Université de Lille
Ecole Doctorale Mathématiques, sciences du numérique et de leurs interactions

THESE DE DOCTORAT

Spécialité Informatique

présentée par
PATRICK SAUX

MATHEMATICS OF STATISTICAL SEQUENTIAL DECISION-MAKING:

CONCENTRATION, RISKFAWARENESS AND MODELLING IN STOCHASTIC BANDITS,
WITH APPLICATIONS TO BARIATRIC SURGERY

MATHEMATIQUES DE LA PRISE DE DECISION SEQUENTIELLE STATISTIQUE :
CONCENTRATION, AVERSION AU RISQUE ET MODELISATION POUR LES BANDITS STOCHASTIQUES,
ET APPLICATIONS A LA CHIRURGIE BARIATRIQUE

sous la direction d’Odalric-Ambrym Maillard et de Philippe Preux.

Soutenue publiquement a Villeneuve d’Ascq, le 30 janvier 2024 devant le jury composé de

Mme. Myriam Maumy-Bertrand MCF HDR Université de Technologies de Troyes Rapporteuse

M. Adrien Saumard MCF, HDR ENSAI Rennes Rapporteur

Mme. Julie Josse DR, HDR Inria Montpellier Examinatrice

M. Peter Griinwald PROF CWI Amsterdam Examinateur

M. Rodolphe Thiébaut PU-PH Université de Bordeaux Examinateur

M. Marc Tommasi PR Université de Lille Président du jury
M. Odalric-Ambrym Maillard CR, HDR Inria Lille Directeur de thése
M. Philippe Preux PR Université de Lille Directeur de thése
M. Frangois Pattou PU-PH Université de Lille et CHU Lille Invité

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),
UMR 9189, Equipe Scool, 59650, Villeneuve d’Ascq, France

Centre de Recherche en Informatique,
Signal et Automatique de Lille

lnasa . Ealie @RIStAL



What ?...

SHAKESPEARE

Des essais ? — Allons dong, je n’ai pas essayé !
Etude ? - Fainéant je n’ai jamais pillé.
Volume ? — Trop broché pour étre relié...

De la copie ? — Hélas non, ce n’est pas payé !

Un poéme ? — Merci, mais j'ai lavé ma lyre.

Un livre ? —...Un livre, encor, est une chose a lire !...
Des papiers ? — Non, non, Dieu merci, c’est cousu !

Album ? — Ce n’est pas blanc, et c’est trop décousu.

Bouts-rimés ? — Par quel bout ?... Et ce n’est pas joli !
Un ouvrage ? — Ce n’est poli ni repoli.

Chansons ? —Je voudrais bien, 6 ma petite Muse !...
Passe-temps ? — Vous croyez, alors, que ¢a m’amuse ?

—Vers ?... vous avez flué des vers... — Non, c’est heurté.
— Ah, vous avez couru 'Originalité ?...

—Non... c’est une drolesse assez drodle, — de rue —

Qui court encor, sitot qu’elle se sent courue.

— Du chic pur ? — Eh qui me donnera des ficelles !

— Du haut vol ? Du haut-mal ? — Pas de rale, ni d’ailes !
— Chose a mettre a la porte ? —...Ou dans une maison
De tolérance. — Ou bien de correction ? — Mais non !

—Bon, ce n’est pas classique ? — A peine est-ce francais !
— Amateur ? — Ai-je I’air d"un monsieur a succes ?
Est-ce vieux ? — Ca n’a pas quarante ans de service...
Est-ce jeune ? — Avec 1'age, on guérit de ce vice.

... CA c’est naivement une impudente pose ;

C’est, ou ce nest pas ¢a : rien ou quelque chose...
—Un chef-d’ceuvre ? — Il se peut : je n’en ai jamais fait.
—Mais, est-ce du huron, du Gagne, ou du Musset ?

— C’est du... mais j’ai mis 1a mon humble nom d’auteur,
Et mon enfant n’a pas méme un titre menteur.

C’est un coup de raccroc, juste ou faux, par hasard...
L’Art ne me connait pas. Je ne connais pas I’Art.

Préfecture de police, 20 mai 1873.

— Tristan Corbiere, “Ca”, Les Amours Jaunes
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Abstract

This thesis aims to study some of the mathematical challenges that arise in the analysis of
statistical sequential decision-making algorithms for postoperative patients follow-up. Stochas-
tic bandits (multiarmed, contextual) model the learning of a sequence of actions (policy) by
an agent in an uncertain environment in order to maximise observed rewards. To learn optimal
policies, bandit algorithms have to balance the exploitation of current knowledge and the
exploration of uncertain actions. Such algorithms have largely been studied and deployed in
industrial applications with large datasets, low-risk decisions and clear modelling assump-
tions, such as clickthrough rate maximisation in online advertising. By contrast, digital health
recommendations call for a whole new paradigm of small samples, risk-averse agents and
complex, nonparametric modelling. To this end, we developed new safe, anytime-valid concen-
tration bounds, (Bregman, empirical Chernoff), introduced a new framework for risk-aware
contextual bandits (with elicitable risk measures) and analysed a novel class of nonparametric
bandit algorithms under weak assumptions (Dirichlet sampling). In addition to the theoretical
guarantees, these results are supported by in-depth empirical evidence. Finally, as a first step
towards personalised postoperative follow-up recommendations, we developed with medical
doctors and surgeons an interpretable machine learning model to predict the long-term weight

trajectories of patients after bariatric surgery.



