eλY

2] =
∫ 0

−1
(1 + y)eλy2

dy +
∫ 1

0
(1− y)eλy2

dy = 2
∫ 1

0
eλy

2
dy − 2

∫ 1

0
yeλy

2
dy

(symmetry)

= 2
√

π

−λ
P (
√
−2λ)− 1

λ
eλ + 1

λ
. (C.11)

This time however, the mapping H2 is not monotonic on R− but rather increasing for large
negative values of λ and decreasing when λ approaches zero (see Figure C.1, we omit the rather
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tedious calculations here). Therefore its minimum is attained on the boundary of (−∞, 0], i.e.
infλ∈R− H2(λ) = H2(0)∧ limλ→−∞H2(λ). By definition,H0(λ) = σ2 = 1/6, and for λ ∈ R⋆− we
have

H2(λ) = 1
2λ

(
1−

(
2
√

π

−λ
P (
√
−2λ− 1

λ
eλ + 1

λ
)
)−2)

= 1
2λ −

1
2

(
2
√
πP (
√
−2λ) + 1√

−λ
eλ − 1√

−λ

)−2
. (C.12)

Note that limz→+∞ P (z) = 1/2 and hence limλ→−∞H2(λ) = 1/(2π) < 1/6. Therefore ν is
(ρ,R)-sub-Gaussian with R = 1/

√
6 and ρ =

√
3/π ≈ 0.977.

Gaussian mixture. We follow the proof technique of Chafai and Malrieu (2010). In general,
for a compact subset J ⊂ R, we consider (µk)k∈J ∈ RJ, (σj)j∈J ∈ (R⋆+)J and a probability
measure π on J. For j ∈ J, we let νj = N (µj , σ2

j ) and denote its density (with respect to
the Lebesgue measure) by pj . We define the mixture distribution ν by its density p : y ∈
R 7→ EJ∼π [pJ(y)], where J denotes a random variable distributed as π. Assume that ν is
centred, i.e. EJ∼π[µJ ] = 0 (again, the general case may be recovered by translation), and that
maxj∈J σj <∞. The moment generating function of ν at λ ∈ R is given by

EY∼ν
[
eλY

]
= EJ∼π

[
EJ∼νJ

[
eλY | J

]]
= EJ∼π

[
e
λ2
2 σ

2
J+λµJ

]
⩽ e

λ2
2 maxj∈J σ

2
jEJ∼π

[
eλµj

]
.

(C.13)

We now consider the specific case of a discrete mixture with two components, i.e. J = {0, 1}
and π is the Bernoulli distribution B(p) for some p ∈ (0, 1) and q = 1− p. We let ∆ = µ1 − µ0.
The above expectation now may be rewritten as

EJ∼π
[
eλµJ

]
= peλµ1 + qeλµ0 = peqλ∆ + qe−pλ∆ , (C.14)

where the last line comes from the condition EJ∼π[µJ ] = 0, which translates to µ0 = −p∆ and
µ1 = q∆. The two points lemma (Chafai and Malrieu, 2010, Lemma 3.3)) states that

EJ∼π
[
eλµJ

]
⩽ ecpλ

2∆2 and cp = q − p
4 (log q − log p) , (C.15)

which concludes the proof of the first order sub-Gaussian part.
For the second order condition, we have, for λ ∈ R⋆−,

EY∼νj

[
eλY

2] = 1√
2πσj

∫ ∞

−∞
e
λy2−

(y−µj)2

2σ2
j dy , (C.16)
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and letting σ̄2
j = σ2

j /(1− 2λσ2
j ), we obtain, by completing the square,

EY∼νj

[
eλY

2] = σ̄j
σj
e

µ2
j

2σ2
j

(
σ̄2
j

σ2
j

−1
)

1√
2πσ̄j

∫ ∞

−∞
e

− 1
2σ̄2
j

(
y−

σ̄2
j

σ2
j

µj

)2

dy︸ ︷︷ ︸
=1

= e

λµ2
j

1−2λσ2
j√

1− 2λσ2
j

. (C.17)

We conclude by noting that since λ < 0, this implies EY∼νj [exp(λY 2)] ⩽ 1/
√

1 + 2λminj∈J σ
2
j .
■

Figure C.1 – First and second order mappingsH andH2 for the symmetric triangular distribution over
[−1, 1]. The optimal first order sub-Gaussian parameter is given by σ2 = supRH = 1/6 and the optimal
second order parameter is given by (ρσ)2 = infR− H2 with ρ =

√
3/π.

Conjecture on the symmetric Beta distributions. In addition to the examples of Proposi-
tion 4.5, we believe that Beta distributions are also second order sub-Gaussian with ρ = 1 (see
Conjecture 4.6). We now detail calculations and empirical evidence to support this claim, which
serve as an illustration of how to check whether distributions are second order sub-Gaussian.

First, it was proved in Marchal and Arbel (2017) that symmetric Beta distributions, i.e.
Beta (α, α) for some α ∈ R⋆+ are strictly sub-Gaussian, i.e. Beta (α, α) ∈ FG,σ with parameter
σ2 = VY∼Beta(α,α)[Y ] = 1/(4(2α + 1)). We now turn to the computation of the second order
CGF. First, note that the expectation of Beta (α, α) is 1/2 and the even central moments of are
given, for n ∈ N, by (Arbel et al., 2020):

EY∼Beta(α,α)

[
(Y − 1

2)2n
]

= Γ(2n+ 1)
22nΓ(n+ 1)

Γ(2α)Γ(α+ n)
Γ(α)Γ(2(α+ n)) , (C.18)

317



and hence the power series expansion of the second order MGF is given, for λ ∈ R− by

EY∼Beta(α,α)
[
eλ(Y− 1

2 )2] =
+∞∑
n=0

Γ(2n+ 1)
22nΓ(n+ 1)

Γ(2α)Γ(α+ n)
Γ(α)Γ(2(α+ n))

λn

n!

= Γ(2α)
Γ(α)

+∞∑
n=0

Γ(n+ 1
2)

Γ(α+ n+ 1
2)

21−2α−2nλ
n

n! (duplication formula for Γ)

= Γ(2α)
√
π

Γ(α)Γ(α+ 1
2)

21−α

︸ ︷︷ ︸
=1

+∞∑
n=0

(1
2)n

(α+ 1
2)n

1
n!

(
λ

4

)n
, (C.19)

where we used the Pochhammer symbol (z)n = Γ(z + n)/Γ(z) for z ∈ R⋆+ and n ∈ N and
Legendre’s duplication formula Γ(z)Γ(z + 1/2) = 21−2z√πΓ(2z). Interestingly, the series of
the right-hand side defines the confluent hypergeometric function of the first kind, known as
Kummer’s function (see Definition 4.9). Therefore, for all λ ∈ R−, we have

K2(λ) = logM
(1

2 ,
1
2 + α; λ4

)
, (C.20)

from which we deduce the form of theH2 mapping of Proposition 4.4:

H2(λ) =
1−M

(
1
2 ,

1
2 + α; λ4

)−2

2λ . (C.21)

Similarly, Kummer’s function is related to the CGF of Beta (α, α), in the sense that for all λ ∈ R
we have

K(λ) = −λ2 + logM (α, 2α;λ) and H(λ) = − 1
λ

+ 2logM (α, 2α;λ)
λ2 . (C.22)

Although seemingly complicated, these functions is easily implementable (the functionM is
available e.g. in Python as scipy.special.hyp1f1). We report an example ofH andH2 in Figure C.2.
Of note, the mappingH2 seems nonincreasing, which according to Proposition 4.4 is sufficient
to ensure that Beta (α, α) is second order sub-Gaussian with ρ = 1.

To further illustrate this, we note that K2 is differentiable and satisfies (using the recurrence
formulas of Abramowitz and Stegun (1968, 13.4)), the expression

dK2
dλ (λ) = σ2

M
(

3
2 ,

3
2 + α; λ4

)
M
(

1
2 ,

1
2 + α; λ4

) . (C.23)

We now define the mapping f as

f(λ) =
(

1 + 2λdK2
dλ (λ)

)
e−2K2(λ)

318



=

1 + 2λσ2
M
(

3
2 ,

3
2 + α; λ4

)
M
(

1
2 ,

1
2 + α; λ4

)
 1

M
(

1
2 ,

1
2 + α; λ4

)2 . (C.24)

The sufficient condition (iii) in Proposition 4.4 states that if f(λ) ⩽ 1 for all λ ∈ R⋆− then H2

is nonincreasing, implying that Beta (α, α) is second order sub-Gaussian with ρ = 1. We also
report in Figure C.2 this mapping f for varying values of α and observe that it is indeed lower
than 1 across the tested range of λ. We were however unable to formally prove this statement.

Figure C.2 – Left: first and second order mappingsH andH2 for the symmetric Beta (α, α) distribution
with α = 3. The optimal first order sub-Gaussian parameter is given by σ2 = supRH = 1/(4(2α+ 1))
and the optimal second order parameter is given by (ρσ)2 = infR− H2. We conjecture that ρ = 1. Right:
mapping f of equation (C.24) for α ∈ [1, 5]. f(λ) ⩽ 1 for all λ ∈ R⋆

− indicates thatH2 is nonincreasing,
implying that Beta (α, α) ∈ F2

G,1.

Proof of asymptotic expansion of the inverse Tricomi function

Proof of Lemma 4.12. The strategy here is to leverage the uniform asymptotic expansion of the
Whittaker function z ∈ R⋆+ 7→ Wκ,µ(z), where κ, µ ∈ R⋆+, which was derived in Olver (1980)
(by uniform, we mean that the expansion is valid when both parameters µ and κ and the
argument z go to +∞ simultaneously). Indeed, this special function is related to Tricomi’s
function by the relationWκ,µ(x) = e−x/2x1/2+µU(1/2 + µ− κ, 1 + 2µ;x) for all x ∈ R⋆+, from
which we may recover the definition of GT

β,γ,ζ,t. For simplicity, we assume β = 1/2: not only is
it the tuning we recommended in Section 4.3, it also allows to consider µ = κ, which greatly
simplify downstream calculations (we do not detail the general case, which just amounts to
more intricate expressions, with the same conclusion for Tricomi’s function). For x > 2µ, we
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have the following asymptotic expansion for the Whittaker function:

Wµ,µ(x) =
(
µ

2

)− 1
4
(2µ
e

)µ
Φ(µ, µ, x)U

(
0, ξ
√

2µ
)(

1 +O
( logµ

µ

))
, (C.25)

where ξ =
√
x/µ− 2− 2 log(x/(2µ)), U is the parabolic cylinder function satisfying the follow-

ing asymptotic expansion when µ, x→ +∞ (Abramowitz and Stegun, 1968, 19.8.1):

U(0, x) ∼ x− 1
2 e−x2

4 , (C.26)

and Φ is defined as

Φ(µ, µ, x) =
√

µξx

x− 2µ . (C.27)

Combining all these equations together, we obtain

U

(1
2 , 1 + 2µ;x

)
∼ e

x
2 x− 1

2 −µ
(
µ

2

)− 1
4
(2µ
e

)µ√ µξx

x− 2µξ
− 1

2 (2µ)− 1
4 e− ξ2µ

2

∼ eµ+µ log x
2µ−µ log x+µ log 2µ

e (x− 2µ)− 1
2

∼ (x− 2µ)− 1
2 . (C.28)

Now, let µ = (γ − 1)/2 + t/4, x = ζ + z/2 and δ ∈ (0, 1). For t→ +∞, x→ +∞, the equation
GT
β,γ,ζ,t(z) = 1/δ has the asymptotically equivalent expression:

(
ζ − γ + 1 + z − t

2

)− 1
2
∼ U(β, γ; ζ)

δ
, (C.29)

and after simple algebra we have z ∼ z(t, δ) with

z(t, δ) = t

(
1 + 2δ2

U(β, γ; ζ)2t
+ 2(γ − 1 + ζ)

t

)
∼ t+ 2δ2

U(β, γ; ζ)2 . (C.30)

Note that the expression of z(t, δ) ensures that x > 2µ in the analysis above. ■

Proof of the pseudo regret upper bound for SOSG distributions

Proof of Corollary 4.19. We consider the symmetrised family F̊2
G,ρk (the other case is proven

similarly by observing that the widths of the resulting confidence sequences are essentially
the same). Let k ∈ [K] \ {k⋆} and denote by (Y k

n )n∈N a sequence of i.i.d. random vari-
ables drawn from νk, and by (V I

k,n)n∈N the associated sequence of U-statistics defined by
V I
k,n = 1/⌊n/2⌋

∑⌊n/2⌋
i=1 (Y k

2i − Y k
2i−1)2/2. Second order sub-Gaussian distributions have fi-
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nite variance, therefore V I
k,n = σ2

k + o(1) (law of large numbers). By Lemma 4.12, we have
(GT

β,γ,ζ,⌊n/2⌋)
−1(1/δ) ∼ n with δ = 1/T . The width of the time-uniform confidence sequence of

Corollary 4.17 satisfies the asymptotic expression:

∣∣∣Θ̂δ
k,n,ρk,c

∣∣∣ ∼ 2
ρk

√
2
(
σ2
k + o(1)

)
n

(1 + α

n
) log

(3
δ

√
1 + n

α

)

∼ 2σk
ρk

√
2
n

(1 + α

n
) log

(3
δ

√
1 + n

α

)
. (C.31)

From there, we simply apply the generic UCB analysis for R-sub-Gaussian distributions devel-
oped in Corollary 1.34 with R = σk/ρk (with the caveat that we may only derive the first order
term since the above asymptotic expansion for

∣∣∣Θ̂δ
k,n,ρk,c

∣∣∣ is only at the first order). ■
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Appendix D

Risk-aware linear bandits with convex
loss

This chapter presents supplementary material for Chapter 5.
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D.3 Regret analysis of LinUCB-OGD-CR (y) . . . . . . . . . . . . . . . . . . . 335

D.1 Summary and interpretation of elicitable risk measures

We report in Table D.1 an overview of common elicitable risk measures and their associated
loss functions. We recall that for a distribution ν ∈M1

+(R) and a loss function L : R×Rp → R,
we defined the risk measure elicited by L as ρL(ν) = arg minξ∈Rp EY∼ν [L(Y, ξ)]. Note that the
pairs (mean, variance) and (VaR,CVaR) are second order elicitable but neither the variance
nor the CVaR are first order elicitable. For these pairs, we report the generic form of elicitation
losses, which depend on arbitrary convex functions ψ1 and ψ2, as well as instances of such
losses obtained for the natural choice ψ1(ξ) = ψ2(ξ) = ξ2/2 for all ξ ∈ R.

We provide below some intuition about these commonly usedmeasures in riskmanagement.

Mean-variance. Assessing the risk-reward tradeoff of an underlying distribution ν by penal-
izing its mean by a higher order moment (typically the variance) is perhaps the most intuitive
of risk measures. Following Markowitz (1952), the mean-variance risk measure at risk aversion
level λ ∈ R is defined by ρMVλ1

(ν) = µ − λσ, where µ and σ denote the mean and standard
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Table D.1 – Example of elicitable risk measures.
Name ρL(ν) Associated loss L(y, ξ) Domain

Mean EY∼ν [Y ]

(y − ξ)2

Bregman divergence Bψ(y, ξ)
ψ(y)− ψ(ξ)− ψ′(ξ)(y − ξ),
ψ differentiable,
strictly convex.

ξ ∈ R

Derived from
potential ψ argmin

ξ∈R
EY∼ν [ψ(Y − ξ)] ψ(y − ξ) ξ ∈ dom(ψ)

Generalised
moment
T : R→ R

EY∼ν [T (Y )] 1
2ξ

2 − ξT (y) ξ ∈ R

Entropic risk,
γ ̸= 0

1
γ logEY∼ν [eγY ] ξ + 1

γ (eγ(y−ξ) − 1) ξ ∈ R

Mean and
variance

µ = EY∼ν [Y ]
σ2 = EY∼ν [Y 2]− µ2

1
2ξ

2
1 + 1

2(ξ2 + ξ2
1)2

−ξ1y − (ξ2 + ξ2
1)y2

−ψ1(ξ1)− ψ′
1(ξ1)(y − ξ1)

−ψ2(ξ2 + ξ2
1)

−ψ′
2(ξ2 + ξ2

1)(y2 − ξ2 − ξ2
1)),

ψ1, ψ2 differentiable,
strictly convex.

ξ1 ∈ R
ξ2 ⩾ 0

VaRα and
CVaRα,
α ∈ (0, 1)

VaRα = inf{y ∈ R,
∫ y

−∞ dν ⩾ α}
CVaRα = 1

α

∫ α
0 VaRada

(ξ1 − y)+ − αξ1
+ξ2( 1

α(ξ1 − y)+ − ξ1)
+1

2ξ
2
2

(1y⩽ξ1 − α)ψ′
1(ξ1)

−1y⩽ξ1ψ
′
1(y)

+ψ′
2(ξ2)(ξ2−ξ1+ 1

α1y⩽ξ1(ξ1−y))
−ψ2(ξ2) + c(y),
ψ1 convex,
ψ2 strictly convex and increasing,
c : R→ R.

ξ1 ⩾ ξ2
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deviation of ν. Alternatively, it can also be defined as ρMVλ2
(ν) = µ− λ

2σ
2, using the variance

rather than the standard deviation in the penalisation term. Both measures are especially
well-suited for Gaussian distributions as µ and σ fully characterise this family.

The pair (mean, variance) is jointly second order (but not first order) elicitable by a pair of
convex functions; the formula recalled in Table D.1 can be found in Brehmer (2017, Example
1.23).

VaR and CVaR. For a distribution with continuous c.d.f. (i.e. atomless), the value at risk
VaRα(ν) at level α ∈ (0, 1) is equivalent to the α quantile, and a simple change of variable
reveals that the conditional value at risk CVaRα(ν) is thus E [X | X ⩽ VaRα(ν)]. Intuitively,
a random variable with a high CVaRα distribution takes on average relatively high values in
the "α% worst case" scenario. For α→ 1−, CVaRα(ν)→ EY∼ν [Y ] and thus the risk measure
becomes oblivious to the tail risk; on the contrary, the case α→ 0+ emphasises only the worst
outcomes.

In the Gaussian case ν ∼ N (µ, σ), using the notations ϕ and Φ respectively for the p.d.f.
and c.d.f. of the standard normal distribution, simple calculus shows that

VaRα(ν) = µ+ σΦ−1(α) , (D.1)
CVaRα(ν) = µ− σ

α
√

2π
ϕ
(
Φ−1(α)

)
, (D.2)

i.e. CVaRα(ν) = ρMVλ1
(ν)with risk aversion level λ = 1

α
√

2πϕ
(
Φ−1(α)

). In particular, increasing
the variance σ2 reduces CVaRα(ν), corresponding to the intuition of higher volatility risk.

The pair (VaR, CVaR) is also jointly second order (but not first order) elicitable by a pair
of convex functions; the formula recalled in Table D.1 can be found in Fissler and Ziegel (2016,
Corollary 5.5).

Entropic risk. The non-elicitability of CVaRα motivated the use of the entropic risk as an
alternative measure. For a given risk level γ ̸= 0, this measures rewrites as (Brandtner et al.,
2018)

ργ(ν) = sup
ν′∈M+

1 (R)

{
EY∼ν′ [Y ]− 1

γ
KL(ν ′ ∥ ν)

}
. (D.3)

The intuition here is similar to the mean-variance measure, i.e. penalizing the expected
value by a measure of uncertainty, but differs by the use of the Kullback-Leibler divergence
KL(ν ′ ∥ ν) = EY∼ν′ [log dν′

dν ] instead of the variance. The entropic risk measure can be inter-
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preted as the largest expected value that a mispecified model ν ′ (in place of the true underlying
distribution ν) may have, where KL(ν ′ ∥ ν) controls the magnitude of the mispecification.

Again, in the Gaussian case, this measure reduces to ργ(ν) = µ + γ
2σ

2 = ρMVλ2
(ν) at risk

aversion level λ = −γ.
The entropic risk at level γ ̸= 0 is first order elicitable; the formula recalled in Talbe D.1 can

be found in Embrechts et al. (2021, Example 1).

Expectile. Beyond their interpretation as generalised, smooth quantiles, expectiles can also be
understood in light of the financial risk management literature. Let ep(ν) denote the p-expectile
of ν for a given probability p ∈ (0, 1). Then, simple calculus shows that

(1− p)EY∼ν [(ep(ν)− Y )+] = pEY∼ν [(Y − ep(ν))+] , (D.4)

where z+ = max(z, 0). If ν represents the distribution of a tradeable asset Y at time T , then
the p-expectile is the strike K = ep(ν) such that call and put on Y struck at K at maturity T
are in proportion 1−p

p to each other, where we define the call and put prices (with zero time
discounting) by respectively

C(ν,K) = EY∼ν [(Y −K)+] , (D.5)
P (ν,K) = EY∼ν [(K − Y )+] . (D.6)

Similarly, Keating and Shadwick (2002) introduced the notion of Omega ratio as a risk-return
performance measures. It is defined at levelK by

Ω(K) =
∫+∞
K (1− F (y)) dy∫K

−∞ F (y)dy
, (D.7)

where F is the c.d.f. of ν. This ratio can also be viewed as a call-put ratio, hence another
definition of the p-expectile is via the implicit equation Ω(K) = 1−p

p forK = ep(ν).
Contrary to the previous risk measures, it may not be clear from this definition alone that

expectiles do encode a notion of aversion to risk. The next proposition shows that p-expectiles of
many distributions, including normal and adjusted lognormal, are decreasing functions of their
variances when p < 1

2 , thus penalizing more volatile distributions, making them suitable for
risk management. We provide an elementary proof using the tools of the financial mathematics
literature, where such risk measures were extensively studied.
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Proposition D.1 . Let I ⊆ R∗
+ an open interval and {νσ, σ ∈ I} a family of probability distributions

such that
(i) the expectation mapping σ ∈ I 7→ EY∼νσ [Y ] is constant,

(ii) for anyK ∈ R, both the call and put mappings

C(·,K) : σ ∈ I 7→ EY∼νσ

[
(Y −K)+

]
, (D.8)

P (·,K) : σ ∈ I 7→ EY∼νσ

[
(K − Y )+

]
, (D.9)

are differentiable and nondecreasing.
For any p ∈ (0, 1), the sign of the sensitivity of the p-expectile of νσ to σ is given by

sign d

dσ
ep(νσ) = sign(p− 1

2) . (D.10)

Before we proceed to the proof, let us note that two classical families of distributions satisfy
these assumptions (see Merton (1973, Theorem 8) for a general result).
(i) Normal: for µ0 ∈ R, {νσ = N (µ0, σ

2), σ ∈ R∗
+}, for which EY∼νσ [Y ] = µ0.