Résumé

Cette thése porte sur 1'étude des défis mathématiques liés a I’analyse d’algorithmes de prise
de décision séquentielle pour le suivi postopératoire de patients. Les bandits stochastiques
(multi-bras, contextuels) modélisent I’apprentissage d’une suite d’actions (politique) par un
agent évoluant dans un environnement incertain afin de maximiser les récompenses observées.
Afin d’apprendre de telles politiques optimales, les algorithmes de bandits se confrontent au
dilemme de I’exploitation de 'information déja acquise et de I'exploration d’actions incertaines.
De tels algorithmes ont été amplement étudiés et déployés dans le cadre d’applications indus-
trielles faisant intervenir de grands jeux de données, un faible risque pour chaque décision,
ainsi que des hypotheses de modélisation bien définies, comme par exemple la maximisation
du taux de clic dans la publicité en ligne. A l'inverse, le probléme des recommandations de
santé requiert un tout nouveau paradigme de petits échantillons, d’aversion au risque et de
modélisation complexe et non paramétrique. Dans cette optique, nous avons développé de
nouvelles bornes de concentration uniforme en temps (Bregman, Chernoff empirique), intro-
duit un nouveau cadre de bandits contextuels conscients des risques (au moyen de mesure de
risque élicitables), et analyser une nouvelle classe d"algorithmes de bandits non paramétriques
sous des hypotheses faibles (échantillonnage de Dirichlet). Outre des garanties théoriques,
ces résultats sont étayés par des observations empiriques. Nous avons enfin développé, en
coordination avec une équipe de médecins et chirurgiens dans le cadre d’un projet de suivi
postopératoire, un modéle interprétable par apprentissage automatique de prédiction de la
trajectoire de poids a long terme de patients apres chirurgie bariatrique.
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Foreword

Avewpétentoc undelc eioltw

Statistical sequential decision-making in healthcare

According to the American college of surgeons, “the surgeon is responsible for the preoperative
diagnosis of the patient, for performing the operation, and for providing the patient with
postoperative surgical care and treatment” (American college of surgeons, 2023). Regarding
the last point, let us say, for the sake of simplicity, that the surgeon has two possible recommen-
dations for postoperative follow-up. The first option is to schedule an appointment directly
at the surgery department, where the patient can be examined by a large, specialised and
possibly multidisciplinary team. The second option is to refer the patient to their general
practitioner of choice. While the former ensures a priori the best care, it is also the most costly
and likely the most impractical for the patient (longer waiting times, longer commute, etc.), and
therefore the latter may be an appealing alternative for patients with no major postoperative
complications. In addition, let us imagine that a third option has recently emerged in the form
of remote electronic consultation, which is even less costly than a face-to-face visit to the general
practitioner. Which of these three options should the surgeon recommend?

Ignoring the part of subjectivity that feeds into such a decision process !, let us say that the
surgeon has asked a team of statisticians to compute a postoperative care score to help inform

their decision. This imaginary score?

is a single number, normalised between 0 and 100, that
reflects the cost-benefit analysis of each alternative and has been calibrated on medical records
of recent patients of the surgery department. Naturally, every patient has responded differently
to postoperative care, and thus the scores are modelled as random variables. We illustrate in

Figure 1 the mean score (=+ standard deviation) observed for each follow-up option.

!This thesis is, after all, about quantitative sciences. This is not to say that this approach is right for medical
recommendations. Social sciences, economics, geopolitics and many other fields have a lot to say too on this topic.

*We do not discuss either how such scores could be computed. Implementing these in practice would require a
significant interdisciplinary effort and prospective testing to ensure they incentivise desirable behaviours.
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Patient at time ¢
Patient at time ¢+1

Patient at time ¢t —1

80 4+ 10 ?
85 + 20

General practitioner Electronic consultation

Figure 1 - Should the surgeon recommend postoperative follow-up at the surgery department, the safest
but most costly option? At the general practitioner, less costly but also less specialised? Using electronic
consultation, which has seldom been tried??

A simple, naive solution would be to send every patient to the general practitioner, which
exhibited the highest postoperative score (85). However, due to the inherent randomness of
patients’ responses, and the potentially small sample size (only recent patients at this specific
surgery department were accounted for in these statistics), it is still possible that another option
would offer a better mean score. Furthermore, future patients, including those who were
subjected to this recommender system, may be used to continuously update these statistics,
and therefore the recommended option may change with additional data.

This idealised toy model is an example of a stochastic bandit. Informally, a bandit represents
a game where an agent (the player) picks an arm among a set of possible alternatives (here, the
three follow-up pathways) and receives a reward (here, the postoperative score). The goal of
the player is to maximise (a certain statistic of) the total reward accumulated during the game.