(ii) Adjusted lognormal: for µ0 ∈ R, {νσ = exp
(
N (µ0, σ

2)− σ2

2

)
, σ ∈ R∗

+}, for which
EY∼νσ [Y ] = eµ0 .

In particular in the normal case, it follows from Lemma 5.4 that

ep(νσ) = µ0 + σep(N (0, 1)) , (D.11)

and thus ep(νσ) = ρMVλ1
(νσ), where the risk aversion level is λ = −ep(N (0, 1)) (which by

Proposition D.1 is positive if p < 1
2).

Proof of Proposition D.1. We first recall the call-put parity principle, which states that for any
distribution νσ and strikeK ∈ R, the following equality holds:

C(σ,K)− P (σ,K) = EY∼νσ [Y ]−K , (D.12)

where we write C(νσ,K) = C(σ,K) and P (νσ,K) = P (σ,K).
A straightforward consequence of the call-put parity principle and the assumption that

d
dσEY∼νσ [Y ] = 0 is that ∂σC = ∂σP . We denote this quantity by V . Now, note that the
mapping σ ∈ I 7→ ep(νσ) is differentiable (implicit function theorem). From the equation
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C(σ, ep(νσ)) = 1−p
p P (σ, ep(νσ)), we deduce that

d

dσ
C(σ, ep(νσ)) = ∂σC(σ, ep(νσ)) + ∂KC(σ, ep(νσ)) d

dσ
ep(νσ) , (D.13)

d

dσ
P (σ, ep(νσ)) = ∂σP (σ, ep(νσ)) + ∂KP (σ, ep(νσ)) d

dσ
ep(νσ) , (D.14)

and thus
1− 2p
p

V + d

dσ
ep(νσ)

(1− p
p

∂KP (σ, ep(νσ))− ∂KC(σ, ep(νσ))
)

= 0 . (D.15)

Elementary option pricing principles show that V ⩾ 0, i.e. the call and put prices both
increase with higher volatility, and that ∂KC ⩽ 0 and ∂KP ⩾ 0. Therefore, we deduce that
d
dσep(νσ) ⩽ 0. ■

In particular for p = 1/2, the p-expectile corresponds to the strikeK at which call and put
have equal prices, which by the call-put parity principle (with zero discounting) implies that
K = E[Y ], thus giving an alternative derivation of the equivalence between 1/2-expectile and
mean.

D.2 Alternative analysis of LinUCB-CR (y)

We detail here the steps of the alternative setting for the analysis of LinUCB-CR where actions
sets are stochastically generated and satisfy a conditional covariance lower bound (Assump-
tion 5.22).

Impact of using the local Hessian metric Ht versus the global metric Vt

To highlight the benefit of using local metrics, we detail here the regret bound obtained using
the above proof with the natural global metric induced by V α/m (independent of the local
point θ). Instantiating the positive definite matrix P to V α/m

t instead of H̄α(θ∗, θ̄t) in the bound
on the prediction error of Section 5.2 yields

∆(x, θ̄t) ⩽ ∥θ∗ − θ̄t∥V α/mt

∥x∥(V α/mt )−1

= ∥Fαt (θ∗)− Fαt (θ̄t)∥H̄α
t (θ∗,θ̄t)−1V

α/m
t H̄α

t (θ∗,θ̄t)−1∥x∥(V α/mt )−1

⩽
1√
m
∥Fαt (θ∗)− Fαt (θ̄t)∥H̄α

t (θ∗,θ̄t)−1∥x∥(V α/mt )−1

⩽ 2
√
κ

m

(
σ

√
2 log 1

δ
+ d log m

α
+ log detV

α
m
t +

√
α

κ
S

)
∥x∥(V α/mt )−1 . (D.16)
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Similarly to the above proof, this shows that

γ
global
t : x ∈ Xt 7→ 2

√
κ

m

(
σ

√
2 log 1

δ
+ d log m

α
+ log detV

α
m
t +

√
α

κ
S

)
∥x∥(V α/mt )−1 (D.17)

is also a valid choice of exploration sequence. Finally, a straightforward application of Lemma5.19
shows the regret of the corresponding LinUCB-CR strategy is upper bounded with probability
at least 1− δ by

4
√
κ

m

(
σ

√
2 log 1

δ
+ d log m

α
+ log detV

α
m
t +

√
α

κ
S

)√
2Td log

(
1 + mTL2

dα

)
. (D.18)

Compared to the local analysis, this improves the scaling of the regret in κ by a factor√κ.
However, it forces the use of the global metric ∥·∥(V α/mt )−1 instead of the local one ∥·∥Hκα

t (θ̄t)−1 ,
thus ignoring the precise shape of the loss function L.

Looking at our proof, we see that κ and m fulfil two different roles. √κ is the price to
pay in order to transport local metrics Hα

t (θ) between θ = θ∗ (true parameter) and θ = θ̄t

(estimate); it is paid once to bound the prediction error ∆(Xt, θ) using the concentration bound
of Proposition 5.12, and it is also paid a second time if local metrics are used in the exploration
bonus when moving from H̄t(θ∗, θ̄t)−1 to H̄t(θ̄t)−1 (the former cannot be used directly in the
algorithm as it depends on the a priori unknown paramter θ∗). On the other hand,m−1/2 is
the price paid in both the local and global analyses to move from Ht(θ̄t)−1 to V −1

t in order
to apply the elliptic potential lemma, which is in general incompatible with local metrics. A
similar phenomenon is observed in the analysis of Faury et al. (2020): the regret of their
algorithm Logistic-UCB-1 (global) scales as √κ while that of Logistic-UCB-2 (local) scales as
κ. In addition to local metrics, Logistic-UCB-2 also makes use of an intricate projection step
that allows for a new elliptic potential lemma compatible with local metrics, thus removing the
factorm−1 (at least from the first order contribution to the regret in T ). We conjecture that a
similar analysis could be unlocked in the present risk-aware setting and leave it open for future
investigation.

We reiterate that in the logistic setting, κ is derived from self-concordance properties of
the link function and is in particular independent of the curvature lower bound represented
bym (it is in fact equal to 1 + 2S where S is an upper bound on the parameter space Θ, as in
Assumption 5.16). By analogy with logistic bandits, we argue that the exact scaling in κ is likely
not too harmful for the practical performances of Algorithm 3 and we therefore recommend
the use of local metrics instead.
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Proof of Theorem 5.23

In this section, we prove the regret bound of Theorem 5.23 in the stochastic i.i.d. actions setting
of Assumption 5.22. The main difference with the proof of Theorem 5.18 is the use of an
alternative stochastic elliptic potential lemma, mirroring the classical result of Lemma 5.19, that
exploits the lower bound on the covariance of actions (Assumption 5.22). This proof technique
is adapted from Kim et al. (2023), although we use a different, sharper concentration result
(Proposition D.3 below).

Lemma D.2 (Stochastic elliptic potential lemma). Let δ ∈ (0, 1), β > 0, (θt)t∈N a sequence of
vectors in Θ ⊆ Rd and (Xt)t∈N a sequence of random variables in Rd. Recall that for t ∈ N,

Hβ
t (θt) =

t−1∑
s=1

∂2L(Ys, ⟨Xs, θt⟩)XsX
⊤
s +βId , (D.19)

V β
t =

t−1∑
s=1

XsX
⊤
s + βId . (D.20)

Fix t0 = ⌈ 8
ρ2

X
log 2

δ −
2β

mρXL2 ⌉. Under Assumptions 5.17 and 5.22, for T ⩾ t0, with probability at least
1− δ, it holds that

T∑
t=1
∥Xt∥Hβ

t (θt)−1 ⩽ 2
√

2T
mρX

(
1 + C√

T

)
, (D.21)

where

C = 1
L2

√√√√β − 4mL2

ρX
log 2

δ

2mρX
− 1

2L

√√√√
t0 − 1 +

2(β − 4mL2

ρX
log 2

δ )
mρXL2

+
√
ρX

2 max
(

1, L
√
m

β

)√
t0d log

(
1 + mL2t0

dβ

)
. (D.22)

The intuition about this result is the following: if the matrix norms induced byHβ
t (θt) grow

at least linearly in t, then the left-hand side should scale like∑T
t=1

1√
t

= O(
√
T ), without the

extra O(
√

log T ) factor present in Lemma 5.19. The lower curvature bound of Assumption 5.8
shows that it is enough to look at the norms induced by V β/m

t , at the cost of an extram−1/2 factor
(in particular Lemma D.2 holds for any sequence (θt)t∈N, not just the sequence of estimators
used in the bandit algorithms). Because of the stochastic sampling of actions (Assumption 5.22),
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it is likely that the sequence (Xt)t∈N spans all directions of Rd quite fast; in other words, each
new XtX

⊤
t will contribute at least a fixed amount to the sum that defines V β/m

t , leading to the
linear growth of the induced norms.

We formalise this intuition in LemmaD.4 below, which relies on the following concentration
bound in Hilbert spaces.

Proposition D.3 (Time-uniform line crossing inequality for martingales with bounded incre-
ments in a Hilbert space). Let (H, ⟨·, ·⟩) a Hilbert space and (Mt)∈N aH-valued martingale (with
respect to a filtration (Gt)t∈N) such thatM0 = 0. Assume that there exists a sequence of positive scalars
(ct)t∈N such that ∥Mt+1 −Mt∥ ⩽ ct for all t ∈ N, where ∥·∥ denotes the norm induced by the scalar
product. Then for any η > 0 and δ ∈ (0, 1), it holds that

P
(
∀t ∈ N, ∥Mt∥ ⩽

1
2η log 2

δ
+ η

t∑
s=1

c2
s

)
⩾ 1− δ . (D.23)

Interestingly, this concentration bound does not depend on the dimension of H, and in
particular remains valid even if the ambient space is infinite-dimensional. Moreover, this bound
controls the probability that any deviation occurs in the sequence (∥Mt∥)t∈N, which is much
stronger than controlling the deviation probability individually at each time t ∈ N. The proof
relies on martingale arguments rather than a crude union bound over a finite set of individual
deviation probabilities (as in the results invoked in Kim et al. (2023)), which yields anytime
(t ∈ N rather than t ⩽ T for some known horizon T ) and typically tighter bounds.

Proof of Proposition D.3. This result is directly taken from Howard et al. (2020). More precisely,
Howard et al. (2020, Theorem 1) shows a variety of equivalent time-uniform line crossing
inequalities for martingales, and Howard et al. (2020, Corollary 10) applies this generic result
to concentration of norm-like operators in Banach spaces. In order to get the most convenient
form for our problem, we derive Proposition D.3 from the generic theorem rather than the
specific corollary.

The proofs of Pinelis (1992, Theorem 3) and Pinelis (1994, Theorem 3) reveals that for any
λ ∈ R and t ∈ N, the exponential process defined by Lt = cosh (λ∥Mt∥) exp(−λ2

2
∑t
s=1 cs) is a

nonnegative G-supermartingale. Therefore, Howard et al. (2020, Theorem 1, (a)) shows that
for any a, b > 0,

P (∃t ∈ N, St ⩾ a+ bCt) ⩽ 2e−aD(b) , (D.24)
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where St = ∥Mt∥, Ct =
∑t
s=1 c

2
s and D(b) = 2b. Equating the right-hand side to δ and letting

b = η concludes the proof, with a = 1
2η log 2

δ . ■

In the next lemma, we show that the smallest eigenvalue ofHβ
t (θt), which provides a lower

bound to the corresponding induced norm, does indeed grow linearly with t on an event of
high probability.

LemmaD.4 (Smallest eigenvalue ofHβ
t (θt) grows linearly with twith high probability). Under

Assumptions 5.8, 5.17 and 5.22, we have that

P
(
∀t ∈ N, λmin

(
Hβ
t+1(θt+1)

)
⩾ β − 4mL2

ρX
log 2

δ
+ mρXL

2

2 t

)
⩾ 1− δ . (D.25)

Proof of Lemma D.4. Let t ∈ N. First notice that Assumption 5.8 implies

λmin
(
Hβ
t+1(θt+1)

)
⩾ mλmin

(
V 0
t+1

)
+ β . (D.26)

The idea is to relate λmin
(
V 0
t+1
) to the norm of somemartingale in order to apply PropositionD.3.

In the stochastic actions setting (Assumption 5.22), the following sum of random matrices
naturally defines a martingale (with respect to the adapted bandit filtration (Ḡt)t∈N):

Mt =
t∑

s=1
XsX

⊤
s − E

[
XsX

⊤
s | Ḡs−1

]
= V 0

t+1 − V̄ 0
t+1 , (D.27)

where we defined V̄ 0
t+1 =

t∑
s=1

E
[
XsX

⊤
s | Ḡs−1

]
. We recall that a consequence of Weyl’s inequal-

ity on eigenvalues is that for any A,B ∈ Sd(R), the following inequality holds:

λmin(A) + λmin(B) ⩽ λmin(A+B) . (D.28)

Applying this to A = Mt and B = V̄ 0
t+1 yields λmin (Mt) + λmin

(
V̄ 0
t+1

)
⩽ λmin

(
V 0
t+1
). Now,

notice that λmin(A) = −λmax(A) ⩾ −∥A∥where ∥·∥ is the matrix norm induced by the scalar
product ⟨A,B⟩ = Tr(A⊤B) (also known as the Frobenius norm). Moreover, the conditional
covariance lower bound of Assumption 5.22 and another application of Weyl’s inequality imply
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that

λmin
(
V̄ 0
t+1

)
⩾

t∑
s=1

λmin
(
E
[
XsX

⊤
s | Ḡs−1

])
⩾ ρXL

2t . (D.29)

Combining these together, we obtain that for arbitrary a ∈ R and b > 0, the following
inequality holds:

P
(
∃t ∈ N, λmin

(
Hβ
t+1(θt+1)

)
⩽ a+ bt

)
⩽ P

(
∃t ∈ N, ∥Mt∥ ⩾

β − a
m

+
(
ρXL

2 − b

m

)
t

)
.

(D.30)

Notice that ∥Mt+1 −Mt∥ = ∥XtX
⊤
t − E[XtX

⊤
t | Ḡt−1]∥ ⩽ 2L2 (Assumption 5.17). Now if

we choose b = 1
2mρXL

2 and a = β − 4mL2

ρX
log 2

δ , the bound from Proposition D.3 holds with
η = ρX

8L2 and δ ∈ (0, 1) and ct = 2L2, thus proving the result. ■

We are now ready to prove the stochastic elliptic potential lemma.

Proof of Lemma D.2. We fix t0 ∈ N arbitrarily for now and let T ⩾ t0. We start by splitting the
sum in two and by applying the deterministic elliptic potential lemma (Lemma 5.19) up to
time t0:

T∑
t=1
∥Xt∥Hβ

t (θt)−1 =
t0∑
t=1
∥Xt∥Hβ

t (θt)−1 +
T∑

t=t0+1
∥Xt∥Hβ

t (θt)−1

⩽
1√
m

t0∑
t=1
∥Xt∥(

V
β/m
t

)−1 +
T∑

t=t0+1
∥Xt∥Hβ

t (θt)−1 (Assumption 5.8)

⩽
( 1√

m
,
L√
β

)√
2t0d log

(
1 + mL2t0

dβ

)
+
T−1∑
t=t0
∥Xt+1∥Hβ

t+1(θt+1)−1

(Assumption 5.17)
. (D.31)

Now let Eδt =
{
∀t′ ⩾ t, λmin

(
Hβ
t+1(θt+1)

)
> β − 4mL2

ρX
log 2

δ + mρXL
2

2 t
}
. It is clear that Eδt0 ⊆

Eδ0 , and thus by Lemma D.4, P
(
Eδt0
)
⩾ 1− δ. The choice t0 = ⌈ 8

ρ2
X

log 2
δ −

2β
mρXL2 ⌉ implies that

the right-hand side in the definition of Et0 is positive. On this event, we bound the second sum
as follows:

T−1∑
t=t0
∥Xt+1∥Hβ

t+1(θt+1)−1 ⩽ L
T−1∑
t=t0

1√
a+ bt

⩽
2L
b

(√
a+ b(T − 1)−

√
a+ b(t0 − 1)

)
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⩽
2L
b

(√
bT +

√
a−

√
a+ b(t0 − 1)

)
, (D.32)

where we use the shorthand a = β − 4mL2

ρX
log 2

δ and b = 1
2mρXL

2 (the penultimate line
comes from sum-integral comparison while the last one follows from the inequality√x+ y ⩽
√
x+√y). After collecting the dominating term in

√
T , the two sums give the following upper

bound:
T∑
t=1
∥Xt∥Hβ

t (θt)−1 ⩽ 2L

√
T

b

(
1 + C√

T

)
(D.33)

with

C =
√
a

b
−

√
a+ b(t0 − 1)

b
+
√
b

2L

( 1√
m
,
L√
β

)√
2t0d log

(
1 + mL2t0

dβ

)
. (D.34)

Substituting a and bwith their expressions yields the result. ■

We finally prove the regret bound in the stochastic i.i.d. actions setting.

Proof of Theorem 5.23. We follow the exact same steps as with Theorem 5.18 in order to bound
the regret deviation probability by

P
(
∀T ⩾ t0, RT ⩽ 2cδT

T∑
t=1
∥Xt∥Hκα

t (θ̄t)−1

)
⩾ P

(
∀T ∈ N, RT ⩽ 2cδT

T∑
t=1
∥Xt∥Hκα

t (θ̄t)−1

)
⩾ 1− δ .

(D.35)

Moreover, by Lemma D.2, we have

P
(
∀T ⩾ t0,

T∑
t=1
∥Xt∥Hκα

t (θ̄t)−1 ⩽ 2
√

2T
mρX

(
1 + C√

T

))
⩾ 1− δ . (D.36)

A simple union argument over both time-uniform events concludes the proof, resulting in a
regret upper bound with probability at least 1− 2δ. ■
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Remark D.5 (Previous results about the growth of the smallest eigenvalue). Kim et al. (2021,
2023) prove similar results on the linear growth of the smallest eigenvalues of a different sequence
of Hessian matrices. More precisely, they consider a fixed number K of arms, i.e. action sets of the
form Xt = {Xk,t, k ∈ [K]} and Hessian matrices constructed from all actions in Xt, i.e. V [K]

t+1 =∑
k∈[K]

∑t
s=1Xk,sX

⊤
k,s, instead of using only the actions played at previous time steps. This is made

possible in their analyses by resorting to a doubly robust imputation of unobserved rewards associated
to unplayed actions, which is significantly different from our approach. One theoretical benefit of their
method is that the sequence (V [K]

t+1 )t∈N can be more easily transformed into a G-martingale using only
the unconditional lower bound on the covariance, as opposed to the conditional one of Assumption 5.22.
Of note, Li et al. (2017) also questions the feasibility of a linear lower bound on the smallest eigenvalue
of V 0

t+1 but concludes that it requires more stringent assumption as Lai and Wei (1982, Example 1)
seemingly provides a counterexample of sublinear growth in the context of a regression problem.
However, this counterexample studies autoregressive actions instead of i.i.d. action sets, which leads
to E

[
XtX

⊤
t | Ḡt−1

]
→ 0 when t → +∞. Therefore, this is different from what we consider in

Assumption 5.22 and does not invalidate our analysis.

D.3 Regret analysis of LinUCB-OGD-CR (y)

We derive here the correction to the regret upper bound when using online gradient descent
(OGD) instead of exactly solving the empirical risk minimisation Z-estimation problem.

Proof of Proposition 5.25

Proof of Proposition 5.25. Let j ⩽ n. The uniform lower bound on the Hessian of ℓj makes it
a-strongly convex, which implies

ℓj(zj)− ℓj(z̄) ⩽ ⟨∇ℓj(zj), zj − z̄n⟩ −
a

2∥z̄ − zj∥
2.

By definition of the OGD scheme, the following holds:

∥zj+1 − z̄n∥2 = ∥Π (zj − εj∇ℓj(zj))− z̄n∥2

⩽ ∥zj − εj∇ℓj(zj)− z̄n∥2 (projection onto a convex set)
⩽ ∥zj − z̄n∥2 + ε2

j∥∇ℓj(zj)∥2 − 2εj⟨∇ℓj(zj), zj − z̄n⟩ , (D.37)
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from which we deduce

⟨∇ℓj(zj), zj − z̄n⟩ ⩽
∥zj − z̄n∥2 − ∥zj+1 − z̄n∥2

2εj
+ εj

2 ∥∇ℓj(zj)∥
2 . (D.38)

BoundedGradients. This case is covered by Theorem 3.3 inHazan et al. (2016). We reproduce
the proof here for reference and as a first step toward the more general setting of sub-Gaussian
gradients.