*The top image is a direct contribution of the author. Credits: Cécile Gauthiez, Flora Tixier. The bottom images
were generated from text prompts using https://deepdreamgenerator.com/generator.
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More generally, bandits belong to a field of quantitative methods at the crossroads of

mathematics, computer science and machine learning, known as

statistical sequential decision-making

data-driven, ) . actions are recommended

o prospective design, _ _

provable probabilistic . . to an agent interacting
online recommendations,

performance guarantees, . . with an environment to
continuous learnmg;

uncertainty quantification; maximise rewards.

Rather than a single model, stochastic bandits form a large class of methods. A simple
branching decision pattern as described above is called a multiarmed bandit: patients are consid-
ered equal and the agent is looking for the best one-size-fits-all solution. Realistically, designing
postoperative follow-up programmes calls for more sophisticated solutions. When the reward
is a function of one or several contextual variables that change between rounds, this model
becomes a contextual bandit. For instance, every round may represent a new patient with some
clinical characteristics (sex, weight, height, age, etc.) that condition the postoperative scores
(e.g. the score of the surgery department follow-up is higher for older patients as they are
more at risk of developing complications and thus require more specialised care). Even more
sophisticated approaches form the basis of reinforcement learning, which studies agents that are
able to learn autonomously in complex environments. All these models are part of what is
colloquially (and often somewhat abusively) known as artificial intelligence.

A success story in online advertising

Industrial applications of statistical sequential learning soared with the widespread use of
Internet starting in the early 2000s. Indeed, the core businesses of many technology companies
revolve around providing accurate recommendations to customers: which ad to click on when
using a search engine, which movie to watch on a streaming platform, which item to purchase
on an online marketplace, etc. As an example of this growing interest, Netflix hosted from
2006 to 2009 an open competition called the Netflix Prize for predicting user ratings for films
using collaborative filtering, a core component, alongside stochastic bandit methods, of modern
recommender systems. In terms of revenues, Amazon reported a positive impact of the use of
personalised recommendations of 35% through cross-sales (Jannach and Jugovac, 2019). In
2020, the global recommender system market size was valued at USD 1.8 billion and is expected
to continue its fast expansion (Grand View Research, 2020).
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Foreword

Beyond the obvious business incentive, we posit that the success of recommender systems,
and bandits in particular, in online marketing is also due to the conjunction of favourable

modelling and data environments:

e data is available in huge quantities (e.g. millions of customers) and quality (cookies,
metadata, purchase or viewing history, etc.);

e each decision is virtually risk-free: although maintaining engagement in the long run
can be challenging, it is unlikely that a customer will stop interacting with the platform
altogether if a single recommendation is unsatisfying;

e many recommender systems are essentially optimisers of clickthrough rates, i.e. the ex-
pected frequencies of a positive response from a customer exposed to a given ad, which
makes for a clear, well-studied theoretical setting (Bernoulli trials, logistic models, etc.).

Towards recommender systems in healthcare

Given the successes of sequential learning in online advertising, it is tempting to replicate this
approach in other fields. In this thesis, we focus primarily on healthcare applications, where
we seek to recommend efficient postoperative pathways (follow-up visits at the hospital versus
at the general practitioner as seen above, but also when to schedule such visits). However, we
identified several drawbacks that hinder the deployment of existing approaches and call for

new theoretical and methodological groundwork.

e Small samples: clinical trials require careful preparation and usually concern at most
thousands of individuals. Examining electronic registries or national health databases
allows to scale up, albeit with typically much less precise or reliable data.

e Risk: even a single inappropriate decision can be detrimental to a patient (if for instance
an algorithm suggested to skip the next follow-up visit that would have made it possible
to detect a life-threatening complication). Healthcare is hardly a numbers game where
we seek to optimise the average outcome.

e Modelling: medical datasets often comprise heterogeneous variables, which may not
fit the scope of classical statistical models. Moreover, the constraint of small samples
prevents any large numbers effect (normal distribution, central limit theorem). The main
criterion to optimise is not necessarily a binary outcome (Bernoulli trial), but may be a
continuous target (“what dose of a certain drug should a patient take”), a date (“when

should a patient schedule a follow-up visit”), etc.

This thesis explores some mathematical aspects of these three challenges, and fits within a
long-term collaboration between Inria (team Scool) and the bariatric surgery department at

XX



Lille University Hospital to develop such recommender systems for the treatment of chronic
diseases, and in particular obesity.

These roadblocks towards practical recommender systems are however not specific to
healthcare, and we hope this line of research fosters new developments in other critical areas. A
complementary field of applications we consider in this manuscript is the recommendation of
agricultural practices, which shares many of the technical challenges that we face in healthcare:
small data (e.g. it takes a whole year to observe the effect of new crop management policies on
the harvest yield), risk (e.g. crop mismanagement can threaten food security in developing
countries) and modelling complexity. A major difference however is the availability of efficient,
open-source simulators for crop yields supported by engineering knowledge and largely
accessible data, allowing us to perform synthetic experiments on which to test our algorithms.
This is in stark contrast with medical data, which are highly sensitive and protected, and also
exceedingly complex to simulate accurately. For these reasons, we use agricultural data as a
proof of concept for the methods we develop here, hoping for later use in healthcare.
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Chapter 1

Background material on statistical
sequential decision-making models

Two roads diverged in a wood, and | —
I took the one less traveled by,
And that has made all the difference.
— Robert Frost, The Road Not Taken

In this introductory chapter, we present an overview of the main mathematical tools to
analyse statistical sequential decision-making problems. As introduced in the foreword, the
main models we study in this thesis are stochastic bandits, which form a subclass of the larger
field of reinforcement learning that is especially suited for rigorous mathematical analysis. A
critical assumption in any bandit problem is to specify a statistical model for the reward
distributions, and we present standard examples such as sub-Gaussian, bounded, exponential
families, and others. Finally, a pivotal concept in both the design and analysis of bandit
algorithms is the concentration of measure phenomenon, for which we provide a detailed
introduction, completed with original results.