Let G > 0 be such that ∥∇ℓj(zj)∥ ⩽ G for all j = 1, . . . , n. This allows to upper bound the
above equation, leading to

⟨∇ℓj(zj), zj − z̄n⟩ ⩽
∥zj − z̄n∥2 − ∥zj+1 − z̄n∥2

2εj
+ εj

2 G
2 . (D.39)

The online regret of OGD is therefore
n∑
j=1

ℓj(zj)− ℓj(z̄n) ⩽ 1
2

n∑
j=1

∥zj − z̄n∥2 − ∥zj+1 − z̄n∥2

εj
− a∥zj − z̄n∥2 + G2

2

n∑
j=1

εj . (D.40)

The first sum can be rewritten after a simple index shift and the convention 1/ε0 := 0:

1
2

n∑
j=1

∥zj − z̄n∥2 − ∥zj+1 − z̄n∥2

εj
− a∥zj − z̄n∥2

= 1
2

n∑
j=1
∥zj − z̄n∥2

(
1
εj
− 1
εj−1

− a
)
− 1
εn
∥zn+1 − z̄n∥2

⩽
1
2

n∑
j=1
∥zj − z̄n∥2

(
1
εj
− 1
εj−1

− a
)

= 0 (D.41)

for the choice εj = 1
aj . Consequently, the online regret can be simplified as

n∑
j=1

ℓj(zj)− ℓj(z̄n) ⩽ G2

2

n∑
j=1

εj

= G2

2a

n∑
j=1

1
j

⩽
G2

2a (1 + logn) . (D.42)

Sub-Gaussian Gradients. We do not assume here that ∇ℓj(zj) is uniformly bounded, but
instead rely on the weaker assumption that∇ℓj(z∗) is sub-Gaussian. The strategy is to control
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the variation between ∇ℓj(zj) and ∇ℓj(z∗) on the one hand, and bound in high probability
∇ℓj(z∗) on the other hand.

Notice that ∇ℓj(zj) = gj + α
nz

∗ +∇ℓj(zj)−∇ℓj(z∗) and that there exists z̄n ∈ [zj , z∗] ⊂ C
such that ∇ℓj(zj) −∇ℓj(z∗) = ∇2ℓj(z̄n) (zj − z∗) thanks to the mean value theorem and the
convexity of C. This yields

∥∇ℓj(ϕj)∥2 ⩽ 3∥gj∥2 + 3α2

n2 ∥z
∗∥2 + 3∥∇ℓj(zj)−∇ℓj(z∗)∥2

⩽ 3∥gj∥2 + 3α2

n2 ∥z
∗∥2 + 3A2∥zj − z∗∥2 , (D.43)

since ∇ℓj is A-Lipschitz. Combining this with the above yields

⟨∇ℓj(zj), zj − z̄n⟩ ⩽
3
2
∥zj − z̄n∥2 − ∥zj+1 − z̄n∥2

εj
+ 3

2εj∥gj∥
2 + 3

2εj
α2

n2 ∥z
∗∥2 + 3

2εjA
2∥zj − z∗∥2

⩽
3
2
∥zj − z̄n∥2 − ∥zj+1 − z̄n∥2

εj
+ 3

2εj

(
∥gj∥2 + α2

n2 ∥z
∗∥2
)

+ 3
2εjA

2diam(C)2 .

(D.44)

The online regret of OGD is therefore
n∑
j=1

ℓj(zj)− ℓj(z̄n) ⩽3
2

n∑
j=1

∥zj − z̄n∥2 − ∥zj+1 − z̄n∥2

εj
− a

3∥zj − z̄n∥
2

+ 3
2A

2diam(C)2
n∑
j=1

εj + 3
2

n∑
j=1

εj

(
∥gj∥2 + α2

n2 ∥z
∗∥2
)
. (D.45)

As in the bounded case, the choice εj = 3
aj makes the first sum vanish. Moreover, a simple

union argument over the Chernoff bound for the σ-sub-Gaussian random variables (gj)j=1,...,n

reveals that

En =

∀j = 1, . . . , n, ∥gj∥ ⩽ σ

√
2d log 2dn

δ

 (D.46)

holdswith probability at least 1−δ for δ ∈ (0, 1). Therefore, the following holdswith probability
at least 1− δ:

n∑
j=1

εj∥gj∥2 ⩽
n∑
j=1

εj∥gj∥21En ⩽ 2dσ2 log 2dn
δ

n∑
j=1

εj . (D.47)
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Therefore, with probability at least 1− δ, we obtain the following online regret:
n∑
j=1

ℓj(zs)− ℓj(z̄n) ⩽ 3
2

(
2dσ2 log 2dn

δ
+A2diam(C)2 + α2

n2 ∥z
∗∥2
)

n∑
j=1

εj

= 9
2a

(
2dσ2 log 2dn

δ
+A2diam(C)2 + α2

n2 ∥z
∗∥2
)

n∑
j=1

1
j

⩽
9
2a

(
2dσ2 log 2dn

δ
+A2diam(C)2 + α2

n2 ∥z
∗∥2
)

(1 + logn) . (D.48)

■

Proof of Theorem 5.26

Proof of Theorem 5.26. Let j, h, T ∈ N, we define the aggregated episodic loss mapping as

ℓj : R −→ R+

θ 7−→
h∑
k=1
L(Y(j−1)h+k, ⟨θ,X(j−1)h+k⟩) + α

2N ∥θ∥
2
2 , (D.49)

where N = ⌈T−1
h ⌉ denotes the total number of episodes of length h. For simplicity, we assume

that θ̄t = θ̂t for all t ⩽ T , i.e. the empirical risk minimiser is always in the stable set of the
projection operator Π. We recall that∑n

j=1∇ℓj(θ̄t) = 0 for n = t−1
h (i.e. after episode n, when

θ̂OGD
n is updated). In the general case, replacing θ̂t by θ̄t induces an extra correction factor in the
inequalities belowwhich is at most polylogarithmic in T (a consequence of Corollary 5.13), and
hence does not change the conclusion. Again, we point out that, similarly to the generalised
linear bandit setting (Filippi et al., 2010; Faury et al., 2020), θ̂t is often in the stable set of Π in
practice.

We use the notations of Proposion 5.25 and define:

zj = θ̂OGD
j , z̄n = θ̄t and z∗ = θ∗ . (D.50)

We also denote by z̃n = θ̄OGD
n = 1

n

∑n
j=1 zj the average of the past n OGD updates.

Bound on ∥z̃n − z̄n∥2. Without loss of generality, we assume here that ∂L∗ is a √mσ sub-
Gaussian process (this follows in variety of settings from the discussion of Assumption 5.10 and
Lemma 5.11; the conclusions are essentially unchanged when assuming only Assumption 5.10,
at the cost of slightly heavier notations).

We first note that ∇ℓj(θ∗) = gj(θ∗) + α
N θ

∗, where gj(θ∗) =
∑h
k=1 ∂L∗

(j−1)h+k and j ∈ [N ], is√
hmσ-sub-Gaussian (sum of h random variables, each of them being drawn from a √mσ-sub-
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Gaussian distribution). Setting the episode length to h = ⌈ 2εh
ρXL2 + 8

ρ2
X

log 2
δ ⌉makes the one-step

losses ℓj mεh-strongly convexwith high probability. Indeed, let us define for h′ ∈ N the function
f(h′) = ρXL

2

2 h′ − 4L2

ρX
log 2

δ and the event Ej,h′ =
{
λmin

(
h∑
k=1

X(j−1)h′+kX
⊤
(j−1)h′+k

)
> f(h′)

}
.

First, notice that Ej,h ⊇
⋂
h′∈N
Ej,h′ and that

h∑
k=1

X(j−1)h′+kX
⊤
(j−1)h′+k has the same distribution as

V 0
h′+1 by Assumption 5.22. We deduce from Lemma D.4 applied to V 0

h+1 (that is with β = 0
andm = 1), that

P (Ej,h) ⩾ P(
⋂
h′∈N
Ej,h′) = P

(
∀h′ ∈ N, λmin

(
V 0
h′+1

)
> −4L2

ρX
log 2

δ
+ ρXL

2

2 h′
)

⩾ 1− δ .

(D.51)

In particular for the value of h defined above, Ej,h ⊆
{
λmin

(
h∑
k=1

X(j−1)h′+kX
⊤
(j−1)h′+k

)
⩾ εh

}
,

which implies the mεh-strong convexity of ℓj by the usual minoration ∂2L ⩾ m (Assump-
tion 5.8). In the rest of this proof, we assume to be on the event ⋂

j∈[N ]
Ej,h, the probability of

which is at least 1−Nδ by a simple union argument.
Now, we apply the bound on the OGD regret of Proposition 5.25 with a = mεh, A = hML2,

namely that the good event

∀n ⩽ N,
n−1∑
j=1

ℓj(zj)− ℓj(z̄n) ⩽ C ′dhσ2

εh
log

(2dN
δ

)
log(n) , (D.52)

holds with probability at least 1−δ, for some constantC ′ > 0 (in whichwe hide the dependency
on h,M,L, α and S to avoid further cluttering). We assume to be on this event in the rest
of the proof, which we combine to the previous events with a union argument, leading to a
probability ot at least 1− (N + 1)δ.

The crux of the argument is similar to the proof of Lemma 2 in (Ding et al., 2021) and
exploits the strong convexity of the losses ℓj to relate the online regret to a control on the
distance ∥z̃n − z̄n∥. By Jensen’s inequality, we have

n∑
j=1

ℓj(z̃n)− ℓj(z̄n) ⩽ Cdhσ2

εh
log

(2dN
δ

)
log(n) . (D.53)

Strong convexity also implies the following inequality:

ℓj(z̃n)− ℓj(z̄n) ⩾ ⟨∇ℓj(z̄n), z̃n − z̄n⟩+ mεh
2 ∥z̃n − z̄n∥

2
2 . (D.54)
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Summing over j = 1, . . . , n and exploiting the fact that the sum of gradients vanishes at z̄n, we
obtain after some simple algebra:

∥z̃n − z̄n∥22 ⩽
2Cdhσ2

mε2
hn

log
(2dN

δ

)
log(n) . (D.55)

Regret Analysis of LinUCB-OGD. Mirroring the regret proof of LinUCB, we see that we
need

∀t ⩽ T, ∆(Xt, θ̄
OGD
n ) ⩽ γt(Xt) (D.56)

to hold with high probability, for a certain exploration sequence (γt)t∈N. This amount to
controlling the following norm:

∥θ∗ − θ̄OGD
n ∥H̄α

t (θ∗,θ̄OGD
n ) ⩽ ∥θ

∗ − θ̄t∥H̄α
t (θ̄t,θ̄OGD

n ) + ∥θ̄OGD
n − θ̄t∥H̄α

t (θ̄t,θ̄OGD
n )

⩽ ∥θ∗ − θ̄t∥H̄α
t (θ∗,θ̄OGD

n ) +
√
M∥θ̄OGD

n − θ̄t∥
V
α
m
t

⩽ ∥θ∗ − θ̄t∥H̄α
t (θ∗,θ̄OGD

n ) +
√
M

(
L2t+ α

m

)
∥θ̄OGD
n − θ̄t∥2 . (D.57)

The first term can be controlled by transportation of local metrics in the same way as in the
proof of Theorem 5.18, i.e.

∥θ∗ − θ̄t∥H̄α
t (θ∗,θ̄OGD

n ) ⩽
√
κ
(
∥Fαt (θ∗)− Fαt (θ̂t)∥Hβ

t (θ∗)−1 + ∥Fαt (θ̄t)− Fαt (θ̂)∥
Hβ
t (θ̄t)−1

)
,

(D.58)

and thus this term adds the same contribution to the design of the exploration bonus sequence
and to the regret bound.

For the second term, we apply the previous bound on ∥z̃n−z̄n∥2 = ∥θ̄OGD
n −θ̄t∥2. Combining

these two inequalities results in the following control:

∥θ∗ − θ̄OGD
n ∥H̄α

t (θ∗,θ̄OGD
n ) ⩽ cδt︸︷︷︸

same as in
the proof of
Theorem 5.18

+

√√√√(L2 + α

mMt

)(2κCdh2σ2

ε2
h

log
(2dT
hδ

)
log

(
t

h

))
︸ ︷︷ ︸

cOGD,δ
t,T = O(σL

√
κd log T)

.

(D.59)
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The rest of the proof is now identical to that of Theorem 5.23, i.e. we use the exploration
bonus sequence

γOGD
t,T : Xt −→ R+

x 7−→ (cδt + cOGD,δ
t,T )∥x∥Hκα

t (θ̄OGD
⌊ t−1
h

⌋
)−1 , (D.60)

and control
T∑
t=1
∥Xt∥Hκα

t (θ̄OGD
⌊t−1
h

⌋
)−1 using an elliptical potential lemma (since we operate under

Assumption 5.22 for the strong convexity of the episodic losses ℓj , we use the strong regret
guarantee provided by Lemma D.2; note that the high probability event on which this lemma
applies is already included in the above events, for a total probability of at least 1−(N+1)δ). ■

Remark D.6 (The importance of strong convexity). The key argument behind the proof of Theo-
rem 5.26 is that the aggregated episodic loss ℓn ismεh strongly convex. With simple convexity only,
the online regret guarantee of the OGD approximation scales like O(

√
T ) instead of logarithmically.

This would only guarantee ∥θ̄OGD
n − θ̄t∥2 = O(

√
t), resulting in linear O(T ) bandit regret after

multiplying this term with the contribution of the elliptic potential lemma. Moreover, although ℓn is
always trivially at least α

N -strongly convex, it is necessary to ensure non-vanishing strong convexity
when T → +∞ (we recall that N = ⌈T−1

h ⌉). Indeed, substituting εh with α
N in the regret bound

above givesRT ⩽ O(ε−1
h ) = O(T ).

Scaling of episode length h. As shown in the proof, non-vanishing strong convexity of ℓn
can be deduced from a fixed lower bound on the smallest eigenvalue of the Hessian of ℓn. By
Lemma D.4, this holds with high probability provided the episode length h is high enough,
which translates to h = ⌈ 2εh

ρXL2 + 8
ρ2

X
log 2

δ ⌉. Using the typical bound ρX = O(d−1), we see that h
scales like O(d2) in the action dimension. By comparison, the only similar OGD scheme for
generalised linear bandit scales like O(d3) (Ding et al., 2021, Lemma 2 and Remark 2), thus
suffering to a greater extent from the curse of dimensionality. Note the practical tradeoff on
h faced by the agent running Algorithm 4: the higher h, the more likely it is that the OGD
estimator θ̄OGD well approximates the true empirical risk minimiser θ̄ (because of stronger
convexity of the episodic losses); however, it also means longer episodes and thus less frequent
updates of θ̄OGD, i.e. less learning.

Note that the value ofh is derived froma concentration bound that is uniform inh (LemmaD.4).
However, since h is kept constant throughout the run of the algorithm, a similar, non-uniform
result would actually be sufficient (we chose to use Lemma D.4 mainly for the sake of conve-
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nience, since we already assumed to be on the corresponding good event in order to mirror the
regret analysis of Theorem 5.23). It is actually possible to tighten the lower bound on h using a
finer, non-uniform concentration result, which we state below.

Lemma D.7 (Tighter bound on the episode length h). Under Assumptions 5.17 and 5.22, let
εh > 0, δ ∈ (0, 1) and define

h =


1

4ρ2
X


√√√√2(1 + γδ) log

(
2
δ

√
1 + 1

γδ

)
+

√√√√√
√√√√2(1 + γδ) log

(
2
δ

√
1 + 1

γδ

)
+ ρX εh

L2


2 ,
(D.61)

where γδ = −1
1+W−1(− δ2

4e )
andW−1 is the first lower branch of the Lambert W function, i.e. the smallest

real solution for z = [−1
e , 0) of the equationW−1(z)eW−1(z) = z. Then we have that

P
(
λmin

(
h∑
s=1

XsX
⊤
s

)
⩾ εh

)
⩾ 1− δ . (D.62)

Proof of Lemma D.7. The idea is similar to that of the proof of LemmaD.4, i.e. relate the deviation
of the smallest eigenvalue to that of a matrix martingale. The difference lies in the choice of
the concentration bound for this martingale. Fix η > 0, Howard et al. (2021, Corollary S1(a))
with a normal mixture bound shows that a martingale (Mt)t∈N taking values in a Hilbert space
(H, ⟨·, ·⟩) with uniformly bounded increments ∥Mt+1 −Mt∥ ⩽ c for some c > 0 and all t ∈ N
satisfies

P

∃t ∈ N, ∥Mt∥ ⩾ c

√√√√2(t+ η) log
(

2
δ

√
1 + t

η

) ⩽ δ . (D.63)

Now, we fix h ∈ N. Although this bound is uniform in t ∈ N, we can make use of the free
parameter η to optimise it for t = h. This procedure is standard (see e.g. Howard et al. (2021,
Proposition 3)) and yields η = γδhwith γδ = −1

1+W−1(− δ2
4e )

. In particular, we have

P

∥Mh∥ ⩾ c

√√√√2h(1 + γδ) log
(

2
δ

√
1 + 1

γδ

) ⩽ δ . (D.64)
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Following the steps of Lemma D.4, we have that

P
(
λmin

(
V 0
h+1

)
⩽ εh

)
⩽ P

(
∥Mh∥ ⩾ ρXL

2h− εh
)
⩽ δ , (D.65)

withMh = V 0
h+1 − E

[
V 0
h+1

]
, which defines a martingale with increments bounded by c = 2L2.

Equating both bounds on ∥Mh∥ yields

ρXL
2h− 2L2

√√√√2h(1 + γδ) log
(

2
δ

√
1 + 1

γδ

)
− εh = 0 . (D.66)

This expression is a quadratic equation in H =
√
h. Let us define the shorthand a = ρXL

2

and b = L2
√

2h(1 + γδ) log
(

2
δ

√
1 + 1

γδ

)
. Notice that both a and b are positive and that the

discriminant of aH2 + 2bH − εh = 0 is 4b2 + 4aεh, which is also positive. The only positive
solution is thus given by

√
h = H = b+2

√
b2+aεh

2a , which concludes the proof. ■

The value of h recommended by Lemma D.7 scales with ρ−2
X at the first order, and thus

h = O(d2), just like in Theorem 5.23. However, it is typically smaller, and thus more practical
as it allows for more frequent OGD updates with the same theoretical guarantees. We report in
Figure D.1 the numerical values for both expressions of h for typical choices of the parametersL,
εh and δ as a function the dimension d. In practice, even smaller values of hmay ensure enough
convexity of the episodic losses to observe sublinear regret, which we empirically witnessed in
the experiments (see Section 5.4). For the practitioner, hmay be viewed as a hyperparameter
to be tuned manually, potentially on an instance-dependent basis, with Theorem 5.23 and
Lemma D.7 giving only worst case guarantees.
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Figure D.1 – Recommended episode length h = ⌈ 2εh

ρX L2 + 8
ρ2

X
log 2

δ ⌉ for LinUCB-OGD-CR (Algorithm 4)
according to Theorem 5.26 (blue) and Lemma D.7 (green) as a function of d = ρ−1

X , for typical values
L = 1, εh = 0.1 and δ = 5%.
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Appendix E

From optimality to robustness:
Dirichlet sampling strategies in
stochastic bandits

This chapter presents supplementary material for Chapter 6.

Contents
E.1 Generic regret analysis for round-based randomised algorithms (y) . . . 345

E.2 Technical results on Dirichlet distributions and BCP (y) . . . . . . . . . . 351

E.3 Regret analysis for DS algorithms (y) . . . . . . . . . . . . . . . . . . . . . 356

E.4 Examples of distributions fitting the family of QDS . . . . . . . . . . . . . . 370

E.1 Generic regret analysis for round-based randomised algorithms
(y)

In this section we derive the generic regret upper bound of Theorem 6.3, for any (randomised)
index function µ̃ : R(N) ×R→ R (not necessarily a DS index in the sense of Definition 6.1). We
exploit the round-based structure of Algorithm 5 to split the regret into two terms that depend
on the DS index and control each of them separately. Note that this bound holds for any DS
index, This analysis crucially rely on Assumption 6.2, which we recall ensures concentration of
the empirical means around the true expectation for all arms k ∈ [K] at an appropriate rate Ik.

Proof of Theorem 6.3. We recall that we denote by k⋆ ∈ [K] the optimal arm (assumed to be
unique, without loss of generality), k ∈ [K] \ {k⋆} a suboptimal arm, µk and µ⋆ their respective
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mean rewards, r ∈ N a round of the algorithm, ℓr and Ar+1 the leader and set of arms pulled
after round r, Nk

r and Nk⋆
r the number of pulls to arm k and k⋆ up to round r, and µ̂kr and µ̂k

⋆

r

the empirical mean of the rewards observed for arm k and k⋆ up to round r, respectively.

Regret decomposition. Thanks to the round-based structure, the fact that an arm is pulled
or not depends of its status as a leader or a challenger. If an arm is a challenger, it can be pulled
only if it wins its duel against the leader. For this reason, a natural first regret decomposition
consists in considering the cases when (i) the optimal arm k⋆ is the leader but some suboptimal
arms are pulled, and (ii) the optimal arm is not the leader. We upper bound the T -round
cumulative expected pseudo regret E[RT ] by controlling the expected number of pulls of each
suboptimal arm k. Using the fact that all arms are pulled during the first round, we obtain the
following inequality:

E[Nk
T ] = 1 + E

[
T−1∑
r=1

1k∈Ar+1

]

= 1 +
T−1∑
r=1

E
[
1k∈Ar+1,ℓr=k⋆ + 1k∈Ar+1,ℓr ̸=k⋆

]
⩽ 1 + E

[
T−1∑
r=1

1k∈Ar+1,ℓr=k⋆

]
︸ ︷︷ ︸

nk(T )

+E
[
T−1∑
r=1

1ℓr ̸=k⋆

]
︸ ︷︷ ︸

ET

. (E.1)

At this step, we have already extracted the term nk(T ) of Theorem 6.3 and introduced a term
ET that contains both BT,ε and Cν,ε. In the rest of this proof we work on the term ET .

Upper bound on EkT . The following part of the proof is inspired by the proof of the SSMC
algorithm in Chan (2020). Furthermore, we will see that we can further decompose EkT into
several events that will be handled using Assumption 6.2, showing the interest of the round-
based structure. After that, we will finally exhibit the term that motivated Assumption 6.4.

Before that, we start by analising two alternatives that can cause the event {ℓr ̸= k⋆}, namely
(i) arm k⋆ has already been leader and has lost the leadership at some point (leadership
takeover), or (ii) arm k⋆ has never been leader. To formalise these alternatives we define the
sequence (ar)r∈N = (⌈r/4⌉)r∈N and the event

Dr = {∃s ∈ [ar, r] : ℓs = k⋆} . (E.2)

Dr is true: arm k⋆ has already been leader after round ar. We first justify the choice of ar:
starting after a number of rounds that is linear in r ensures a number of observations for the
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leader during the whole segment [ar, r] that is also linear in r, that is for all s ∈ [ar, r],

N ℓs

s ⩾ ⌈ar/K⌉ =: br . (E.3)

Under Dr we study the probability of a leadership takeover by a suboptimal arm between
ar and r. Such takeover can happen only if (i) a suboptimal arm obtains the same number of
samples as arm k⋆, and (ii) its empirical mean is larger than the one of arm k⋆ at the round
when it happens. We formalise the leadership takeover with the following events:

{ℓr ̸= k⋆} ∩ Dr ⊂
r−1⋃
s=ar
{ℓs = k⋆, ℓs+1 ̸= k⋆}

⊂
r−1⋃
s=ar

⋃
k∈[K]\{k⋆}

{
ℓs = k⋆, k ∈ As+1, N

k
s+1 = Nk⋆

s+1, µ̂
k
s+1 ⩾ µ̂k

⋆

s+1

}

⊂
r−1⋃
s=ar

⋃
k∈[K]\{k⋆}

{
Nk
s+1 = Nk⋆

s+1, µ̂
k
s+1 ⩾ µ̂k

⋆

s+1

}

=
r⋃

s=ar+1

⋃
k∈[K]\{k⋆}

{
Nk
s = Nk∗

s , µ̂ks ⩾ µ̂k
⋆

s

}

=:
r⋃

s=ar+1

⋃
k∈[K]\{k⋆}

Bks . (E.4)

We denote by Yk(n) = (Y k
i )ni=1 ∼ ν⊗n

k (respectively Y⋆(n) = (Y ⋆
i )ni=1 ∼ ν⊗n

k⋆ ) the list of the first
n ∈ N random rewards of arm k (respectively of arm k⋆) and by µ̂k(n) (respectively µ̂k

⋆

(n)) the
corresponding empirical means. We first develop and express the sum of these terms as

E

T−1∑
r=1

t∑
s=ar+1

1Bks

 = E

T−1∑
r=1

t∑
s=ar+1

1Nk
s =Nk⋆

s ,µ̂ks⩾µ̂k
⋆
s


⩽ E

T−1∑
r=1

r∑
s=ar+1

s∑
n=⌈s/K⌉

1Nk
s =Nk⋆

s =n,µ̂k(n)⩾µ̂
k⋆

(n)


⩽ E

T−1∑
r=1

r∑
s=ar+1

s∑
n=⌈s/K⌉

1µ̂k(n)⩾µ̂
k⋆

(n)

 . (E.5)

We now define xk = µk⋆+µk
2 . If µ̂k(n) ⩾ µ̂k

⋆

(n), then either the arm k⋆ has underperformed or arm
k has overperformed, which means that µ̂k(n) ⩾ xk or µ̂k⋆(n) ⩽ xk, which gives

E

T−1∑
r=1

t∑
s=ar+1

1Bks

 ⩽ E

T−1∑
r=1

t∑
s=at+1

s∑
n=⌈s/K⌉

1{
µ̂k(n)⩾xk

}⋃{
µ̂k(n)⩽xk

}
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⩽
T−1∑
r=1

t∑
s=at+1

s∑
n=⌈s/K⌉

(
P
(
µ̂k(n) ⩾ xk

)
+ P

(
µ̂k

⋆

(n) ⩽ xk
))

⩽
T−1∑
r=1

r2
(
P
(
µ̂k(br) ⩾ xk

)
+ P

(
µ̂k

⋆

(br) ⩽ xk
))

⩽
T−1∑
r=1

r2
(
e−brIk⋆ (xk) + e−brIk(xk)

)
= O(1) , (E.6)

where the two last lines come from Assumption 6.2. Finally, summing over all suboptimal arms,
we obtain:

T−1∑
r=1

P (ℓr ̸= k⋆,Dr) ⩽
∑

k∈[K]\{k⋆}

T−1∑
r=1

r2
(
e−brIk⋆ (xk) + e−brIk(xk)

)
=: Cν,ε = O(1) . (E.7)

In other words, the simple condition on the concentration of empirical means is enough to
ensure that the cost of leadership takeover by suboptimal arms only contributes to a constant
(in T ) in the regret bound.

This convergent series is the first component of the term Cν,ε in Theorem 6.3. We now
consider the case when arm k∗ has never been leader.

Upper bound when Dr is not true. We now consider the complement event D̄r. The idea
here is to leverage the fact that if the optimal arm is not leader between ⌈r/4⌉ and r, then it has
necessarily lost a lot of duels. We introduce the count of the number of duels lost by arm k⋆,

∀s ∈ {ar, . . . , r}, Cs = {∃k ̸= k⋆, ℓs = k, k⋆ /∈ As+1} and Lr =
r∑

s=ar
1(Cs) , (E.8)

where Csrepresents the event that at round s, arm k⋆ was a challenger and lost its duel. A direct
adaptation from Chan (2020, equation 7.12) provides the following upper bound:

P(ℓr ̸= k⋆, D̄r) ⩽ P(Lr ⩾ r/4) . (E.9)

We then use Markov’s inequality to obtain

P(Lr ⩾ r/4) ⩽ E(Lr)
r/4 = 4

r

r∑
s=ar

P(Cs) . (E.10)

348



We then remove the double sum on s and t by simply counting the occurrences of each term:

T−1∑
r=1

P(Lr ⩾ r/4) ⩽ E
[
T−1∑
r=1

4
r

r∑
s=ar

1Cs

]
⩽ E

[
T−1∑
s=1

1Cs

T−1∑
r=1

4
r
1s∈[ar,r]

]
. (E.11)

From this step we can control independently the sum in r,

T−1∑
r=1

4
r
1s∈[ar,r] =

T−1∑
r=1

4
r
1s⩽r1ar⩽s ⩽

4
s

T−1∑
r=1

1ar⩽s ⩽
4
s

T−1∑
r=1

1⌈r/4⌉⩽s ⩽
4
s

T−1∑
r=1

1r/4⩽s+1 ⩽
16(s+1)

s
⩽ 32 .

With this result we obtain the following inequality:

T−1∑
r=1

P(Lr ⩾ r/4) ⩽ 32
T−1∑
r=1

P(Cr) . (E.12)

We then decompose Cr as the union of all the terms corresponding to each possible suboptimal
leader, i.e.

Cr =
⋃

j∈[K]\{k⋆}
{ℓr = j, k⋆ /∈ Ar+1} =:

⋃
j∈[K]\{k⋆}

Cjr . (E.13)

We now fix a suboptimal leader j and work on the term Cjr . We recall that arm k⋆ has two
chances to win the duel: first with its empirical mean, and then with the randomised index.
We first handle the case when the suboptimal leader could be overperforming, by writing for
any ε > 0

Cjr ⊂
{∣∣∣µ̂jr − µj∣∣∣ ⩾ ε, ℓr = j

}
⋃{∣∣∣µ̂jr − µj∣∣∣ ⩽ ε, ℓr = j, µ̂k

⋆

r ⩽ µ̂jr, µ̃
(
Y⋆r , µ̂jr

)
⩽ µ̂jr

}
. (E.14)

We then upper bound the left-hand term using again the concentration of the empirical mean
for the leader, and obtain

T−1∑
r=1

P

∣∣∣µ̂jr − µj∣∣∣ ⩾ ε, ℓr = j︸ ︷︷ ︸
=:C̃jr

 =
T−1∑
r=1

∑
nj=⌈r/K⌉

P
(∣∣∣µ̂jr − µj∣∣∣ ⩾ ε,N j

r = nj
)

= O(1) . (E.15)

We then continue the analysis of C̃jr by considering the number of samples of arm k⋆, and in
particular whether Nk⋆

r ⩾ n⋆j (T ) or not, for some new quantity n⋆j (T ). The idea is to choose
n⋆j (T ) such that C̃jr is unlikely for n ⩾ n⋆j (T ) thanks to the first step of the duel with empirical
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means. Writing Cj =
T−1∑
r=1

P
(
C̃jr , ℓr = j

)
, we have that:

Cj ⩽
T−1∑
r=1

P
(
C̃jr , Nk⋆

r ⩾ n⋆j (T ), ℓr = j
)

+
T−1∑
r=1

P
(
C̃jr , Nk⋆

r ⩽ n⋆j (T ), ℓr = j
)

⩽
T−1∑
r=1

T−1∑
n=n⋆j (T )

P
(
µ̂k

⋆

(n) ⩽ µj + ε
)

+
T−1∑
r=1

P
(
C̃jr , Nk⋆

r ⩽ n⋆j (T ), ℓr = j
)

⩽
T−1∑
r=1

P
(
C̃jr , Nk⋆

r ⩽ n⋆j (T ), ℓr = j
)

+O(1) , (E.16)

as long as n⋆j (T ) ⩾ log T
Ik⋆ (µj+ε) . Now, let n ∈ N and define the event

Hj,εr,n =
{
Nk⋆

r = n,
∣∣∣µ̂jr − µj∣∣∣ ⩽ ε, µ̂k

⋆

(n) ⩽ µ̂jr, µ̃
(
Y⋆(n), µ̂

j
r

)
⩽ µ̂jr

}
, (E.17)

and use it to write the following upper bound on the remaining sum:

T−1∑
r=1

P
(
C̃jr , Nk⋆

r ⩽ n⋆j (T ), ℓr = j
)
⩽

T−1∑
r=1

n⋆j (T )∑
n=1

P
(
Hj,εr,n

)
. (E.18)

Using the classical rewriting of a sum of indicators (see e.g. Riou and Honda (2020)), we
observe that the following equality holds:

T−1∑
r=1

1Hj,ε
r,n

=
T−1∑
m=1

1(T−1∑
r=1

1
Hj,εr,n

⩾m

) . (E.19)

Now, define as (τni )mi=1 the sequence of stopping times (with respect to the natural filtration
defined by the round-based structure) corresponding to the firstm ∈ N rounds r at whichHj,εr,n
holds. If

{
T−1∑
r=1

1Hj,ε
r,n

⩾ m

}
holds, then Hj,ετni ,n holds for any i ⩽ m and all these τni are finite,

which means that

1(T−1∑
r=1

1
Hj,εr,n

⩾m

) ⩽
m∏
i=1

1Hj,ε
τn
i
,n

. (E.20)

Finally, we denote the last term to upper bound by

Dj
T,ε :=

n⋆j (T )∑
n=1

T−1∑
m=1

E
[
m∏
i=1

1Hj,ε
τn
i
,n

]
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=
n⋆j (T )∑
n=1

T−1∑
m=1

EY⋆(n)

[
m∏
i=1

P
(
µ̃

(
Y⋆(n), µ̂

j

(Nj
τn
i

)

)
⩽ µ̂j

(Nj
τn
i

)

∣∣∣∣∣ Y⋆(n)

)
1Hj,ε

τn
i
,n

]
. (E.21)

At this step, we notice that µ̂j
(Nj

τn
i

)
is concentrated in a neighbourhood of µj , and thus we can

simply bound the above term by replacing this empirical mean with the supremum over this
neighbourhood, i.e.

Dj
T,ε ⩽

n⋆j (T )∑
n=1

T−1∑
m=1

sup
µ∈[µj−ε,µj+ε]

EY⋆(n)

[
P
(
µ̃
(
Y⋆(n), µ

)
⩽ µ

∣∣∣ Y⋆(n)

)m
1µ̂k

⋆

(n)⩽µ

]

⩽

n⋆j (T )∑
n=1

sup
µ∈[µj−ε,µj+ε]

EY⋆(n)

P
(
µ̃
(
Y⋆(n), µ

)
⩽ µ

∣∣∣ Y⋆(n)

)
P
(
µ̃
(
Y⋆(n), µ

)
⩾ µ

∣∣∣ Y⋆(n)

)1µ̂k⋆(n)⩽µ

 (geometric series)

⩽

n⋆j (T )∑
n=1

sup
µ∈[µj−ε,µj+ε]

EY⋆(n)

 1µ̂k
⋆

(n)⩽µ

P
(
µ̃
(
Y⋆(n), µ

)
⩾ µ

∣∣∣ Y⋆(n)

)
 . (E.22)

We conclude the proof by letting BT,ε :=
∑

j∈[K]\{k⋆}
Dj
T,ε. ■

E.2 Technical results on Dirichlet distributions and BCP (y)

We recall basic results on Dirichlet distributions that are used in the analysis of DS algorithms.

Elementary properties of Dirichlet distributions We consider the Dirichlet distribution
Dir(α) for some parameter α = (αi)n+1

i=1 ∈ (R⋆+)n+1. LetW = (Wi)n+1
i=1 be a random variable

drawn from the distribution Dir(α). We first recall that W takes its values in the simplex
Dn = {w ∈ [0, 1]n+1 :

∑n+1
i=1 wi = 1}. The distribution admits the following density (with

respect to the Lebesgue measure on Dn):

f : Dn −→ R+

w 7−→
Γ
(∑n+1

i=1 αi
)

∏n+1
i=1 Γ(αi)

n+1∏
i=1

wαi−1
i , (E.23)

where Γ denotes the Gamma function. In this chapter, we only consider integer values for the
coefficients α, and in particular for any n ∈ N, Γ(n+ 1) = n!. Letting N =

∑n+1
i=1 αi, we obtain

the more convenient form

f : Dn −→ R+
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w 7−→ (N − 1)!∏n+1
i=1 (αi − 1)!

n+1∏
i=1

wαi−1
i . (E.24)

Furthermore, for most DS algorithms, we further restrict α to be α = (1, . . . , 1), in which case
the Dirichlet distribution corresponds to the uniform distribution overDn, i.e. f(w) = n! for
all w ∈ Dn (note that this recovers the standard result that the volume of Dn is 1/n!).

For any i ∈ {1, . . . , n + 1}, the marginal distribution of Wi follows a Beta distribution
Beta(αi, N − αi), and in particular we have that

E[Wi] = αi
N

and V[wi] = αi(N − αi)
N2(N + 1) . (E.25)

In the uniform case α = (1, . . . , 1), we can interpretW as a random, unbiased reweighting
of n + 1 observations. Indeed, for a given sequence Yn+1 = (yi)n+1

i=1 ∈ Rn+1, consider the
probability measure ν̂Yn+1,W =

∑n+1
i=1 Wiδyi (note that this defines a random variables taking

values in the spaceM+
1 (R), i.e. a randomprobabilitymeasure). For a given realisationW = w ∈

Dn, sampling from ν̂Yn+1,w results in different frequencies of observation for each element of
Yn+1 compared to the empirical measure ν̂Yn+1 = 1/n

∑n+1
i=1 δyi (where each element is equally

likely). However, sampling multiple times fromW and then from ν̂Yn+1,W conditional onW
does result in equal frequencies on average thanks to equation E.25. Therefore, reweighting
empirical measures with Dirichlet weights is a way to add noise (increase variance) while
preserving the empirical frequencies of observation, which is especially convenient to generalise
the Thompson sampling scheme.

We also use the following two classical properties of Dirichlet distributions, both using the
relation between the Dirichlet and exponential distributions. We refer to standard probability
textbooks for the proofs.

Lemma E.1 (Exponential representation). Let (Ri)n+1
i=1 ∼

⊗n+1
i=1 E(αi) be n + 1 independent

exponential random variables. Then (Ri/
∑n+1
j=1 Rj)

n+1
i=1 ∼ Dir(α).

The second property is a direct consequence of the first and states that a Dirichlet random
vector can be aggregated into another Dirichlet random vector.
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Lemma E.2 (Aggregation property). For i ̸= j in {1, . . . , n + 1}, if W ∼ Dir(α) then the
vector of size n defined as W i,j = (W1, . . . ,Wi +Wj︸ ︷︷ ︸

i-th

, . . . ,Wj−1,Wj+1, . . . ,Wn+1) is distributed

asW i,j ∼ Dir((α1, . . . , αi + αj︸ ︷︷ ︸
i-th

, . . . , αj−1, αj+1, . . . , αn+1)) (putting the sum in the i-th slot and

removing the j-th slot without changing the other indices).

In particular, we will make use of this property in the proofs of Theorem 6.15 and 6.17,
where we resort to a discretisation of observed rewards, i.e. grouping observations from a
continuous distribution into equally size bins. The aggregation property shows that the DS
indices built from true reward histories are still Dirichlet reweight indices after discretisation,
with parameters summed within each bin.

Boundary crossingprobability Wenowprovide an alternative lower bound on [BCP ], which
we recall is defined as:

[BCP ] (Yn+1;µ) = PW∼Dn+1

(
n+1∑
i=1

Wiyi ⩾ µ

)
, (E.26)

where µ ∈ R, Yn+1 = (yi)n+1
i=1 ∈ Rn+1 and Dn+1 is the Dirichlet distribution with parameter

(1, . . . , 1) of size n+ 1 ∈ N. The next two results are essentially a rewriting of Riou and Honda
(2020, Lemma 14).

Lemma E.3 (Second lower bound for the BCP). Let α = (αi)ni=1 ∈ (N⋆)n and µ < maxYn+1.
Define α̃ = α ⊔ (1) ∈ Nn+1 and N =

n∑
i=1

αi. Then, for any w ∈ Dn such that
n+1∑
i=1

wiyi ⩾ µ, we have

PW∼Dir(α̃)

(
n+1∑
i=1

Wiyi ⩾ µ

)
⩾ α̃i⋆N !wn+1

wi⋆

n∏
i=1

wαii
αi!

, (E.27)

where i⋆ = argmax
i=1,...,n+1

Yn+1.

Proof of Lemma E.3. We use the expression of the density of the Dirichlet distribution defined
above, and consider the set S = {w ∈ Dn,

∑n+1
i=1 wiyi ⩾ µ}. Then, for any given w ∈ S, we
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define the set Sw = {w ∈ Dn, ∀i ̸= i⋆, wi ∈ [0, wi]}. The inclusion Sw ⊆ S is direct since
transferring weights to the maximum can only increase the value of the weighted sum. Hence,
Pw∼Dir(α̃)

(
w ∈ Sw

) is a lower bound on PW∼Dir(α̃) (W ∈ S). We then obtain

PW∼Dir(α̃)

(
n+1∑
i=1

Wiyi ⩾ µ

)
⩾ PW∼Dir(α̃)

(
W ∈ Sw

)
⩾

N !∏n
i=1(αi − 1)!

∫ w1

0
· · ·
∫ wn+1

0

n∏
i=1

wαi−1
i

n+1∏
i=1,i ̸=i⋆

dwi

= N !∏n
i=1,i ̸=i⋆ αi!

n∏
i=1

(wi)αi
(
wn+1
wi⋆

)

= N !∏n
i=1 αi!

n∏
i=1

(wi)αi
(
α̃i⋆

wn+1
wi⋆

)
, (E.28)

which concludes the proof. ■

A direct corollary of this result is to choose the weights w that maximise the lower bound,
which gives as in Lemma 6.7 an expression with KmaxYn+1

inf .

Corollary E.4 . Let α = (αi)ni=1 ∈ (N⋆)n and µ < maxYn+1. Assume that maxYn+1 is unique.
Define α̃ = α ⊔ (1) ∈ Nn, N =

n∑
i=1

αi and ν̂Y−
n+1,α/N

the multinomial distribution over n points
Y−
n+1 = Yn+1 \ {maxYn+1} with probabilities (αi/N)ni=1. We have that

PW∼Dir(α̃)

(
n+1∑
i=1

Wiyi ⩾ µ

)
⩾

N !∏n
i=1 αi!

exp
(
−N

(
KmaxYn+1

inf

(
ν̂Y−

n+1,
α
N
, µ
)

+ H(ν̂Y−
n+1,

α
N

)
))

,

(E.29)

where H is the entropy.

Proof of Corollary E.4. We use the same notation as in Lemma E.3. Consider two multinomial
distributions ν, ν ′ supported on Y−

n+1 and Yn+1 respectively, and with probabilities p = (pi)ni=1
and q = (qi)n+1

i=1 . Since Y−
n+1 ⊂ Yn+1, their Kullback-Leibler divergence is simply

KL(ν ∥ ν ′) =
n∑
i=1

pi log pi
qi

= −
n∑
i=1

pi log(qi)−H(ν) . (E.30)
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We use the result of Lemma E.3 with p = α/N and q = w, and choose

w = argmin
w∈S

KL(ν̂Y−
n+1,

α
N
∥ ν̂Yn+1,w) , (E.31)

such that

KL(ν̂Y−
n+1,

α
N
∥ ν̂Yn+1,w) = KmaxYn+1

inf (ν̂Y−
n+1,

α
N

;µ) , (E.32)

Furthermore, we simplify the constants using the inequalities

α̃i⋆
wn+1
wi⋆

⩾
wn+1
wi⋆

⩾ 1 , (E.33)

with equality only if i⋆ = n + 1. Indeed, the optimal allocation will necessarily put more
weights on largest values, so wi⋆ ⩾ wn+1. ■

Finally, we use Corollary E.4 to derive a bound on the ratio between the likelihood of an
empirical distribution and its BCP in the case of multinomial distributions. This result will be
useful in the proofs of Theorems 6.15 and 6.17 where we use it to analyse a discretisation of
the random rewards; for this reason, we use the notation ỸS+1 = (ỹi)S+1

i=1 ∈ RS+1 for S ∈ N
instead of the usual Yn+1.