Contents
1.1 Mathematical setting and notations . . . . ... ................. 4
1.2 How to play? An overview of stochasticbandits . ............... 6
1.3 What is the reward? An overview of statisticalmodels . . . . . ... ..... 18
1.4 How to play (provably) well? Concentration and martingales . ... .. .. 22




Background material on statistical sequential decision-making models

1.1 Mathematical setting and notations

We consider a topological space (£2, 7) and further assume that it is separable (there exists a
countable dense subset), metrisable (there exists a metric d7 such that d7 induces the topology
T) and that the metric space (€2, dr) is complete (every Cauchy sequence converges); in other
words, (€2,dr) is a Polish space. We let A be the corresponding Borel o-algebra, i.e. the
smallest o-algebra containing the open sets of (€2, 7)), which we denote by A = ¢(7), and
IP the corresponding Borel measure. We further assume that IP’ is positive, locally finite and
inner regular (VA € A, P(A) = sup{P(C), C C A compact}) and that P(Q2) = 1; in other
words, P is a (Radon) probability measure, and (€2, A, P) is a probability space. We refer to
Rudin (1987) for background material on measure theory.! The Borel-Cantelli lemma states
that if a sequence of events (4,,) € A" satisfies 3.y P(4,) < 400, then almost surely only
a finite number of them occur, i.e. P(limsup,,_, ., An) = 0. Given a finite sequence of n € N
events (4;)"_; € A", the union bound (also known as the Bonferonni inequality) states that
P(Uizq Ai) < Xini P(A;). In particular, if all events A; occur with probability at most 6 /n for
i € {1,...,n}, then the complement events A; = Q \ A; satisfy P(N_, 4;) > 1 — 4.

We recall that a random variable on a measurable space (X, B) is a measurable function
(Q, A) — (X, B); when the context is clear, we drop the reference to the o-algebra A, B or both.
Unless stated otherwise, we use the notation X for random variables on the Euclidean space
X = R?for some d € Nand Y for random variables on X = R, equipped with the Euclidean
norm ||-|| and the Lebesgue measure. Alternatively, we sometimes consider discrete random
variables on N equipped with the counting measure. The pushforward measure v: B — [0, 1]
defined for all Borel sets B of X as v(B) = P ({w € 2, X(w) € B}) is called the distribution of
X. We denote by M7 (X) the set of all such distributions. We recall that Ex ., [X] = [, zdv(x)
is the expectation of X assuming its distribution is v, and for p € R’ , we denoteby L?(X) = {v €
M (X), Ex, [|| X||P] < 400} the space of p-integrable measures. The support of a distribution
v, denoted by Supp v, is the smallest closed subset C' C X such that Px.., (X € C) = 1. If
Supp v C Ry, the probability measure is related to its expectation by Markov’s inequality
APx (X > N) < Exo,[X]. If X C R, the cumulative distribution function of v, or c.d.f., is the
function € R — Px ., (X < z). The set of discontinuity points of the c.d.f. is called the set of
atoms of v and correspond to points z such that Px., (X = z) > 0. The total variation distance
between two distributions v,/ € M7 (X) is defined as v (v,v') = supgeg|v(B) — V' (B),
which also satisfies the equality oty (v,v') = supf|[Exu[f(X)] — Ex~[f(X)]|, where the
supremum is taken over all measurable functions f: X — [—1, 1].

A measure v is said to be absolutely continuous with respect to another measure v/ defined
on the same measurable space (X, B) if for all B € B, v/(B) = 0 implies v(B) = 0. In that case,

'These assumptions will not be used directly in the rest of this thesis but form a convenient setting to apply
standard results of probability and mathematical analysis.



1.1 Mathematical setting and notations

there exists a measurable function % : X = Ry called the Radon-Nikodym derivative, such

that v(B) = [ 3 (x)dv/(z) for all B € B. If v is a probability measure, 9% is called the density
of v with respect to /. If both v and 1/ are probability measures, we define their Kullback-

Leibler divergence as KL(v || v/) = Ex.,[log % (X)]. Moreover, the KL divergence and the

total variation distance are related by Pinsker’s inequality: drv (v, v/) < /3KL(v || /).

For a set Z and a sequence of probability spaces (X}, B, v;),.7, we define the product
probability space (I];c7 Xi, ;1 Bi, ®;cz vi) where [],7 &; is the Cartesian product, Q.7 B;
is the o-algebra generated by subsets of the form [];,c; B; where (B;)icz € [liez Bi, and
Ricz Vi € M (Iliez X) is the product measure defined by ®;c7 v ((Bi)iez) = [Liez vi(Bi)-
For a sequence of subspaces (H;),c7 C [l;ez M (X;), we define the space of product measures
Ricr Hi = {v = Qjcr Vi, (Vi)ier € [lier Hi}- A sequence of random variables X = (X;)c7 is
called a stochastic process. If the distribution of X is &),z v;, we say the random variables are
independent. If all these random variables are defined on the same measurable space (X, 5)
and if all their distributions are equal, we say they are identically distributed. In addition, if
7 is a totally ordered set, we define the natural filtration of the process X as the sequence of
o-algebra (G;)icz such that foralli € Z, G; = a({Xj_l(B), j€Z,j<i,BeB}). Astochastic
process (X/)ier is adapted to the filtration (G; )z if X] is (G;, B)-measurable for all i € Z. If
T =N, (X})iez is predictable with respect to (G;)icz if (X, )icz is adapted to (G;)scz. Finally,
a random variable 7 defined on the filtered probability space (2, A, (G;)icz, P) with values in Z
is a stopping time if {7 < i} € G; forall i € Z. In practice, we often consider Z = Nor Z = R%,
and interpret it as a set of discrete or continuous times.

P In the rest of this chapter, we present an overview of stochastic bandits, concentration of measure
theory and the interplay between them, which constitutes the theoretical foundations of this thesis.
We provide proofs of these results for several reasons. First, while most of them are known, they are
typically presented here at a higher level of generality than is commonly found in the literature (e.g.
the lower bounds of Theorems 1.6 and 1.10, adapted to generic risk measures). Second, the rest of this
thesis heavily builds on the techniques presented here (e.g. the method of mixture of time-uniform
concentration, extended to various settings in Chapters 3, 4 and 5). Finally, to the best of our knowledge,
some of these results are actually new (e.g. the mixture peeling technique of Proposition 1.29) or folk
knowledge (e.g. the generic analysis of UCB of Theorem 1.33). We indicate this last category of results
by the symbol (). For readability, we defer the proofs to Appendix A.
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1.2 How to play? An overview of stochastic bandits

The history of stochastic bandits begins with Thompson (1933), which studied statistical
properties of two samples likelihood tests, motivated by the design of clinical trials, and
introduced what is now known as multiarmed bandits. Their theoretical foundations were layed
in the 1980s and 1990s (Gittins, 1979; Whittle, 1980; Lai et al., 1985; Agrawal, 1995; Burnetas and
Katehakis, 1996), and they have since found industrial applications in recommender systems
(Mary et al., 2015; Felicio et al., 2017), dynamic pricing (Misra et al., 2019), network routing
(Boldrini et al., 2018) and personalised online advertisement (Singh et al., 2022); see Bouneffouf
et al. (2020) for a recent survey. Stochastic bandits are also a core component of several areas of
theoretical statistics and machine learning, such as sequential testing (Lai, 2001; Bartroff et al.,
2012), online optimisation (Shalev-Shwartz et al., 2012; Hazan et al., 2016), active learning and
games (Cesa-Bianchi and Lugosi, 2006), and reinforcement learning (Puterman, 2014; Sutton
and Barto, 2018; Szepesvari, 2022). In this section, we introduce notations, definitions and basic
results that are used throughout this thesis. For a more in-depth introduction to stochastic
bandits, we refer the reader to Slivkins (2019); Lattimore and Szepesvari (2020).

Multiarmed bandits

We start by formalising the concept of multiarmed bandit model introduced in the Foreword.
We adopt here the idiom of probability theory, which forms the theoretical foundations on
which the analysis of such decision problems rely.



1.2 How to play? An overview of stochastic bandits

Definition 1.2 (Bandit model). Let K € N*. We denote by [K] the set of arms. A multiarmed
stochastic bandit model is a pair ((Vt)ien, (Ft)ten) such that (v;)en is a sequence of product
measures (v¢)ien and (F;)ien is a sequence of subspaces of M (R)X such that forallt € N, vy, =

(vF) ke[k] € Ft- It is said to be unstructured if in addition, we have the factorisation

v=Qver=Q 7. (1.1)

kE[K] kE[K]

Let m = (m¢)ien be a stochastic process in [K|. The reward process associated with = is defined as

Y7 = (V" )ten ~ () ten - (1.2)
and the corresponding natural bandit filtration is defined as

(Gt )ten = (0 ({(7, ¥{™), 5 < t}))sen - (1.3)

The number of pulls associated with 7 is the sequence

t
k,m .
(Nt )ke[KLteN o (S; Lrs:k) ’ £

ke[K],teN

Furthermore,  is said to be a bandit policy if there exists a filtration (G;-)scn independent on (G )ien
such that  is predictable with respect to (o(GF U Gi*))ien. Finally, a bandit model is said to be
stationary if the sequence ((v4)ien, (Ft)ten) is constant.

The natural bandit filtration (G ):en represents the information available to the agent right
after making the decision 7; and receiving the reward Y;™ at time ¢t € N. Moreover, the
definition of a bandit policy m merely states that (i) 7 depends on past arms and rewards, but
not future observations (predictable with respect to the natural bandit filtration), and (ii)
m may also depend on an external source of randomness, unrelated to all the other random
variables (encoded by the independent filtration (G;-);cn). If 7 is predictable with respect to
the natural bandit filtration, it is said to be a deterministic policy, otherwise it is said to be a
stochastic or randomised policy. When the policy is clear from the context, we drop the index .