Lemma E.5 (Balance between the likelihood and the BCP for multinomial distribution). As-
sume that max ỸS+1 is unique. Let µ < max ỸS+1 and ν̂Ỹ−

S+1,pS
the multinomial distribution sup-

ported on Ỹ−
S+1 with probabilities pS ∈ DS−1. We fix n ∈ N and denote by βn,S ∈ NS the random

vector counting the occurrences of (Ỹi)Si=1 when drawing n observations from ν̂Ỹ−
S+1,pS

. Then for any
vector β ∈ NS satisfying∑S

i=1 βi = n and∑S
i=1 βiỸi ⩽ µ, and letting β̃ = β ⊔ (1), we have that

P(βn,S = β)

P
W∼Dir(β̃)

(
S∑
i=1

Wiỹi +WS+1ỹS+1 ⩾ µ

)

⩽ exp
(
−n

[
KL(ν̂Ỹ−

S+1,
β
n

∥ pS)−Kmax ỸS+1
inf

(
ν̂Ỹ−

S+1,
β
n

;µ
)])

. (E.34)
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Proof of Lemma E.5. Dembo and Zeitouni (2009, Lemma 2.1.6) provides the following formula
for multinomial distributions:

P(βn,S = β) = n!∏S
i=1 βi!

S∏
i=1

pβiS,i = n!∏S
i=1 βi!

exp
(
−n

[
KL(ν̂Ỹ−

S+1,
β
n

∥ ν̂Ỹ−
S+1,pS

) + H(ν̂Ỹ−
S+1,

β
n

)
])

,

(E.35)

whereH denotes the entropy. Then, Corollary E.4 directly provides the result as all the constant
terms are equal, and the entropy term can be simplified. ■

E.3 Regret analysis for DS algorithms (y)

In this section, we provide the complete proofs of Theorems 6.15, 6.19 and 6.17, presented in
Section 6.3. We adopt the same proof strategy for each of them: starting from Theorem 6.3,
which holds for all three of these DS instances, we then detail the terms nk(T ) for all suboptimal
arm k ∈ [K] \ {k⋆} and T ∈ N. which drives the first order terms of the regret upper bound.
Then, we justify that Assumptions 6.2 and Assumption 6.4 hold, using respectively the light
tailed properties of the distributions and the lower bound on [BCP ] (Lemma 6.8), avoiding
underexploration of the best arm. We recall the definition of the main terms we have to analyse
from Theorem 6.3:

First order term : ∀k ∈ [K] \ {k⋆}, nk(T ) = E
[
T−1∑
r=1

1(k ∈ Ar+1, ℓr = 1)
]
, (E.36)

Assumption 6.4 : ∀ε>0, n⋆(T ) = o(log T ),
n⋆(T )∑
n=1

E

 1µ̂k
⋆

(n)⩽µ
⋆−ε

P
(
µ̃(Y⋆(n);µ⋆ − ε) ⩾ µ⋆−ε | Y⋆(n)

)
=o(log T ) .

(E.37)

The regret proofs of the three DS instances share common elements, so before instantiating the
proof for each algorithm we further work on these two terms under general assumptions.

General proof sketches

In this section we derive the parts of the proofs that are shared by all three instances of DS,
namely the necessary conditions for Theorem 6.3 and Assumption 6.4.

Further characterisation of nk(T ). We start by detailing further the term nk(T ), which is
known to drive the first order regret term in T (Corollary 6.5).
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Lemma E.6 . Let k ∈ [K] \ {k⋆} a suboptimal arm. Assume that νk satisfies Assumption 6.2 and that
for any n ∈ N, there exists a subset Bkn ⊂ Rn and an increasing function fk such that for any µ < µ⋆,
the following two conditions hold:

Yk(n) ⊂ B
k
n =⇒ P

(
µ̃(Yk(n), µ) ⩾ µ

)
⩽ exp

(
−fk(n,Bkn, µ)

)
, (E.38)

T−1∑
n=1

P
(
Yk(n) /∈ B

k
n

)
= O(1) . (E.39)

Then we have

nk(T ) = mk(T ) +O(1) , (E.40)

where for any ε > 0 and T ⩾ 1,mk(T ) satisfies fk
(
mk(T ),Bkn, µ⋆ − ε

)
= log T .

Proof of Lemma E.6. We first split the sequence (1k∈Ar+1,ℓr=k⋆
)T−1
r=1 into (i) a preconvergence

phase, the size of which we control, and (ii) a postconvergence phase, for which a suboptimal
arm k ∈ [K] \ {k⋆} has been pulled enough times to be suitably concentrated according to
Assumption 6.2. To this end, we define a (for now arbitrary) quantitymk(T ) ∈ N and write

E
[
T−1∑
r=1

1(k ∈ Ar+1, ℓr = k⋆)
]
⩽ E

[
T−1∑
r=1

1k∈Ar+1,ℓr=k⋆,Nk
r<mk(T )

]

+ E
[
T−1∑
r=1

1k∈Ar+1,ℓr=k⋆,Nk
r ⩾mk(T )

]

⩽ mk(T ) + E
[
T−1∑
r=1

1k∈Ar+1,ℓr=k⋆,Nk
r ⩾mk(T )

]
, (E.41)

where we used that for any n ∈ N, the event {k ∈ Ar+1, N
k
r = n} may happen at most once

during the run of the algorithm (if k ∈ Ar+1, arm k will be pulled, which we increase Nk
r ).

The next step is to further split the second term by defining a good event of large probability
under which {k ∈ Ar+1} has a low probability. As we aim to keep some level of generality in
this section, we simply define this event as

Gkr =
{
Ykr ∈ BkNk

r

}⋂{
µ̂k

⋆

r ⩾ µ⋆ − ε
}
, (E.42)

where ε > 0. We further define the event

Wk
r =

{
k ∈ Ar+1, ℓr = k⋆, Nk

r ⩾ mk(T )
}
, (E.43)
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which allows use to write:

nk(T ) ⩽ mk(T ) + E
[
T−1∑
r=1

1Wk
r ∩Gkr +

T−1∑
r=1

1Wk
r ∩Ḡkr

]
. (E.44)

We use the first assumption in the lemma to upper bound the first term as

E
[
T−1∑
r=1

1Wk
r ,Gkr

]
= E

T−1∑
r=1

T−1∑
n=mk(T )

1k∈Ar+1,ℓr=k⋆,Nk
r =n,Gkr


⩽ E

T−1∑
r=1

T−1∑
n=mk(T )

1µ̃(Ykr ,µ̂k⋆r )⩾µ̂k⋆r ,Nk
r =n,Wk

r ,Gkr


⩽ E

T−1∑
r=1

T−1∑
n=mk(T )

P
(
µ̃
(
Ykr , µ̂k

⋆

r

)
⩾ µ̂k

⋆

r

∣∣∣ Ykr ,Y⋆r)1Nk
r =n,Wk

r ,Gkr


⩽ E

T−1∑
r=1

T−1∑
n=mk(T )

exp
(
−f

(
n,Bkn, µ̂k

⋆

r

))
1k∈Ar+1,ℓr=k⋆,Nk

r =n,Gkr


⩽ E

T−1∑
r=1

T−1∑
n=mk(T )

exp
(
−f

(
n,Bkn, µ⋆ − ε

))
1k∈Ar+1,Nk

r =n

 , (E.45)

We complete this step of the proof by further using the monotonicity of f in n,

E
[
T−1∑
r=1

1Wk
r ,Gkr

]
⩽ exp

(
−f(mk(T ),Bkmk(T ), µ

⋆ − ε)
)
E

T−1∑
r=1

T−1∑
n=mk(T )

1k∈Ar+1,Nk
r =n


⩽ exp

(
−f(mk(T ),Bkmk(T ), µ

⋆ − ε)
)
E

 T−1∑
n=mk(T )

1


⩽ T exp

(
−f(mk(T ),Bkmk(T ), µ

⋆ − ε)
)
. (E.46)

For the second term, note that

Ḡkr =
{
Ykr /∈ BkNr

k

}⋃{
µ̂k

⋆

r < µ⋆ − ε
}
, (E.47)

which leads to

E
[
T−1∑
r=1

1Wk
r ,Ḡkr

]
= E

[
T−1∑
r=1

1k∈Ar+1,ℓr=k⋆,Nk
r ⩾mk(T ),Ḡkr

]

⩽ E
[
T−1∑
r=1

1ℓr=k⋆,µ̂k⋆,r<µ⋆−ε

]
︸ ︷︷ ︸

A1

+E
[
T−1∑
r=1

1k∈Ar+1,Nk
r ⩾mk(T ),Ykr /∈Bk

Nkr

]
︸ ︷︷ ︸

A2

, (E.48)
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where the two terms A1 and A2 depend respectively only of arm k⋆ and arm k. The first term
can be handled thanks to Assumption 6.2 on arm k⋆, and using that the leader has necessarily
a linear number of samples, we obtain

A1 ⩽
T−1∑
r=1

E
[
1Nk⋆

r ⩾⌈r/K⌉,µ̂k⋆r <µ⋆−ε

]
⩽

T−1∑
r=1

r∑
n=⌈r/K⌉

P
(
µ̂k

⋆

r < µ⋆ − ε
)
⩽

T−1∑
r=1

r∑
n=⌈r/K⌉

e−nIk⋆ (µ⋆−ε)

⩽
T−1∑
r=1

re−⌈r/K⌉Ik⋆ (µ⋆−ε)

= O(1) . (E.49)

We now upper bound A2, using again that
T−1∑
r=1

1k∈Ar+1,Nk
r =n ⩽ 1 for any n ∈ N:

A2 ⩽
T−1∑
r=1

T−1∑
n=mk(T )

E
[
1k∈Ar+1,Nk

r =n,Ykr /∈Bk
Nkr

]

⩽
T−1∑

n=mk(T )
P
(
Yk(n) /∈ B

k
n

)
. (E.50)

Combining these results, we obtain a bound on nk(T ) for arm k as

nk(T ) ⩽ mk(T ) + Te
−f(mk(T ),Bk

mk(T ),µ
⋆−ε) +

T−1∑
n=mk(T )

P
(
Yk(n) /∈ B

k
n

)
+O(1) . (E.51)

We see that if Bkn is designed to make the series convergent, and (mk(T ))T∈N⋆ is chosen as a
sequence satisfying f(mk(T ),Bkmk(T ), µ

⋆ − ε) = log T for all T ∈ N⋆, then we finally obtain

nk(T ) ⩽ mk(T ) +O(1) . (E.52)

■

Thanks to this result, when we will adapt the proof for each algorithm we will be able to
combine Lemma E.6 with Lemma 6.7 to directly look for a proper choice of the set Bkn.

Regret bound for BDS

We recall that two settings are considered for BDS: (B1) distributions are supported in [B,B]
and the upper bound of the support is known, and (B2) the upper bound is not known but for
each distribution νk it holds that Pνk([B − γ,B]) ⩾ p for some known γ, p, which we denoted
by νk ∈ Fγ,pB,B (to avoid cluttering, we assume all arms k ∈ [K] have same parameters B, p and
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γ, without loss of generality). The first setting being essentially equivalent to that of Riou and
Honda (2020), we refer to this paper for the proof and focus on the second case.

Proof of Theorem 6.15. We recall that for ρ > 0,

BBDS(Yk(n);µ, ρ) = (maxYk(n) + γ) ∨ (µ+ ρ

n

n∑
i=1

(µ− Yi)+) . (E.53)

First of all, the bounded support hypothesis ensures that Assumption 6.2 holds thanks to
Hoeffding’s inequality, with a rate function Ik : x ∈ R 7→ 2(x−µk)2

B
2 . We can now focus on the

expression of nk(T ) and on proving Assumption 6.4 holds.

First order term. We use Lemma E.6 for this. Fix k ∈ [K] \ {k⋆} and n ∈ N. To define the
high probability event Bkn, we consider the Lévy metric

d : M+
1 (R)×M+

1 (R) −→ R+

(νF , νG) 7−→ inf {ε > 0 : G(x− ε)− ε ⩽ F (x) ⩽ G(x+ ε) + ε} , (E.54)

where F and G denote the c.d.f. of νF and νG respectively. We recall that this distance metrises
the topology of weak convergence onM+

1 (R).
In this section, we fix some ε > 0 and we choose Bkn to be the intersection of the subspace

of empirical distributions supported by n points and a Lévy ball of radius ε around the true
distribution, which we embed in Rn as follows:

Bkn = {Y ∈ Rn : d(ν̂Y, νk) ⩽ ε} . (E.55)

The objective is to use the continuity of the KBinf operator in its first argument with respect
to the Lévy metric (Honda and Takemura, 2010). For the rest of this proof, we identify
distributions and their c.d.f. and let F k be the c.d.f. of νk, F̂ kn the c.d.f. of ν̂k(n) the empirical
distribution associated with the set Yk(n) and F̃ kn the c.d.f. of the biased empirical distribution
to which the bonus of the BDS algorithm has been added, which we denote by ν̃k(n). We first
prove that F̂ kn belongs to the Lévy ball with high probability, using the relation between the
Lévy metric and the supremum norm

d(F̂ kn , F k) ⩽
∥∥∥F̂ kn − F k∥∥∥∞

, (E.56)

which essentially states that the uniform convergence implies the weak convergence. We also
use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see e.g. Massart (1990)), i.e.

P
(∥∥∥F̂ kn − F k∥∥∥∞

⩾ ε
)
⩽ 2e−2nε2

. (E.57)
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Hence, the series∑n∈N⋆ P
(
d(F̂ kn , F k) ⩾ ε

)
converges. Assuming that the event ∥F̂ kn−F k∥∞ ⩾ ε

holds, we prove that the biased distribution F̃ kn is also close to F k in the sense of the supremum
norm. First, the triangular inequality provides ∥F̃ kn − F k∥∞ ⩽ ∥F̃ kn − F̂ kn∥∞ + ∥F̂ kn − F k∥∞.
Then, we notice that for any x ∈ R, we have

|F̃ kn (x)− F̂ kn (x)| ⩽ 1
n+ 1 , (E.58)

and thus if ∥F̂ kn − F k∥∞ ⩽ ε, then ∥F̃ kn − F k∥∞ ⩽ ε+ 1
n+1 , and finally

∥∥∥F̂ kn − F k∥∥∥∞
⩽ ε =⇒ d(F̃ kn , F k) ⩽ ε+ 1

n+ 1 . (E.59)

Hence, if we combine these results we obtain that for n large enough F̃ kn is also in a Levy ball
around F k, of size ε′ slightly larger than ε, with large probability.

Now that the event Bkn is defined and we stated its properties, we can find the function f
in Lemma E.6 in the case of BDS. We denote by Y k

n+1 = BBDS(YK(n+1);µ
⋆, ρ) the bonus of BDS

and use Lemma 6.7 to obtain

[BCP ](Yk(n+1);µ
⋆) ⩽ exp

(
−(n+ 1)K

BBDS(Yk(n+1);µ⋆,ρ)
inf

(
ν̃k(n), µ

⋆
))

. (E.60)

Furthermore, under the event Bkn and the fact that themean of the leader is concentrated around
its true mean, the bonus of the BDS index is upper bounded byB + ε′, for some ε′ > 0 and

B =
(
B + γ

)
∨ (µ⋆ + ρEY∼νk [(µ⋆ − Y )+]) . (E.61)

We use the continuity ofKB
inf with respect to (i) the first argument in terms of the L’evy distance,

(ii) the second argument (e.g. with respect to the Euclidian norm), (iii) the upper bound
(Agrawal et al., 2021): for any ε0 > 0, we can calibrate the ε in the Lévy ball to obtain

[BCP ](Yk(n+1);µ
⋆) ⩽ e−(n+1)(KB

inf(νk,µ
⋆)−ε0) , (E.62)

hence we conclude this part by setting exactlymk(T ) = log(T )
KB

inf(νk,µ⋆)−ε0
.

Assumption 6.4. We now study the quantity

En = EY⋆(n)∼ν⊗n
k⋆

 1µ̂k
⋆

(n)⩽µ

P
(
µ̃(Y⋆(n);µ) ⩾ µ

∣∣∣ Y⋆(n)

)
 , (E.63)
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for µ < µ⋆. We first use Lemma 6.8 to obtain the following lower bound:

[BCP ](Y⋆(n);µ) ⩾ e
−n
ρ , (E.64)

where ρ is the leverage parameter. Using this results and Assumption 6.2, we obtain a first
bound

En ⩽ e
−n
(
Ik⋆ (µ)− 1

ρ

)
, (E.65)

which is sufficient to ensure Assumption 6.4 if I1(µ) ⩾ 1/ρ. In the opposite case, we use the
assumption of setting B2, i.e. P([B − γ,B]) ⩾ p and the second component of the exploration
bonus, maxY⋆(n) + γ to obtain

En ⩽ EY⋆(n)∼ν⊗n
k⋆

1µ̂k⋆(n)⩽µ

(
1maxY⋆(n)⩽B−γ + 1maxY⋆(n)⩾B−γ

)
P
(
µ̃(Y⋆(n);µ) ⩾ µ

∣∣∣ Y⋆(n)

)


⩽ (1− p)ne
n
ρ︸ ︷︷ ︸

En,1

+EY⋆(n)∼ν⊗n
k⋆

 1µ̂k
⋆

(n)⩽µ
1maxY⋆(n)+γ⩾B

P
(
µ̃(Y⋆(n);µ) ⩾ µ

∣∣∣ Y⋆(n)

)


︸ ︷︷ ︸
En,2

. (E.66)

The two terms correspond to the two possible expressions for the bonus. The term En,1 gives
the sufficient condition for the tuning of ρ in Theorem 6.15 since the following implication
holds:

ρ >
−1

log(1− p) =⇒
+∞∑
n=1

En,1 = O(1) . (E.67)

In the second term, the exploration bonus is larger thanB, so we can use the same proof scheme
as in Riou and Honda (2020). For simplicity, we assume that B = 0 and B = 1 and observe
that the general case may be recovered by a simple translation and scaling argument. First,
we discretise the interval [0, 1] in S = ⌈1/η⌉ equally sized bins of size η > 0, and consider the
truncated variables ỸS = (Ỹi)Si=1 = (η⌊Yi/η⌋)ni=1 (counting only the unique occurrences) and
ỸS+1 = max ỸS + γ. The parameter η is chosen small enough to ensure that µ⋆− η > µ, i.e. the
truncated distribution still has a mean larger than µ. An upper bound of En,2 is obtained by
replacing the sequence (Yi)ni=1 by (Ỹi)Si=1. Now, we define βn,S ∈ NS the vector which counts
the number of occurrences of the sequence (Yi)ni=1 falling in each bin. We also fix β ∈ NS and
β̃ = β ⊔ (1). The number of possible values for βn,S is upper bounded by nS , and we use

362



Lemma E.5 to obtain
P(βn,S = β)

P
W∼Dir(β̃)

(
S∑
i=1

WiỸi +WS+1ỸS+1 ⩾ µ

) ⩽ exp
(
−n

[
KL(ν̂ỸS , βn

∥ pS)−Kmax ỸS+1
inf

(
ν̂ỸS , βn

;µ
)])

⩽ exp
(
−n

[
KL(ν̂ỸS , βn

∥ pS)−K1
inf

(
ν̂ỸS , βn

;µ
)])

⩽ exp
(
−n

[
K1

inf

(
ν̂ỸS , βn

;µ⋆ − η
)
−K1

inf

(
ν̂ỸS , βn

;µ
)])

.

(E.68)

As µ < µ⋆ − η, there exists κ > 0 such that for all β ∈ NS satisfying∑S
i=1 βiỸi < µ, we have

K1
inf

(
ν̂ỸS , βn

;µ⋆ − η
)
−K1

inf

(
ν̂ỸS , βn

;µ
)
> κ . (E.69)

Finally, denoting by BS the set of the possible count vectors β, we have that

En,2 ⩽
∑
β∈BS

e
−n
[

K1
inf

(
ν̂
ỸS,

β
n

;µ⋆−η
)

−K1
inf

(
ν̂
ỸS,

β
n

;µ
)]

⩽ nSe−nκ . (E.70)

The two components of the bonus ensures that Assumption 6.4 is satisfied if νk ∈ Fγ,p0,1 . By
translation and scaling, this immediately extends to the full bandit model (B2) of Theorem 6.15,
which concludes the proof. ■

E.3.1 Regret bound for QDS

We recall that QDS is stated in the bandit model (Q): each distribution νk is lower bounded by
B ∈ R and satisfies, for α ∈ (0, 1), ρ ⩾ 0:

∀µ > µk, K
F[B,+∞)
inf (νk;µ) ⩾ KMk

q

inf (Tα(νk);µ) , (E.71)
(E.72)

where Tα is the truncation operator that replaces the upper 1−α-quantile by itsCVaRα, denoted
by the Cα operator, andMk

q = (q1−α(νk)) ∨ (µ⋆ + ρEY∼νk [(µ⋆ − Y )+]).

Proof of Theorem 6.17. First, Assumption 6.2 holds since distributions are assumed to be light
tailed. The rest of the proof is similar to the proof of Theorem 6.15 for BDS. We recall that

BQDS(Yk(n);µ, ρ) = µ+ ρ

nα − 1

nα−1∑
i=1

(
µ− Y k

(i)

)
+

+ ρ
(
µ− Cα(ν̂k(n))

)
+
, (E.73)
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where nα = ⌈αn⌉/n, ν̂k(n) is the empirical distribution of Yk(n), and Y k
(1) ⩽ . . . ⩽ Y k

(n).