Stationarity. Unless stated otherwise, we consider stationary bandit in this thesis and there-
fore drop the dependency on ¢ in the definition of the bandit model and write v = (k) e[k
and (F)ie|k]- For background materials on nonstationary bandits, we refer to Garivier and
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Stationary stochastic bandit

Patient Patient Patient
at time ¢t—1 at time ¢ at time t+1

K probability distributions For arm k,
vl oK N/*™ random variables
(arms) (rewards)

Figure 1.1 — Graphical description of a stationary stochastic bandit for healthcare decision-making.

Moulines (2011); Allesiardo et al. (2017), as well as to Baudry et al. (2021b); Besson et al.
(2022); Bhatt et al. (2023) for recent developments. An abstract graphical representation of a
stationary stochastic bandit for healthcare decision-making is presented in Figure 1.1.

[y Many algorithms for nonstationary bandits rely on change point detection to identify when
the underlying bandit distribution v, significantly changes with respect t € N. Although we do not
specifically consider nonstationary bandits in this thesis, we develop a new change point detection test
in Chapter 3, in the context of generic exponential families.

-

R P e i P et O O™ g el e

—

Regret. The learning goal of an agent facing a bandit problem is to find a policy 7 in order
to optimise a given criterion. Two main settings have been considered. The first one is called
best arm identification and aims to identify an arm or a group of arms with certain properties,
either by maximising the probability of correct identification given a fixed time horizon 7" € N
or by minimising the total number of pulls required to make this probability at least 1 — §
for a fixed 6 € (0,1). Notably, the agent does not seek to maximise the rewards accumulated
during this learning phase in any way, which is why this problem is sometimes called pure
exploration. We do not discuss this setting further and refer to Bubeck et al. (2009); Garivier
and Kaufmann (2016); Jourdan et al. (2022, 2023) for recent advances on the topic. The second
setting is precisely that of reward maximisation, or equivalently of regret minimisation.

8
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Definition 1.4 (Pseudo regret). Let ((v4)ien, (Ft)ten) be a bandit model, © a bandit policy and
p = (pt)ien a sequence of mappings M{ (R) — R U {£oo} called the risk measures. Fort € N,
we define LPt(R) = |p;|"1(R) C M7 (R) the set of probability measures that are p;-integrable and
assume that vi € 1Pt (R). The cumulative pseudo regret of policy m with respect to the risk measures
(pt)ten and bandit model (v¢);en is the stochastic process

(me TeN — (Zpt () — pu( ’/t )) ) (1.5)

TeN

where py(vy) = maxyek] pe(vF). When the bandit model is stationary and p is the expectation

mapping, we use the notations ju, = p(vg) = Ey ., [Y], p* = Ign[ax] Wi and k* € argmax .
€K ke[K]

The p-integrability condition is implicitly assumed to hold for every bandit model we
consider in this thesis; under the expectation risk measure, this simply means that the bandit
measure for each arm k € [K] is integrable, i.e. v, € L!(R). A policy 7 that minimises the

77" also maximises the sum of rewards, measured by the risk measures ( pt)le,

pseudo regret R/
ie. 211 pi(v) up to horizon T € N. The pseudo regret is convenient as it normalises this sum
of rewards against an oracle benchmark policy that always selects p; (). A typical example of
risk measure is the expectation; we discuss other risk measures extensively in Chapter 5. In the
stationary case, a policy that misses the optimal arm a nonvanishing fraction of the time suffers

P,V

linear pseudo regret R, = ©(T'), in contrast with a policy that learns to pull the optimal arm

increasingly often, resulting in sublinear pseudo regret R7:”"" = o(T'). Note that even though p

P,V

is deterministic, R;/""" is a random variable because the policy = itself is stochastic, and it is

nonnegative thanks to the definition of p; (/).

To analyse the pseudo regret, both in theory and in practice, we either (i) bound its expecta-
tionE_ or[R7 PY] < f(T), where f: RY. — R%, and report the mean regret across independent
replicates during numerical experiments; or (ii) bound the regret with high probability, i.e.
P_er (RF™ < g(6,T)) > 1 -9, where g: (0,1) x R%. — RY and ¢ € (0,1), and report em-
pirical quantiles of the regret across independent replicates. Lemma A.1 in Appendix A.1
shows that both bounds are essentially equivalent. In this thesis, we focus on expected pseudo
regret when dealing with multiarmed bandits. The main reason is that controlling this quantity
amounts to bounding each expected number of pulls independently, as shown in the next

proposition.
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Proposition 1.5 (Pseudo regret decomposition). Let (v, F) be a stationary, unstructured bandit.
For any risk measure p and policy m, we have

R = Y APYNET, (1.6)
helK)\(k*}

where ALY = p*(v) — p () is the suboptimality gap of arm k € [K|. In particular, we have

E,er [RF“]= Y APE_er [NF]. (1.7)
kelK\{k*}

Instance-dependent lower bound for multiarmed bandits (V). The regret decomposition
above allows to focus on each suboptimal arm separately. The following result establishes a
model-dependent lower bound on the expected number of pulls to such arms, and thus on the
expected pseudo regret. This lower bound represents the best possible regret achievable by a
policy in terms of quantities that depend on the bandit model v, F), such as the optimal risk
measure p*(v). First introduced by Lai et al. (1985) for parametric families of distributions
and then extended by Burnetas and Katehakis (1996) for more general families under the
expectation risk measure, it was recently adapted for the conditional value at risk measure
(Baudry et al., 2021a). Using similar generic change of measure arguments, we show here that
it actually holds for virtually any reasonable risk measures (see Appendix A.1 for the proof).