Upper bounding nk(T ). We again want to use Lemma E.6, and formulate a high-probability
event on the empirical distributions. Fist, observe that the variable (µ− Y )+ for Y ∼ νk is also
light tailed and hence admits a good rate function Ik thanks to Cramér’s theorem (Dembo and
Zeitouni, 2009, Theorem 2.2.3). Then we build a Lévy ball around the true distribution νk with
additional control on the CVaRα:

Bkn =
{
Y ∈ Rn : d(ν̂Y, νk) ⩽ ε, |BQDS(Y; ρ, µ⋆)−Bk

ρ,µ⋆ | ⩽ ε, Cα(ν̂Y) ⩽ Cα(νk) + ε
}
, (E.74)

for some ε > 0 and Bk
ρ,µ⋆ = µ⋆ + ρ× EY∼νk [(µ⋆ − Y )+].

As in the proof of Theorem 6.15, we need to show that the series ∑n∈N⋆ P
(
Yk(i) /∈ B

k
n

)
converges. To handle the additional conditions introduced in the definition of Bkn, we use the
Wasserstein metric, defined for p ⩾ 1 as

Wp : Lp(R)× Lp(R) −→ R+

(ν, ν ′) 7−→
(

inf
γ∈Γ(ν,ν′)

∫
R×R
|y − y′|pγ(dy, dy′)

) 1
p

, (E.75)

where Γ(ν, ν ′) is the set of couplings of measures ν and ν ′, i.e. the set of γ ∈M+
1 (R2) such that

ν and ν ′ are the marginal distributions of γ. Compared to the Lévy metric, this one metrises
simultaneously the weak convergence and the convergence of all moments of order up to p
(Villani, 2008, Theorem 6.9). In addition, Bhat and Prashanth (2019, Lemma 2) shows that for
two distributions ν and ν ′:

∣∣Cα(ν)− Cα(ν ′)
∣∣ ⩽ 1

1− αW1(ν, ν ′) , (E.76)

and then Fournier and Guillin (2015, Theorem 2) provides a concentration result on this term,
similarly to the use of DWK inequality in the proof of Theorem 6.15. Combining all these
arguments together shows that the above series is convergent, and therefore Bkn hold with high
probability.

We now assume that the event Yk(n) ∈ B
k
n holds. The difference compared to BDS is that the

BCP is considered for the truncated distribution T (ν̂k(n)). However, this is not a problem as the
upper bound of Lemma 6.7 still holds. Thanks to the aggregation properties of the Dirichlet
distribution (see Appendix E.2), the BCP with parameter (1, . . . , 1, nα) (of size n− nα) is the
same as the BCP with parameters (1, . . . , 1) (of size n) with nα copies of the last term. Hence,
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the QDS index satisfies

P
(
µ̃(Yk(n), µ

⋆) ⩾ µ⋆
∣∣∣ Yk(n)

)
⩽ exp

(
−(n+ 1)K

M̂k
C,n

inf (T (ν̂k(n));µ
⋆)
)
, (E.77)

where M̂k
C,n = Cα(ν̂k(n)) ∨B

QDS(Yk(n); ρ, µ
⋆). Under Bkn, letting Mk

C = Cα(νk) ∨Bk
ρ,µ⋆ , we have:

M̂k
C,n ⩽ Mk

C + ε . (E.78)

Finally, the definition of the Levy distance ensures that

d
(
ν̂k(n), νk

)
⩽ ε =⇒ d

(
Tα(ν̂k(n)), Tα(νk)

)
⩽ ε . (E.79)

Hence, we can use the continuity of KM̂k
C,n

inf in all arguments (including M̂k
C,n, see e.g. Honda

and Takemura (2015)), and thus, for any ε0 > 0, we can calibrate ε so that

P
(
µ̃(Yk(n), µ

⋆) ⩾ µ⋆
∣∣∣ Yk(n)

)
⩽ exp

(
−(n+ 1)

(
KMk

C
inf (T (νk);µ⋆)− ε0

))
, (E.80)

which gives the first order regret term by settingmk(T ) = log T

K
Mk
C

inf (T (νk);µ⋆)−ε0

in Lemma E.6.

Assumption 6.4. We now resort to the assumption that rewards are lower bounded by B,
which we assume to be B = 0 for simplicity (again, the general case follows from a simple
translation). Indeed, we can then find a value y and a discretisation step η such that (i)
truncating the sequence (Y k

i )ni=1 to (Y k
i ∧ y)ni=1 and (ii) projecting each of the Yi that are less

than y to Ỹi = η ⌊Yi/η⌋ preserves the order of µ < µ̃⋆. Note that this value y does not have to
be known by the algorithm and is purely an artifact for the proof. This discretisation is similar
to the proof of Theorem 6.15. We denote by S the number of items created by the discretisation
and βn,S ∈ NS the vector of counts. However, in contrast to the previous proof, we directly use
Lemma E.5. To this end, for any β ∈ NS such that∑S

i=1 βi = n and β̃ = β ⊔ (1), we define:

Kβ = KL(ν̂Ỹ
S,
β
n

∥ ν̃k⋆)−K
mβ
inf (Ỹ

S, β
n

;µk) , (E.81)

where ν̃k⋆ denote the discretised and truncated version of νk⋆ andmβ denotes the largest item
with a nonzero coefficient in β̃. We recall that QDS summarises the information larger than the
empirical (1− α)-quantile by their mean (i.e. the CVaRα of the empirical distribution). The
truncation in y does not change that, and will simply makes this quantity smaller which will
itself makes the BCP smaller (although not so much with well chosen η, y). We use the result
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from Honda and Takemura (2010, proof of Theorem 7) stating that

Kmβinf (Ỹ
S, β
n

;µk) ⩽
∆̄n

mβ − µ
, (E.82)

where ∆̄n = µ⋆ − µ̂Y. As we know that mβ is at least as large as the exploration bonus, we
furthermore have, with ∆̄+

n = 1/n
∑n
i=1(µ⋆ − Yi)+,

Kmβinf (Ỹ
S, β
n

;µk) ⩽
∆̄n

ρ∆̄+
n

⩽ 1/ρ . (E.83)

Consequently, for any ξ > 0,Kβ ⩾ ξ on all the subspace of empirical distributions satisfying
KL(ν̂Ỹ

S,
β
n

∥ ν̃k⋆) ⩾ (1 + ξ)/ρ. We now use Pinsker’s inequality to relate the KL divergence and
the total variation distance δTV, in this subspace, i.e.

δTV(ν̂Ỹ
S,
β
n

, ν̃k⋆) ⩽
√

1 + ξ

2ρ . (E.84)

If this quantity is small, we can control the probability of each event of interest. In particular,
we want the quantile used in the algorithm to be strictly larger than the (1− α)-quantile of the
bandit model (Q) of Theorem 6.17. If the latter is α, and we run the algorithm with a parameter
α′ < α, then it is possible to tune ρ such that F̂ kn (q1−α(νk)) < 1− α. This means that the true
quantile q1−α(νk) is present in the set Yk(n) and is not truncated by the algorithm. In particular, this
holds if ρ ⩾ 1+α′

α′2 , in which case we have

KL(ν̂Ỹ
S,
β
n

∥ ν̃k⋆)−K
mβ
inf (Ỹ

S, β
n
, µk) ⩾ KF

inf(ỸS, β
n
, µ⋆ − η)−Kq1−α′

inf (Ỹ
S, β
n
, µk)

⩾ Kq1−α′
inf (Ỹ

S, β
n
, µ⋆ − η)−Kq1−α′

inf (Ỹ
S, β
n
, µk)

⩾ κ , (E.85)

for some κ > 0 and thanks to the definition of the family Fα[B,+∞]. This concludes the proof as
it ensures that Assumption 6.4 is satisfied by the QDS algorithm on Fα[B,+∞]. ■

Regret bound for RDS

The bandit model (R) for this third instance of DS algorithms is simply that of general light
tailed distributions, i.e. νk is such that λ 7→ EY∼νk [eλY ] is defined in a neighbourhood of zero.
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Proof of Theorem 6.19. We recall that

BRDS(Yk(n); ρn, µ) = µ+ ρn
n

n∑
i=1

(µ− Y k
i )+ , (E.86)

for a sequence (ρn)n∈N satisfying ρn → +∞ and ρn = o(n). First, once again, Cramér’s theorem
(Dembo and Zeitouni, 2009, Theorem 2.2.3) provides the existence of good rate function Ik
satisfying Assumption 6.2. We now show that this bonus implies Assumption 6.4.

Upper bounding nk(T ). We again aim to find a suitable set Bkn for rewards Yk(n) = (Y k
i )ni=1

that would allow to use Lemma E.6. In the bandit model (R), we show that this can be achieved
by simply controlling the mean, the excess gap used in the exploration bonus and a range on
the maximum observed reward. Hence, we fix some ε > 0 and consider

Bkn =
{
Y ∈ Rn, µ̂Y ⩽ µk + ε, ∆̂(Y;µ⋆) ⩽ ∆+

k (µ⋆) + ε, σ̂Y(µ⋆) ⩽ σk(µ⋆0) + ε,maxY ∈ [mk
n,M

k
n ]
}
,

(E.87)

where ifY = (Yi)ni=1, we defined ∆̂(Y;µ⋆) = 1
n

∑n
i=1(µ⋆−Yi)+ and ∆+

k (µ⋆) = EY∼νk [(µ⋆−Y )+],
σ̂2
Y(µ⋆) = 1

n

∑n
i=1(Yi − µ⋆)2 and σk(µ⋆) = EY∼νk [(Y − µ⋆)2], as well as (mk

n)n∈N, (Mk
n)n∈N two

fixed sequences to be tuned later.
We start with the two conditions {µ̂Y ⩽ µk + ε} and {∆̂(Y;µ⋆) ⩽ ∆+

k (µ⋆) + ε}. The
concentration of the empirical mean derives from Assumption 6.2, and since (µ⋆ − Y )+ is also
light tailed if Y is, there also exists a rate function I+

k satisfying P
(
∆̂(Yk(n), µ

⋆) ⩾ ∆+
k (µ⋆) + ε

)
⩽

exp
(
−nI+

k (∆+
k (µ⋆) + ε)

)
if Yk(n) is a sequence of n i.i.d. random variables drawn from νk.

Therefore we have
+∞∑
n=1

(
P
(
µ̂k(n) ⩾ µk + ε

)
+ P

(
∆̂(Yk(n);µ

⋆) ⩾ ∆+
k (µ⋆) + ε

))

⩽
+∞∑
n=1

(
exp(−nIk(µk + ε)) + exp(−nI+

k (∆+
k (µ⋆) + ε))

)
⩽

1
1− e−Ik(µk+ε) + 1

1− e−I+
k

(∆+
k

(µ⋆)+ε)
. (E.88)

We now turn to the event with the variance terms. To this end, we consider the Wasserstein
metricW2 between the empirical distribution of Yk(n) and the true distribution νk. Following
Fournier and Guillin (2015, Theorem 2), there exists constants c > 0 and C > 0 such that for
any x ∈ (0, 1]

P
(
W2(ν̂k(n), νk) ⩾

√
x
)
⩽ C

(
e−cnx2 + e−c(nx)

1
3
)
. (E.89)

367



The coefficient 1/3 comes from choosing ε as (1 − ε)/2 = 1/3 in the statement of Theo-
rem 2 in the above reference (which is different from the ε in this proof). This inequal-
ity is dominated by the second term, thus for any ε > 0, there exists ε1 > 0 such that if
W2(ν̂k(n), νk) ⩽ ε1 then σ̂Yk(n)

(µ⋆) = σ̂k(n)(µ
⋆) ⩽ σk(µ⋆) + ε. Furthermore, this shows that the se-

ries∑n∈N⋆ P(W2(ν̂k(n), νk) ⩾ ε1) converges, which concludes the part of the proof corresponding
to this term.

We now investigate possible values for the sequence (mk
n)n∈N and (Mk

n)N that would allow
Bkn to happenwith high probability. Themaximum maxYk(n) of a set of n i.i.d. random variables
has an explicit distribution, with c.d.f. given by, for any x ∈ R,

PYk(n)∼ν⊗n
k

(maxYk(n) ⩽ x) = F k(x)n , (E.90)

where F k is the c.d.f. of νk. We first calibrateMk
n to be a high probability upper bound on the

maximum of n rewards for arm k, e.g. P(maxYk(n) ⩽Mk
n) ⩾ 1− 1

n log(n)2 for all n ∈ N⋆, which
is achieved by setting:

Mk
n := F−1

k

(
exp

(
− 1
n2(logn)2

))
⩾ F−1

k

((
1− 1

n(logn)2

) 1
n

)
, (E.91)

where F−1
k is the (pseuso)inverse of the c.d.f. of νk. Note that limn→+∞(1− 1

n(logn)2 )1/n = 1 and
thus limn→+∞Mk

n = +∞. This way, the series∑n∈N⋆ P(maxYk(n) > Mk
n) ⩽ 1

n log(n)2 converges.
On the other hand, we wantmk

n to be a lower bound on the maximum observed reward, e.g.
P(maxYk(n) ⩽ mk

n) ⩽ 1
n log(n)2 , hence we define

mk
n := F−1

k

(
1

n(logn)2

1
n

)
= F−1

k

(
exp

(
− logn+ 2 log logn

n

))
. (E.92)

Again, limn→+∞
1

n(logn)2
1/n = 1 and thus limn→+∞mk

n = +∞. Combining all these results, we
obtain

T−1∑
n=1

PYk(n)∼ν⊗n
k

(Yk(n) /∈ B
k
n) = O(1) . (E.93)

We now use the first part of Lemma 6.7 and the fact that for any η ∈ [0, 1) and x ∈ (−∞, η],
we have− log(1−x) ⩽ x+ 1

1−η
x2

2 . LettingMk
n = maxYk(n)∨B

RDS(Yk(n), ρn, µ
⋆) and in addition

Yn+1 = BRDS(Yk(n), ρn, µ
⋆), we use the representation of Dirichlet samples as normalised

exponential variables to obtain, by a similar argument as in the Chernoff method,

[BCP ]
(
Yk(n+1);µ

⋆
)

= PR1,...,Rn+1∼E(1)

(
n+1∑
i=1

Ri(Y k
i − µ⋆) ⩾ 0

∣∣∣∣∣ Yk(n)

)
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⩽ inf
λ∈[0, η

Mk
n−µ⋆

)

n+1∏
i=1

ERi∼E(1)
[
eλRi(Y ki −µ⋆)

∣∣∣ Y k
i

]

⩽ exp
(
−
n+1∑
i=1

log
(

1− η Y
k
i − µ⋆

Mk
n − µ⋆

))

⩽
1

1− η exp
(
−

n∑
i=1

log
(

1− η Y
k
i − µ⋆

Mk
n − µ⋆

))

⩽
1

1− η exp

 n∑
i=1

η Y k
i − µ⋆

Mk
n − µ⋆

+ η2

2(1− η)

(
Y k
i − µ⋆

Mk
n − µ⋆

)2


= 1
1− η exp

−nηµ⋆ − µ̂k(n)
Mk

n − µ⋆
+ n

η2

2(1− η)

σ̂2
Yk(n)

(µ⋆)2

(Mk
n − µ⋆)

 . (E.94)

We recall that we consider this upper bound under the event Yk(n) ∈ B
k
n, which ensures that

(i) maxYk(n) ∈ [mk
n,M

k
n ], (ii) µ⋆ − µ̂k(n) ⩾ µ⋆ − µk + ε, (iii) the bonus is upper bounded by

µ⋆ + ρn × (∆+
k + ε), and (iv) the quadratic deviation satisfies σ̂k(n)(µ

⋆) ⩽ σk(µ⋆) + ε. For any
ε0 > 0, if we further assume thatMk

n = o((mk
n)2), for any n large enough these results finally

provide

P
(
µ̃(Yk(n), µ

⋆) ⩾ µ⋆
)
⩽

1
1− η exp

(
−nη ∆k − ε0

Mk
n ∨Bk

n,µ⋆,ε − µ⋆

)
, (E.95)

whereBk
n,µ⋆,ε = µ+ρn (Eνk [(µ−X)+] + ε). The conditionMk

n = o
(
(mk

n)2
)
is satisfied for light

tailed distributions, as they generally have at most a polylogarithmic growth of the maximum
(e.g. log(n) for exponential tails and √logn for Gaussian tails) and soMk

n andmk
n are actually

of the same order of magnitude. We then recover all the terms of Theorem 6.19 by matching
the exponent of the upper bound with − log T .

To conclude this part, the light tailed hypothesis provides an asymptotic upper bound on
the expected number of pulls of each suboptimal arm for the RDS index. Then, the choice of
mk(T ) in Lemma E.6 can be mk(T ) = O(log(T )Mk

log(T )) ifMk
n is polylogarithmic in n when

n→ +∞.
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Remark E.7 . The concentration bound we use on the Dirichlet weighted average requires the control of
the second empirical decentred moment σ̂2

Yk(n)
(µ⋆) since we use− log(1−x) ⩽ x+ 1

1−η
x2

2 . This control
follows from the existence of exponential moments, i.e. νk ∈ Fℓ. A tighter analysis is possible, indeed for
any q > 0 and η ∈ (0, 1) there exists Cq,η > 0 such that for all x ⩽ η, − log(1− x) ⩽ x+Cq,η |x|1+q

(C1,η = 1
1−η ), relaxing the requirement to a mere control of the moment of order 1 + q in the topology

ofW1+q (for which concentration results are similar to the one we provide, for the families we consider).
Furthermore, it would relax the condition relatingmk

n andMk
n toMk

n = o
(
(mk

n)1+q
)
.

Assumption 6.4. We use the left-hand term of Lemma 6.8 and obtain a lower bound on [BCP ]
in e− n

ρn . Combining this result with Assumption 6.2 we obtain

En ⩽ e−n(Ik⋆ (µk)−1/ρn) , (E.96)

and for n large enough ρn > 1/Ik⋆(µk), which is sufficient to obtain the convergence of∑+∞
n=1En.

■

E.4 Examples of distributions fitting the family of QDS

We first show that virtually any lower bounded distribution satisfies the quantile condition of
QDS (Theorem 6.17) provided the exploration bonus ρ is large enough.

Lemma E.8 . Let α ∈ (0, 1), B ∈ R and F ⊂ F[B,+∞). For any atomless distribution ν ∈ F and¸
µ > EY∼ν [Y ], there exists ρ > 0 andMρ,α > 0 such that

KMρ

inf (Tα (ν) ;µ) ⩽ KF
inf (ν;µ) . (E.97)

Proof of Lemma E.8. LetMρ,α = max
{
Cα(ν), µ+ ρEY∼ν

[
(µ− Y )+

]}
. By construction, the sup-

port of Tα(ν) is upper bounded byMρ,α and µ <Mρ,α, therefore it follows from Honda and
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Takemura (2010, Theorem 8) that

KMρ,α

inf (Tα(ν), µ) = max
λ∈[0, 1

Mρ,α−µ ]
EY∼Tα(ν) [log (1− λ(Y − µ))] . (E.98)

Then the concavity of log shows that, for λ ∈ [0, 1
Mρ,α−µ ],

EY∼Tα(ν) [log (1− λ(Y − µ))] ⩽ −EY∼Tα(ν) [λ(Y − µ)]

= λ
(
µ− EY∼Tα(ν) [Y ]

)
= λ

(
µ− EY∼ν

[
Y 1Y ⩽q1−α(ν)

]
− EY∼Tα(ν)

[
Y 1Y >q1−α(ν)

])
= λ

(
µ− EY∼ν

[
Y 1Y ⩽q1−α(ν)

]
− αCα(ν)

)
= λ

(
µ− EY∼ν

[
Y 1Y ⩽q1−α(ν)

]
− αEY∼ν [Y | Y > q1−α(ν)]

)
= λ

(
µ− EY∼ν

[
Y 1Y ⩽q1−α(ν)

]
− EY∼ν

[
Y 1Y >q1−α(ν)

])
= λ (µ− EY∼ν [Y ]) , (E.99)

by definition ofCα(ν) and the conditional expectation, as well as the absence of atom at q1−α(ν).
Since µ > EY∼ν [Y ], the maximum of the right-hand side in λ is attained at the rightmost point,
which yields

KMρ,α

inf (Tα(ν);µ) ⩽ µ− EY∼ν [Y ]
Mρ,α − µ

. (E.100)

For ρ > 0 large enough, we haveMρ,α = µ+ ρEY∼ν [(µ− Y )+] which further simplifies as

KMρ,α

inf (Tα(ν);µ) ⩽ µ− EY∼ν [Y ]
ρEY∼ν

[
(µ− Y )+

] . (E.101)

Therefore for ρ > 0 large enough, in particular ρ ⩾ µ−EY∼ν [Y ]
EY∼ν[(µ−Y )+]KF

inf(ν;µ) , we have

KMρ,α

inf (Tα(ν);µ) ⩽ KF
inf (ν;µ) . (E.102)

■

The bound on ρ given in the above lemma can be rather loose because of the crude concave
inequality we use. It also comes at the price of increasing ρ, which may hurt the performances
of QDS due to overexploration. We now show that this quantile condition can be calculated
almost in closed-form and is naturally satisfied by some classical families of distributions.
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Exponential. LetF = (νθ)θ∈R∗
+
with density pθ(x) = θe−θx

1x⩾0. We summarise in the below
lemma a number of explicit formulas for the Kinf operators and quantiles of νθ.

Lemma E.9 (Some statistics of exponential distributions). Let 0 < ϕ < θ and α ∈ (0, 1).
(i) Eθ[X] = 1

θ .