10
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Theorem 1.6 (Instance-dependent regret lower bound). Let (v, F) be a stationary, unstructured
bandit, p a risk measure and w a policy. Assume that:
(i) p is confusable over F, i.e. for any measure v’ = ®k€[K] v, € F, there exists a measure
v' € F such that for any k, j € [K],

{ﬂ;- =} ifj #k, ”

p(v) > p*(V')  otherwise;

(ii)  is strongly consistent over F, i.e. for any measure v’ € F and suboptimal arm k € [K| such
that p(v},) < p*(v'), we have, for any € € [0, 1), when T — +o0,

E  or [N%’T} = o(T*%). (1.9)

™V

Then for any suboptimal arm k € [K| \ {k*}, we have the asymptotic lower bound

E, ot [ N3] 1

TV

A > 1.1
Toies  logT KT (ks p*(v)) -

inf

9

where we define the extremal Kullback-Leibler operator over Fj, as:

K2EP: Fu xR — R
(w307) — inf {KL( || ¥), p() > 0"} . (1.11)

In particular, the expected pseudo regret satisfies the following lower bounded:

E, er [R7"™]

(1.12)

lim inf
’}rgnltlgo logT

> ok

- ke[KI\{k*} Kk? (v p*(v)) -

When the risk measure is the expectation, we simply write IC;ﬁf instead.

Minimax lower bound. As noted aboved, the regret lower bound of Theorem 1.6 is model-
dependent, in the sense that it is specific to a given bandit model (v, 7). Note that the right-hand
side is independent of the policy 7, so this lower bound actually holds for infr E_ or [R7Y].
A complementary, model-agnostic lower bound can be found by studying the robustness of
the policy with respect to the worst possible bandit model, i.e. infr sup, E_ e [R7”"], which
is also known as the minimax expected pseudo regret. Such worst case lower bounds typically

11
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scale as Q(v/KT) (Audibert and Bubeck, 2009). Note that policies can be optimal with respect
to the model-dependent regret but perform poorly in terms of minimax expected pseudo regret,
and vice versa. Recently, best of both worlds policies (Zimmert and Seldin, 2021) have been
designed to simultaneously match both types of lower bounds.

Alternative definitions of regret. The regret of Definition 1.4 is called the dynamic pseudo
regret for nonstationary bandit models. Even in the stationary case, there exists several al-
ternative notions of regret. In general, the regret compares the quality of a policy 7 against
an oracle benchmark policy 7*. In our definition, quality is measured by p and 7* selects at
each time the arm k with the highest risk measure. One may instead compare the rewards
directly and let 7* selects the arm with the best total reward in hindsight at horizon T, i.e.
R} = maxpe(g S L, YF — V™. However, this regret is less convenient to analyse and interpret
due to the additional randomness of the rewards themselves. For instance, using the expec-
tation criterion, if v is a product of R-sub-Gaussian bandit measures (see Section 1.3) such
that all arms are centred (y; = 0 for all k € [K]), then E[max;ec(rq Y Y] < RvV2TTog K
(Boucheron et al., 2013, Theorem 2.5), which is asymptotically sharp (up to a constant mul-
tiplicative factor) for many distributions (Gaussian, Bernoulli, etc.). Consequently, for these
distributions, the regret scales as E[RT] = O (/T log K) regardless of the policy, while the
pseudo regret R is uniformly zero, which corresponds with the intuition that no option is
better than another. An even harder benchmark would be to consider the policy 7* that selects
the arm with the best reward at each time, i.e. >/, maXpe (K] Y;¥ — Y™, which can scale linearly
with 7" on some instances, irrespective of the policy 7*. Finally, an altogether different approach,
pioneered in Cassel et al. (2018), is to consider trajectories of rewards, i.e. YI = (Y;™)]_;, and
compare policies using a risk measure U: RM) — R, ie. RY = E[U(YF)] — E[U(Y%)], where
m* = argmax, E[U(Y7T)].

Structured bandits. An unstructured bandit model simply means that the rewards generated
by each arm are mutually independent. In particular, pulling a given arm does not give any
information on the marginal distributions of the other arms. By contrast, structured bandits
assume some dependency, potentially allowing for more efficient learning strategies by lever-
aging shared information between arms. Generic structures have been studied in the literature
(Combes et al., 2017), as well as specific instance such as unimodal bandits (k € [K] — py,
is a unimodal function, see e.g. Combes and Proutiere (2014); Saber et al. (2021)), Lipschitz
bandits (k € [K] — py, is a Lipschitz function, see e.g. Bubeck et al. (2011); Magureanu et al.
(2014)) and bandits with groups of similar arms (Pesquerel et al., 2021), among others. An
important class of structured bandits is that of contextual bandits, where k € [K] — p(X¢) is
allowed to depend on a vector of side information X; € R? at time ¢ € N. In the rest of this
thesis, we focus on unstructured bandits and contextual bandits only.