(ii) q1−α(νθ) = − logα
θ .

(iii) Eθ [Y | Y ⩾ q1−α(νθ)] = 1
θ + q1−α(νθ).

(iv) Eθ
[(

1
ϕ − Y

)
+

]
= 1

ϕ −
1
θ

(
1− e−θ/ϕ

)
.

(v) KF
inf(νθ; 1

ϕ) = ϕ
θ − log ϕ

θ − 1.

Proof. (i)-(iv) result from straightforward integral calculations. (v) is a direct consequence of
F being a SPEF, which implies KF

inf(νθ; 1
ϕ) = KL(νθ ∥ νϕ), which has the stated closed-form for

exponential distributions. ■

Using these formulas, we numerically compute KMρ

inf as a function of ρ by solving the dual
optimisation problem (Honda and Takemura, 2010) and compare it to KF

inf . Conversely, for a
fixed exploration bonus ρ, we compute the Kinf of the truncated distribution Tα(νθ) for a range
of α. As per intuition, smaller values of α, corresponding to smaller truncations of the support,
help satisfy the quantile condition. Results are reported in Figure E.1.
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inf (Tα(νθ); 1
ϕ ) and KF

inf(νθ; 1
ϕ ) for the exponential distribution E(θ) with

θ = 1
2 , ϕ = 1

3 . Admissible regions for ρ and α are shaded in green, the rest is shaded in red. The dotted
line corresponds to the minimum value of ρ recommended by Lemma E.8.

Gaussian. Let σ > 0 and Fσ = (νθ)θ∈R with density pθ(x) = 1√
2πσe

− (x−θ)2

2σ2 . We recall some
useful statistics of the SPEF of fixed variance Gaussian distributions.

Lemma E.10 (Some statistics of fixed variance Gaussian distributions). Let θ < ϕ and α ∈ (0, 1).
We denote by Φ: x ∈ R 7→ 1√

2π
∫ x

−∞ e− y2
2 dy the standard Gaussian cdf.

(i) Eθ[Y ] = θ.

(ii) q1−α(νθ) = θ + σΦ−1 (1− α).

(iii) Eθ [Y | Y ⩾ q1−α(νθ)] = θ + σ
α

√
2πe

− Φ−1(1−α)2
2 .

(iv) Eθ
[
(ϕ− Y )+

]
= (ϕ− θ) Φ

(
ϕ−θ
σ

)
+ σ√

2πe
− (ϕ−θ)2

2σ2 .

(v) KFσ
inf (νθ;ϕ) = (ϕ−θ)2

2σ2 .

The proof is similar to that of the previous lemma; in particular (v) uses the fact that Fσ
forms a SPEF. Results are reported in Figure E.2. The lighter right tail of Gaussian distributions,
compared to that of exponential distributions, results in much less stringent conditions on α
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and ρ; in other words, Gaussian distributions are "easier" to summarise with the truncation
and conditional value at risk operator than the exponential distributions.
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inf(νθ;ϕ) for the Gaussian distributionN (θ, σ2) with

θ = 0, σ = 1, ϕ = 1. Admissible regions for ρ and α are shaded in green, the rest is shaded in red. The
dotted line corresponds to the minimum value of ρ recommended by Lemma E.8.
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Appendix F

Perspectives on Dirichlet sampling for
contextual bandits

Contents
F.1 Comparison of deterministic and weighted bootstrap estimators . . . . . . . 375

F.1 Comparison of deterministic andweighted bootstrap estimators

We present here a simple experiment to show the empirical effect of randomised estimators.
We generated samples (Y m

t )Tt=1 for T,M ∈ N andm ∈ {1, . . . ,M}, drawn from the standard
Gaussian distribution N (0, 1), and then calculated three estimators of the mean:

(i) deterministic estimators: µ̂mt = 1
t

t∑
s=1

Y m
s ;

(ii) randomised estimators: µ̃mt =
t∑

s=1
Wm
s,tY

m
s , whereWm

s,t = Zm,ts
t∑

s=1
Zm,ts

and (Zm,ts )ts=1 ∼ E(1).

(iii) randomised estimators with exploration: µ̃E,mt =
t∑

s=1
W ′m
s,t+1Y

m
s + W ′m

t+1,t+1Ỹt, where

Ỹt =
√

log(1 + t),W ′m
s,t = Z′m,t

s
t∑

s=1
Z′m,t
s

and (Z ′m,t
s )ts=1 ∼ E(1).

In particular, this last estimators correspond to the Dirichlet sampling scheme (Chapter 6),
and also the weighted bootstrap regression (Chapter 7). Note that the first two estimators
are unbiased, i.e. E[µ̂t] = E[µ̃t] = EY∼N (0,1)[Y1] = 0, while the last exhibits a vanishing bias
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E[µ̃E ] =
√

log(1 + t)/(t+ 1). However, their variances are different, i.e.

V[µ̂t] = 1
t
, (F.1)

V[µ̃t] =
t∑

s=1
E[W 2

s,t]E[Ys] =
t∑

s=1
E[W 2

s,t] =
t∑

s=1

2
t(t+ 1) = 2

t+ 1 > V[µ̂t] , (F.2)

V[µ̃Et ] =
t∑

s=1
E[W 2

s,t+1] + ỸtE[W 2
t+1,t+1] = 2t+ Ỹt

(t+ 1)(t+ 2) . (F.3)

In particular, both randomised estimators have about twice the variance of their deterministic
counterpart. In the context of sequential decision-making, this translates into more exploration
when using µ̃t and µ̃Et . Furthermore, the correlation between successive estimators is given by

ρ(µ̂t−1, µ̂t) = 1/t√
V[µ̂t−1]V[µ̂t]

=
√

1− 1
t
, (F.4)

ρ(µ̃t−1, µ̃t) = 1/t√
V[µ̃t−1]V[µ̃t]

= 1
2

√
1 + 1

t
, (F.5)

ρ(µ̃Et−1, µ̃
E
t ) = (t− 1)/(t(t+ 1))√

V[µ̃Et−1]V[µ̃Et ]
= (t− 1)

√
1 + 2/t√

(2(t− 1) + Ỹt−1)(2t+ Ỹt)
≈ 1

2

√
(1− 1

t
)(1 + 2

t
) . (F.6)

We observe that the deterministic estimators µ̂t are becoming increasingly correlated when
t→ +∞, which is at the heart of time-uniform concentration: the deviation of µ̂t−1 around zero
provides a lot of information on the deviation of the next estimator µ̂t. This is in stark contrast
with the randomised estimators, for which the correlation converges to 1/2: because of the
independent randomisation, µ̃t−1 and µ̃Et−1 share little knowledge with µ̃t and µ̃Et respectively.

In Figure F.1, we report trajectories of empirical quantiles (over theM independent repli-
cates) for t 7→ (µ̂mt )Mm=1, t 7→ (µ̃mt )Mm=1 and t 7→ (µ̃E,mt )Mm=1. We observe the variance effect
of randomisation, resulting in enlarged quantiles; in addition, the positive exploration term
Ỹt contributes to shifting the estimators and their quantiles upwards, especially for small t.
We also report empirical correlations between consecutive estimators, which illustrates the
decorrelation effect of the independent randomisation.
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Appendix G

Development and validation of an
easy-to-use and interpretable machine
learning based calculator predicting
five year-weight trajectories after
bariatric surgery: a multiple
international cohort SOPHIA study
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G.1 Preprocessing and visit date adjustment

We first performed a preprocessing of all patients’ features: those containing more than 50% of
missing values were excluded, and so were categorical features with high-class imbalance (i.e.
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one class accounting for less than 2% of all patients) and features consisting of free text input.
Categorical variables were converted into binary variables.

Participants with a previous history of bariatric surgery were removed (n=286). More-
over, patients with large delays between scheduled and actual visits related to postoperative
complications were also removed (n=59). We defined significant delays as more than 10 days
early or 1 month late for M1; 25 days early or 2 months late for M3; 2 months early or 6 months
late for M12; 3 months early or 6 months late for M24; 6 months early or 24 months late for
M60. In case of missing follow-up visits, patients were kept in the analysis but censored at the
corresponding dates. Patients not expected at a given time (recent interventions) were also
censored after the last completed visit.

Regarding the visit dates, we performed a time adjustment to improve data quality and
downstream prediction accuracy. Indeed, weight predictions are made at conventional dates
corresponding to fixed numbers of months after surgery. However, the actual visit dates in the
training cohort (whenweights aremeasured) differ from the conventional dates and vary across
patients due to early or late follow-up visits. This introduces a bias between the prediction
targets and the training data, a priori unrelated to the baseline characteristics. For instance, if
a patient had an M3 visit on schedule (i.e. exactly 3 months after surgery) and an M12 visit
delayed by a month (i.e. 13 months after surgery rather than 12 months), we would expect the
true weight 12 months after surgery to have been between the reported M3 and M12 weights,
and larger than the latter since the patient was likely on a downward weight trajectory.

In order to motivate this adjustment, we introduce the following elementary result on
conditioned Gaussian processes, which extend the classical Brownian bridge.

Lemma G.1 (Conditional expectation of real Gaussian processes). Let (Bt)t∈R+ a Brownian
motion on a filtered probability space, t0, T ∈ R+ such that T > t0 and two mappings f : R+ → R
and σ : R+ → R⋆+ such that there exists a strong solution (Wt)t∈[t0,T ] to the following SDE with initial
(random) conditionWt0 (with respect to the augment filtration):

dWt = f(t)dt+ σ(t)dBt . (G.1)

Then for any t ∈ [t0, T ], letting Ft0(t) =
∫ t
t0
f(s)ds and Σ2

t0(t) =
∫ t
t0
σ2(s)ds, we have

E [Wt |Wt0 ,WT ] = Wt0 + Ft0(t) +
Σ2
t0(t)

Σ2
t0(T )

(WT −Wt0 − Ft0(T )) . (G.2)
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Proof of Lemma G.1. First note that (Wt)t∈[t0,T ] is a Gaussian process, and hence for t ∈ [t0, T ],
Wt is a Gaussian random variable N (Ft0,T (t),Σ2

t0,T
(t)) (the variance calculation follows from

Itô isometry). We write Wt = αWt0 + βWT + U and tune α, β ∈ R such that the random
variable U is independent on bothWt0 andWT . A simple covariance calculation shows that

V [U,Wt0 ] = V [Wt − αWt0 − βWT ,Wt0 ] = (1− α− β)
∫ t0

0
σ2(s)ds , (G.3)

V [U,WT ] = V [Wt − αWt0 − βWT ,WT ] =
∫ t

0
σ2(s)ds− α

∫ t0

0
σ2(s)ds− β

∫ T

0
σ2(s)ds .

(G.4)

Since (Wt)t∈[t0,T ] is a Gaussian process, (U,Wt0 ,WT ) is a Gaussian vector and thus setting the
covariances above to zero is equivalent to the independence condition, which suggests to set
β = Σ2

t0(t)/Σ2
t0(T ) and α = 1− β. Therefore, we have

E [Wt |Wt0 ,WT ] = E [αWt0 + βWT + U |Wt0 ,WT ]

= αWt0 + βWT + E [U ]

= αWt0 + βWT + E [Wt − αWt0 − βWT ]

= αWt0 + βWT +
∫ t

0
f(s)ds− α

∫ t0

0
f(s)ds− β

∫ T

0
f(s)ds

= αWt0 + βWT + Ft0(t)− βFt0(T )

= Wt0 + Ft0(t) + β (WT −Wt0 − Ft0(T )) . (G.5)

■

Let us first interpret this result. The SDE dWt = dF
dt (t)dt + σ(t)dBt models random cu-

mulative fluctuations around the backbone curve t 7→ F (t) (by cumulative, we mean that
variance, here ∫ tt0 σ2(s)ds increases with time t). The conditional expectation E [Wt |Wt0 ,WT ]
is the optimal predictor ofWt (in the L2 sense) given the observationsWt0 andWT , and hence
the formula above reads:

E [Wt |Wt0 ,WT ]︸ ︷︷ ︸
predictor of Wt

= Wt0 + Ft0(t)︸ ︷︷ ︸
deterministic prediction at t

along the backbone from t0

+
Σ2
t0(t)

Σ2
t0(T )︸ ︷︷ ︸

variance ratio

(WT −Wt0 − Ft0(T ))︸ ︷︷ ︸
error between the observation at T

and the deterministic backbone from t0

.

(G.6)

Without additional prior assumption, we may simply model the random fluctuations as
a Brownian motion, i.e. σ is a constant mapping, in which case the variance ratio is simply
(t− t0)/(T − t0) (interestingly, it does not depend on the value of σ itself).
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In the use case of weight prediction, t0 and T correspond to two consecutive actual follow-up
visit dates by a study participant, and the process (Wt)t∈[t0,T ] to theirweight curve between these
dates. If F corresponds to a typical postoperative weight curve, we may use it to interpolate
between these actual dates and predict the weightWt at the conventional visit date t. In practice,
we used a simple linear backbone F : t ∈ [t0, T ] 7→ γt for some γ ∈ R, such that

E [Wt |Wt0 ,WT ] = Wt0 + t− t0
T − t0

(WT −Wt0) , (G.7)

which corresponds to the linear interpolation between (t0,Wt0) and (T,WT ) (again, indepen-
dently of the value of γ itself). We chose this simple linear backbone as it was sufficient to
increase downstream accuracy (compared to training on nonadjusted weights), and more
involved backbones did not significantly improve it further (at the cost of increased model
complexity). Moreover, we believe this local linear assumption is justified as we excluded
participants with large delays between actual and conventional visits (therefore t is close to
either t0 or T for participants in the training set, which justifies replacing the backbone F by its
first order expansion around either t0 or T ).

Circling back to the example above, a patient with actual visits at t0 = 3 months and T = 13
months would have an adjusted weight at t = 12 month (M12) of 9/10×W13 + 1/10×W3.

G.2 Smoothing of weight trajectories

In the online tool shown in Figures 8.5 and 8.6, predicted trajectories of BMI and TWL are
represented by smooth, continuous curves. However, the predicted outcomes of the tree-based
model correspond to a set of postoperative dates, namely months M1, M3, M12, M24 and M60
after surgery. In order to smoothly generalise to arbitrary dates, we use the following nonlinear
parametric model, inspired by the Morse potential in molecular physics.

Definition G.2 (Morse-like model). Let θ⋆ = (α, β, γ,∆, t⋆, τ) ∈ R4 × (R⋆+)2. We define the
Morse-like model as the mapping

Fθ⋆ : R+ −→ R

t 7−→ α

(1 + t)2 + β

(
γ − e− t−t⋆

τ

)2
+ ∆ . (G.8)
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The original Morse potential was defined as t ∈ R+ 7→ β(1− e− t−t⋆
τ )2 and exhibits a steep

decrease for t < t⋆, followed by an increase and an eventual flattening for t > t⋆ (in particular
t⋆ parametrises the nadir in this model), which is precisely the expected shape of weight loss
curves. The additional parameters introduced in this definition allow to precisely fit theweights,
BMI or TWL points at M0, M1, M3, M12, M24 and M60 (note that there are 6 points and 6
parameters). In particular, ∆ induces a parallel shift of the curve tomatch the initial point at M0,
and αmakes for a steeper decrease in the first few months, which are typically associated with
a fast weight loss. For α = 0, the nadir (minimum weight) is attained at tnadir = t⋆ + τ log 1/γ;
for α ̸= 0, the exact expression of the nadir is not explicit but is approximately the same since
the contribution of the term α/(1 + t)2 affects mostly the front end of the curve.

We used the Morse-like model for the two main operations, namely RYGB and SG. For
AGB, which does not exhibit such a pronounced weight regain (bands are typically tightened
or converted into a different operation when too much weight regain is observed), we used
instead the linear regression model defined for θ⋆ = (α, β, γ,∆) ∈ R4 as

Fθ⋆ : R+ −→ R

t 7−→ α

(1 + t)2 + β log
(
1 + t2

)
+ γt+ ∆ . (G.9)

Calibration. This parametric curvemodel is nonlinear, andwe first calibrated it on theweights
by solving the following (nonconvex) nonlinear least squares regression problem

θ⋆ ∈ argmin
θ∈R4×(R⋆+)2

∑
t∈{0,1,3,12,24,60}

(Wt − Fθ(t))2 + λ∥θ∥22 , (G.10)

where λ ∈ R⋆+ is a regularisation parameter. We used the Levenberg-Marquardt algorithm
(Press, 2007) initialised at an arbitrary vector θ0.1 Of note, this model is close to being linear; in-
deed, if we fix τ ∈ R⋆+, we remark that Fθ(t) = θ̃⊤Xt where θ̃ = (βγ2 +∆, α,−2βγet⋆/τ , βe2t⋆/τ )
and Xt = (1, 1/(1 + t)2, e−t/τ , e−2t/τ ). Being a nonconvex problem, the output of the minimi-
sation algorithm may be sensitive to the initialisation θ0. In practice, we manually tuned a
reasonable θ0 and monitored the resulting fitted curves, which we found to be stable.

Alternative models. We also considered cubic splines, in particular natural splines, to in-
terpolate between predicted weights. We rejected this approach for two reasons. First, the
main argument for splines is that they are able to perfectly fit the target data (interpolation),
however weights are typically measured and predicted with uncertainty, so we do not want to
fit the main trend but not the noise (regression). Second, all tested types of splines produced
undesired curvatures between visit dates when interpolating between predicted weights for

1This is implemented in the scipy.optimize library in Python.
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at least one combination of the 7 input variables (intervention, preoperative weight, height,
age, smoking status, diabetes status and duration). In contrast, the Morse-like model of Def-
inition G.2 allows to precisely control the shape of the resulting curves (note that we could
also add constraints on the parameters of the Morse-like model, e.g. β > 0 to enforce the shape
constraint, although we did not need this in practice). We report in Figure G.1 both methods
for the smoothing of the predicted weights of sleeve gastrectomy patient.
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Figure G.1 – Smoothed trajectories for the predicted weight after a sleeve gastrectomy for a non-smoker
65 year old patient with preoperative 150 kg, height 170 cm and type 2 diabetes for 20 years.

Smoothing of other metrics. For now, we have introduced the Morse-like model for the
smoothing of weights. Another desirable feature of this model is that it is stable under the trans-
formation that maps weights to the other metrics of interest (BMI, TWL, EWL). In particular, if
Fθ⋆ is a fitted Morse-like model for weights, we define

θ⋆TWL = (− α

W0
,− β

W0
, γ, 1−∆, t⋆, τ) , (G.11)
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θ⋆BMI = ( α
h2

0
,
β

h2
0
, γ,

∆
h2

0
, t⋆, τ), (G.12)

θ⋆EWL = (− α

h2
0(BMI0 − 25)

,− β

h2
0(BMI0 − 25)

, γ,
BMI0

BMI0 − 25 −
∆

h2
0(BMI0 − 25)

, t⋆, τ) . (G.13)

Then Fθ⋆TWL
is a Morse-like model for TWL and, assuming the height is constant through time

(ht = h0), Fθ⋆BMI
and Fθ⋆EWL

are also Morse-like models for BMI and EWL respectively. We
acknowledge that height may be affected by surgery (significant weight loss may increase
height by a few centimetres, for instance due to improved posture), however this (rather small)
effect is often neglected.

G.3 Cohorts

Training cohorts. The ABOS cohort (Atlas Biologique de l’Obésite Sévère; NCT01129297), is a
prospective study conducted in Lille, France, aiming to identify the determinants of the outcome
of bariatric surgery. All ABOS participants who underwent their first bariatric surgery at Lille
University Hospital were enrolled in the present study (Figure G.2). Patients with gastric
bypass, sleeve gastrectomy and gastric banding recruited from2006 through 2020 corresponding
to a follow-up data duration of 60 months were included in this analysis. Informed consent was
obtained from all participants. Demographic characteristics, anthropomorphic measurements,
medical history, medication use, and clinical laboratory tests were prospectively collected
before surgery. A 75 g oral glucose tolerance test (OGTT) was performed after overnight
fasting at baseline. Diabetes status was defined at baseline, based upon the previous history of
diabetes, use of antidiabetic medication, and/or fasting plasma glucose (FBG) ⩾ 126 mg/dL
(7.0 mmol/L) or a 2 hour plasma glucose ⩾ 200 mg/dL (11.1 mmol/L) during the OGTT or
HbA1c ⩾ 6.5% (48 mmol/L) (on the Diagnosis and of Diabetes Mellitus, 2003). Homeostasis
model assessment (HOMA) 2 estimates of β-cell function (HOMA2-B) and insulin resistance
(HOMA2-IR) based onC-peptide concentrations (which performs better than insulin in patients
with diabetes) was calculated with the HOMA calculator (University of Oxford, Oxford, UK).

Since ABOS enrolled a majority of patients with RYGB and AGB, we combined the data with
those from the BAREVAL cohort from Montpellier (NCT02310178), a sleeve specific cohort to
constitute the training set. The BAREVAL cohort is a prospective cohort designed to evaluate
the long-term effectiveness of sleeve gastrectomy on weight loss. Demographic characteristics,
anthropomorphic measurements, medical history, medication use, and clinical laboratory tests
were prospectively collected before surgery. Diabetes status was defined at baseline, based
upon the previous history of diabetes, use of antidiabetic medication, and/or fasting plasma
glucose (FBG)⩾ 126mg/dL (7.0 mmol/L) or HbA1c⩾ 6.5% (48mmol/L).1 Data was available
at baseline and at 3, 12, 24, and 60 months follow-up. All patients that underwent primary
bariatric surgery between 2014 and 2020 were selected.
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79 missing visit at M12

All patients in ABOS 
with RYGB, SG, GB over 18 y-o, 

n=1,492

Patients undergoing first surgery
n=1,147

With known BMI at 1 month,
n=1,130

(98.5% of  1,147 expected)

286 patients with previous 
history of bariatric surgery

17 missing visit at M1

With known BMI at 3 months,
n=1,125

(98.1% of 1,147 expected)

22 missing visit at M3

With known BMI at 12 months,
n=1,054

(93.0% of 1,133 expected)

With known BMI at 24 months,
n=955

(86.9% of 1,099 expected)

144 missing visit at M24

With known BMI at 60 months,
n=537

(84.8% of 633 expected)

96 missing visit at M60

59 patients considered outliers 
(post-op complications)

Figure G.2 – Flowchart of the ABOS study. Expected: number of patients for which a visit is expected
to be recorded in ABOS. For instance, patients who underwent surgery six months prior to the ABOS
extraction date cannot have a M12 visit recorded in the database and thus do not count as expected at
M12. We used the following cutoff durations after intervention: 20 days at M1, 65 days at M3, 300 days
at M12, 630 days at M24. For M60, we extended the cutoff to 6.5 years to reflect the postponed visits
during the COVID-19 pandemic.

External testing cohorts. Datasets from the validation centers were prospectively collected as
part of registered prospective cohort studies, and stored in the centers’ databases in compliance
with local and national regulatory requirements. Analyses were done locally (NOK and SOS
study cohorts) and aggregated results were sent to Lille University Hospital. For other cohorts,
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pseudonymised data were received and analysed in Lille, in accordance with the General Data
Protection Regulation (GDPR) recommendations. The validation cohorts followed the legal
and ethical rules applied in each country. Informed consent was obtained from all participants.

The Dutch Obesity Clinic (Nederlandse Obesitas Kliniek [NOK]) is the largest outpatient
clinic for the surgery of obesity in the Netherlands with currently ten locations over the country
and is treating circa 5000 patients yearly. All patients attend an extensive pre- and postoperative
counselling programme, which is led by a multidisciplinary team, consisting of a physician,
dietician, psychologist and physiotherapist. Current cohort is a retrospective cohort with
prospectively collected data (Tettero et al., 2022). In order to provide the five year follow-up
data, all patients that underwent primary bariatric surgery in 2015 and 2016 were selected.
Patients with interventions other than gastric bypass, gastric sleeve or gastric band were
excluded, as well as patients with missing type of intervention and missing baseline weight.
Demographic characteristics, anthropometricmeasurements andmedical historywere collected
at baseline. Diabetes was scored as present or absent by the treating physician, based on the
medical history and use of antidiabetic drugs. Smoking at baseline was also scored as either
present or absent. Weight was collected before surgery and at 3, 6, 12, 18, 24, 36, 48, and 60
months at regular postoperative follow-up visits.

The Swedish Obesity Subjects (SOS) study is a non-randomised, controlled intervention
study investigating the long-term effects of bariatric surgery. The study has been described in
detail elsewhere (Sjöström et al., 1992). In brief, 2007 participants who underwent bariatric
surgery and 2040 matched controls were recruited between September 1, 1987 and January
31, 2001. The inclusion criteria were age 37 to 60 years and body mass index (BMI) of 34 or
more for men and 38 or more for women. Exclusion criteria were identical in the surgery and
control groups and were selected to ensure all participants were eligible for surgery. Oral or
written informed consent was obtained from all study participants. Participants in the surgery
group underwent gastric banding, vertical banded gastroplasty or gastric bypass. Participants
in the control group received conventional obesity treatment. Participants in the surgery group
underwent gastric banding, vertical banded gastroplasty or gastric bypass. Participants in the
control group received conventional obesity treatment at their primary health care centers.
The current analysis included only patients which underwent gastric banding (n=376) or
gastric bypass (n=266). Participants that had a change in treatment type (i.e. band removal or
conversion to a different surgery type) were censored on the corresponding date. Data was
available at baseline and at 3, 12, 24, 48, and 72 months follow-up. Since no information about
weight at 60 months (5 years) after surgery was available, we used the mean of the weights at
48 and 72 months as a proxy. Type 2 diabetes status at baseline was defined based on previous
diagnosis of diabetes and/or use of antidiabetic medication and/or fasting plasma glucose ⩾ 7
mmol/L and/or HbA1c ⩾ 48 mmol/L.
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The Projet régional de Recherche en Obésité Sévère (PRECOS; NCT03517072) study is a multi-
centre prospective cohort study, conducted in Arras, Boulogne sur/ Mer, Lille and Valenciennes
to explore the determinants of 5 year-weight loss following bariatric surgery. Demographic
characteristics, anthropomorphic measurements, medical history, medication use, and clinical
laboratory tests were prospectively collected before surgery. Diabetes statuswas defined at base-
line, based upon the previous history of diabetes, use of antidiabetic medication, and/or fasting
plasma glucose (FBG)⩾ 126 mg/dL (7.0 mmol/L) and/or HbA1c⩾ 6.5% (48 mmol/L).1 Data
was available at baseline and at 3, 12, 24, and 60 months follow-up.

The Roma cohort (Mingrone et al., 2021) was collected from Randomised clinical study
comparing the effect of Roux-en-Y gastric bypass and Sleeve Gastrectomy on reactive hypoglycemia
(NCT01581801) and from Diet and Medical Therapy Versus Bariatric Surgery in Type 2 Diabetes
(DIBASY; NCT00888836). All subjects from these cohorts were enrolled for metabolic-bariatric
surgery between 2009 and 2016 at Fondazione Policlinico Universitario A. Gemelli IRCCS -
Catholic University of the Sacred Heart in Rome. The studies were approved by the Ethical
Committee of the Fondazione Policlinico Universitario A. Gemelli IRCCS in Rome. Written
informed consent was obtained from all participants. The weight data were obtained from
2009 to 2020 corresponding to a follow-up duration of 60 months. Demographic characteris-
tics, anthropometric measurements, medical history, medication use and clinical laboratory
tests were prospectively collected before and after surgery. A 75 g oral glucose tolerance test
(OGTT) was performed after overnight fasting at baseline in all subjects and also one year
after surgery in participants at NCT01581801. Body composition was assessed by dual energy
X-ray absorptiometry (Lunar-iDXA). Diagnosis of Type 2 Diabetes (T2D) was made at baseline
taking into account the previous history of diabetes, use of antidiabetic medication, and/or
fasting plasma glucose (FPG) ⩾ 126 mg/dL (7.0 mmol/L) or a 2-hour plasma glucose ⩾ 200
mg/dL (11.1 mmol/L) during the OGTT and/or HbA1c ⩾ 6.5% (48 mmol/L). Remission of
T2D was defined as a FPG ⩽ 100 mg/dL (5.6 mmol/L) and a HbA1c ⩽ 6.5% (48 mmol/L) for
at least 1 year without active pharmacologic therapy.

The Center for the treatment of Obesity and Diabetes (COD) cohort comprised 121 patients
with T2D and obesity who received RYGB at the Oswaldo Cruz German Hospital, in Sao Paulo,
Brazil between 2008 and 2016, and attended clinical and biological assessment at baseline and
after one year of follow-up, as previously reported (Cohen et al., 2020, 2022). All patients
provided written informed consent prior to inclusion.

The Mexico cohort was collected from Long versus short biliopancreatic limb in Roux-en-Y
gastric bypass: short-term results of a randomised clinical trial (NTC04609449), a randomised study
with patients undergoing Roux-en-Y gastric bypass at a single academic center in Mexico city
from 2016 to 2018 (Zerrweck et al., 2021). The studywas approved byNational and Institutional
ethical Committees.
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Randomised control trials. In 2018, two RCT comparing laparoscopic SG and RYGB with
a long-term follow-up rate of more than 80 per cent at 5 years were published. The Finnish
SleevePass (Sleeve versus Bypass) equivalence study 10 enrolled 240 patients with percentage
excess weight loss as the primary endpoint (Salminen et al., 2018, 2022). The Swiss SM-BOSS
(Swiss Multicentre Bypass or Sleeve Study) trial 11 included 217 patients with percentage
excess BMI loss (%EBMIL) as the primary endpoint (Peterli et al., 2018). Both trials showed
better weight loss for RYGB. In the SleevePass trial the difference was not statistically signif-
icant based on the prespecified equivalence margins. In the SM-BOSS trial, the difference
was also not statistically significant after adjustments for multiple comparisons. The trials
were designed as two-group, randomised, controlled, multicentre studies comparing SG with
RYGB, involving 240 patients with severe obesity from Finland and 225 from Switzerland
(Wölnerhanssen et al., 2021). Study protocols were reviewed and approved by the local ethical
committees of each participating hospital. Both RCT were conducted in accordance with the
principles of the Declaration of Helsinki and registered at the clinical trials registry of the
National Institutes of Health (NCT00356213, NCT00793143). Additional patient-level data
were included, either prospectively collected unpublished 5-year data or information retrieved
retrospectively from patient files. To ensure standardisation of outcomes between the studies,
all parameters and variables were translated into English to ensure identical definitions in both
trials. T2D remission was defined according to the American Diabetes Association criteria 14:
complete remission by haemoglobin (Hb) A1c level below 6.0 per cent and fasting glucose
concentration less than 100 mg/dL (below 5.6 mmol/l) for at least 1 year in the absence of
active pharmacological therapy, and partial remission by HbA1c level below 6.5 per cent and
fasting glucose concentration 100–125 mg/dl (5.6–6.9 mmol/l) for at least 1 year in the absence
of active pharmacological therapy.

G.4 Model development

To derive the model, the training cohort was divided into two subsets: a training subset
consisting of 80% of randomly selected patients, and an internal testing subset comprising the
remaining 20% of patients.

We first performed a preprocessing of all patients’ features (Appendix G.1). As the ABOS
cohort had a large number of preoperative attributes per patient (Appendix Table 4), we ran a
feature selection algorithm on this patient subgroup to extract the most statistically relevant
ones concerning outcome prediction. We used the Least Absolute Shrinkage and Selection
Operator (LASSO) with a cross-validated regularisation parameter to limit overfitting, as well
as the hierarchical group LASSO to account for interactions. The LASSO were trained on each
outcome visit separately (months M1, M3, M12, M24 and M60).
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For outcome prediction, we further leveraged a class of machine learning algorithms called
decision trees to learn meaningful subgroups of patients that share statistical similarities in
their baseline characteristics, and second, to fit a TWL prediction model for each subgroup. In
contrast with classical regression analysis, such algorithms are valuable for learning hierar-
chical stratification of patients from baseline characteristics and observed outcomes without
supervision. For instance, decision trees can predict weight loss when they are trained on a
heterogeneous cohort of different bariatric interventions such as RYGB, SG and AGB, according
to the type of intervention as well as using other variables such as the age at intervention, BMI
and other clinical features.

For calibration, we used the LASSO-extracted features as input for the classification and
regression trees (CART) algorithm (Breiman et al., 1984). CART is a nonparametric statistical
method used for prediction analysis of categorical (classification) and continuous (regression)
response variables and for explanatory variables which may consist of nominal, ordinal, or
continuous features. It is designed to create a sequence of binary choices according to attribute
categories for categorical features, or based on a calibrated threshold value for numerical
features. The CART algorithm recursively decides which attribute, category, or threshold
value to use, and in which order, by maximising the remaining statistical dispersion (variance)
between the two subtrees that emerge from this choice. CART identifies groups of patients who
share the same binary choices, and fits a single outcome prediction for each cluster. As weight
loss outcomes are continuous, CART produced here a regression tree. A workflow diagram of
the machine learning process is displayed in Figure G.3.

The algorithm was calibrated on the training subset of the training cohort. We further
compared the predicted TWL to the observed outcomes of patients in the testing subset of the
training cohort (internal validation).

The external validation consisted of all remaining eight validation cohorts (by decreasing
sample size: NOK, SGH, SOS, PRECOS, Roma, Lyon, COD and Mexico) and the two RCT
cohorts (SleevePass and SM-BOSS). In addition to computing the performance metrics (MAD
and RMSE), we report Bland-Altman plots (Altman and Bland, 1983; Bland and Altman, 1986)
in Figure G.4. These plots allow for a quick visual inspection of the calibration of a model by
comparing the average of predicted and observed outcome to their difference: the “flatter”
the point cloud, the better the calibration. This analysis is further completed with the mean
difference (zero indicates the absence of systematic bias) and confidence bands. In our case,
these plots do not reveal any major bias at M12, M24 and M60.
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n=447
preoperative baseline attributes in 

ABOS

n=7 
attributes selected by LASSO 

(cross validation in the ABOS training set):
weight, height, age, type of intervention, smoking status, type 

2 diabetes status and duration.
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tree at M1

CART decision 
tree at M3

CART decision 
tree at M12

CART decision 
tree at M24

CART decision 
tree at M60

Nonlinear 
smoothing for 
visualisation

n=385
attributes for feature selection

n=62 attributes removed due to: more than 50% of missing 
values, categorical features with high class imbalance (one class 

accounting for less than 2% of all patients), free text input.

Figure G.3 – Machine learning pipeline for the prediction of postoperative weight trajectories.
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Figure G.4 – Bland-Altman plots for the BMI predictions at M12, M24 and M60.
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G.5 Comparison with other methods

In parallel with our LASSO+CART model, we also explored other methods for prediction.
First, we tried simple linear regression, based on the 7 selected attributes. Second, we tried
to take into account the longitudinal nature of the data by using mixed effect model, with
different kernel functions for the time component (power functions, restricted cubic splines),
as well as (fixed or random) intercept and slopes, to model the predicted weight loss after
bariatric surgery from the preoperative data. The best mixed effect model uses the seven
selected attributes, a restricted cubic splines to model time after surgery, as well as a random
intercept and slope.

Furthermore, CART-trained regression trees are able to achieve variable selection by them-
selves using a pruning mechanism, such as cost complexity pruning. Hence, we also applied
CART with all baseline variables and then pruning the resulting trees; it produced similar
trees to the LASSO+CART approach (in particular all trees started by splitting on the type of
intervention) and selected a total of six variables: weight, height, age, T2D status and duration
and type of intervention. In terms of selected features, the only difference between LASSO and
CART was the smoking history. Last, because decision trees are typically weak predictors and
that bagging (random forests [RF]) is a natural step to try and improve accuracy, at the cost
of less interpretability, we also tried RF on our training set. 2. Hyperparameters, optimised
with 3-fold cross validation, included the maximum depth, maximum number of features,
minimum number of samples at a leaf node, number of tree predictors and the cost-complexity
pruning parameter. Figure G.5 displays the results of these comparisons.

In conclusion, linear models, mixed effect models and CART with pruning are underper-
forming compared to CART decision trees, in terms of MAD error, whereas RFs resulted in only
slightly smaller MAD than CART (in the sense that confidence intervals largely overlapped),
which we believe does not justify the loss of interpretability.

2We used the RandomForestRegressor implementation from the emphscikit-learn library in Python.
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(b) Linear mixed effect model.
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(c) CART with pruning on all baseline variables (no LASSO).
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(d) Random forests.

Figure G.5 – MAD of predicted BMI outcomes of our model versus various benchmarks on the internal
test set (left) and the external validation cohorts (right).
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G.6 Comparison with previously published models

We have replicated in ABOS the results of previously published models (Cottam et al., 2018;
Goulart et al., 2016; Janik et al., 2019; Velázquez-Fernández et al., 2019; Wise et al., 2016; Seyssel
et al., 2018; Baltasar et al., 2011) between January 2000 and December 2021, identified using
the following search terms: bariatric surgery, postoperative weight loss, weight loss prediction,
and prediction model. We included English language studies that investigated RYGB, SG, and
AGB and used a prospective or retrospective design. The identified models were implemented
at the appropriate postoperative times to predict the TWL of corresponding patients from
the training cohort, allowing the calculation of MAD and RMSE as previously described. In
contrast with our tree-based model, which can simultaneously predict weight loss at different
dates and across multiple types of bariatric surgery, the existing models were restricted to a
single outcome date and a single type of intervention. For a fair comparison, these existing
models were compared with corresponding subgroup of ABOS cohort according to type of
surgery and outcome date. Results are reported in Table G.1.

To compare two given models, their respective RMSE were submitted to the Diebold-
Mariano test (Harvey et al., 1997), the p-value (for the null hypothesis that both RMSE are
equal) of which are reported in Table G.2. Six out of twelve models had significantly higher
RMSE (at level 0.05), and most of the others had higher RMSE, albeit not significantly. We
emphasise here that the comparisons are performed on small subgroups of the internal test set
of ABOS in order to match the operation and month of prediction of each of the benchmark
model, resulting in small sample size and correspondingly small statistical power.

In conclusion, not only is our model not limited to a single date nor operation, it is also
more accurate than previously published prediction models.
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Table G.1 – Validation of existing prediction models on the ABOS cohort for corresponding type of
intervention and date of prediction.
Model Type of

operation
Month of
prediction

Sample
size

Mean observed
BMI (SD)

Mean predicted
BMI (SD)

RMSE in kg/m2

(95% CI)
Normalised RMSE
in % (95% CI)

Cottam
Cottam et al. (2018) SG 12 193 35.2

(7.9)
33.2
(5.9)

4.7
(4.3; 5.2)

13.3
(11.6; 14.9)

Goulart
Goulart et al. (2016) SG 12 193 35.2

(7.9)
31.5
(5.6)

5.6
(5.2; 6.2)

16.0
(14.3; 18.0)

Janik
Janik et al. (2019) SG 12 193 35.2

(7.9)
31.0
(7.7)

6.1
(5.6; 6.6)

17.4
(15.7; 19.0)

Velazquez-1
Velázquez-Fernández et al. (2019)

RYGB 12 652 32.5
(6.1)

31.9
(4.5)

3.8
(3.6; 4.0)

11.8
(11.0; 12.6)

Wise
Wise et al. (2016) RYGB 12 652 31.4

(5.9)
30.2
(3.9)

3.9
(3.5; 4.3)

12.4
(11.3; 13.6)

Seyssel-1
Seyssel et al. (2018) RYGB 12 652 32.5

(6.1)
31.5
(4.3)

3.8
(3.5; 4.0)

11.7
(10.8; 12.5)

Baltasar-1
Baltasar et al. (2011) SG 24 162 35.1

(7.9)
31.1
(3.8)

7.0
(6.3; 7.6)

20.0
(17.7; 22.2)

Baltasar-2
Baltasar et al. (2011) Any 24 959 33.5

(7.3)
30.5
(2.9)

6.8
(6.4; 7.0)

20.2
(19.0; 21.3)

Baltasar-3
Baltasar et al. (2011) RYGB 24 606 31.8

(6.5)
30.7
(3.0)

5.2
(4.8; 5.5)

16.3
(15.1; 17.5)

Velazquez-2
Velázquez-Fernández et al. (2019)

RYGB 24 606 31.8
(6.5)

31.3
(3.9)

4.9
(4.6; 5.2)

15.5
(14.5; 16.5)

Seyssel-2
Seyssel et al. (2018) RYGB 24 606 31.8

(6.5)
31.0
(3.6)

4.9
(4.7; 5.2)

15.5
(14.3; 16.5)

Seyssel-3
Seyssel et al. (2018) RYGB 60 348 34.1

(6.9)
33.3
(3.7)

5.4
(5.0; 5.7)

15.8
(14.3; 17.3)
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Table G.2 – Comparison of existing prediction models versus our model on the ABOS testing subset.

Model Type of
operation

Month of
prediction

Sample
size

RMSE in kg/m2

(95% CI) of
literature model

RMSE in kg/m2

(95% CI) of
our model

p-value

Cottam
Cottam et al. (2018) SG 12 41 5.3

(3.8; 6.7)
5.1
(4.1; 6.1) 0.22

Goulart
Goulart et al. (2016) SG 12 41 6.3

(4.8; 7.8)
5.1
(4.0; 6.0) 0.011

Janik
Janik et al. (2019) SG 12 41 6.3

(5.6; 7.2)
5.1
(4.1; 6.1) 0.011

Velazquez-1
Velázquez-Fernández et al. (2019)

RYGB 12 124 4.0
(3.5; 4.5)

3.8
(3.3; 4.2) 0.13

Wise
Wise et al. (2016) RYGB 12 60 3.5

(2.9; 3.9)
3.6
(3.1; 4.1) 0.64

Seyssel-1
Seyssel et al. (2018) RYGB 12 124 4.1

(3.5; 4.8)
3.8
(3.3; 4.2) 0.11

Baltasar-1
Baltasar et al. (2011) SG 24 33 6.6

(5.6; 7.6)
5.5
(4.3; 6.7) 0.099

Baltasar-2
Baltasar et al. (2011) Any 24 187 6.8

(6.0; 7.4)
4.7
(4.0; 5.2) <0.0001

Baltasar-3
Baltasar et al. (2011) RYGB 24 111 5.1

(4.3; 5.9)
4.3
(3.4; 5.1) 0.009

Velazquez-2
Velázquez-Fernández et al. (2019)

RYGB 24 111 4.8
(4.1; 5.6)

4.2
(3.7; 5.0) 0.002

Seyssel-2
Seyssel et al. (2018) RYGB 24 111 4.9

(4.1; 5.7)
4.3
(3.6; 4.9) 0.007

Seyssel-3
Seyssel et al. (2018) RYGB 60 55 4.3

(3.7; 4.8)
4.0
(3.0; 4.7) 0.12
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Enfoui dans son fauteuil, il ruminait maintenant sur
cette expresse observance qui bouleversait ses plans,
rompait les attaches de sa vie présente, enterrait ses
projets futurs. Ainsi, sa béatitude était finie ! ce havre
qui l’abritait, il fallait l’abandonner, rentrer en plein
dans cette intempérie de bêtise qui l’avait autrefois
battu ! Les médecins parlaient d’amusement, de
distraction ; et avec qui, et, avec quoi, voulaient-ils donc
qu’il s’égayât et qu’il se plût ?

— Joris-Karl Huysmans, À rebours
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