12



1.2 How to play? An overview of stochastic bandits

Toy example. We now formalise the multiarmed bandit introduced in the Foreword (Fig-
ure 1). In this example, a surgeon (the agent) is faced with K = 3 follow-up options: at the
surgery department (k = 1), at the general practitioner (k = 2) or remotely (k = 3). Say
they adopted a policy 7, so that the ¢-th patient is addressed to the postoperative pathway
7 € {1,2,3}. Upon completion of the follow-up visit, the surgeon observes a score (reward)
generated by an unknown distribution v,,. For simplicity, we assume here that the problem
is stationary, i.e. only the policy may evolve with time, not the reward distributions. The
scores are normalised between 0 and 100, so the bandit model is ((vk)ie(x], (Fk)re(x]) and
Fi is the family of distributions supported in the interval [0, 100] for each k. We also assume
for now that it is unstructured ((vx)re[x] forms a product measure); for instance the scores
generated by visiting the surgery department do not provide information on the scores of the
other two alternatives. The goal of the surgeon is to adapt their policy 7 in order to maximise
the cumulative rewards >/, p(v,,) (i.e. minimise the pseudo regret), where p is mapping
from reward distributions to scalar values that encodes the risk preference of the surgeon.

Contextual bandits

Building on the foundations laid by Definition 1.2, we extend the notion of multiarmed bandits
to account for contextual information that influences the distribution of rewards.

13



Background material on statistical sequential decision-making models

Definition 1.7 (Contextual bandit model). Fix d € N. Let (X;),cy € BRYN be a sequence of
subsets of R? called the action sets. A contextual bandit model is a sequence of mappings (v¢)ien
such that vi: Xy — M{ (R) forall t € N. Let X = (X;)ien be a stochastic process such that X, is a
Xi-valued random variable for all t € N. The reward process associated with X is defined as

= ()

and the corresponding natural contextual bandit filtration is defined as

(65) e = (o ({ (% X X5) s <tiu s £41))

teN

o~ (A (X e (1.13)

A (1.14)

Furthermore, X is said to be a contextual bandit policy if there exists a filtration (G;-),cn independent
on (G*)sen such that X is predictable with respect to (o(G* U Gi*))ien. A bandit model is said to be

linear if there exists p € N*, a sequence (£}),.y of linear mappings and a mapping o such that the

following factorisation holds for all t € N:

5? Pt
RP — MT(R) .

Xy
v =poly

Finally, it is said to be stationary if the sequence (v4)ien (0r (U7, pt)ien) is constant and equal to the
mapping v: X — M7 (R), where X = ey X

Again, the definition of a contextual bandit policy X = (X;);en allows X4 to depend on
(i) the set of available actions X1, (ii) the history of past decisions and rewards (measurable
with respect to Gi) and (iii) an independent source of randomness. In other words, the natural
contextual bandit filtration represents the information available to the agent after making the
decision X, receiving the reward Y;Xt and observing the next action set X; 1, but right before
making the decision X; . It is often convenient to also consider instead the adapted filtration

(G5 )er = (o (X X0, VJ¥0) s <t —1Lu<t) (1.15)

teN’

which represents the information available after making the decision at time ¢ but before receiving
the corresponding reward (in particular, the policy X is adapted to this filtration).

A simple example of linear bandit is to assume a linear statistical model between rewards
and actions, e.g. Y; = (0*, X;) + 1, where 6* € R4 and (0t)sen is an iid. Gaussian process with
mean zero and variance 02 € R% (i.e. p=1,0*: 2 € RY — (0*,2) and : y € R — N (y, 0?)).

14



1.2 How to play? An overview of stochastic bandits

The formulation above allows for a slightly more general notion of linearity; for instance, we

2

could also parametrise the variance o~ as a function of the action Xj.

P In Chapter 5, we explore settings where other characteristics of the reward distribution than the
expectation are linearly parametrised.

Similarly to multiarmed bandits, we do not focus on nonstationary contextual bandits in
this thesis, and refer instead to Cheung et al. (2019); Russac et al. (2019). However, we point
out that our definition of stationarity allows for time-varying action sets (X});cn, i.e. only the

mapping from actions to rewards is constant with time, not the actions available to the agent.
This generic definition of contextual bandits encompasses many well-studied settings.

¢ Unstructured K-armed bandit models. (®;¢x vF)ien is a special instance of linear
bandit in dimension d = K where, if we denote by X’ = (ey )¢k the canonical basis of
R, we have 0% = (k)e(x), £*: © € RE — (0%, x) and ¢;: k € [K] C R~ f fort € N.

e Unstructured K-armed bandit location models. If the K-armed bandit model can fur-
ther be written as Y;* = uF + 1 with random variables Y* ~ vf and pf € R for all
k€ [K]landt € N (e.g. vf = N(uF,0?)), we also have the representation with d = K,
0F = (uF) ke[k) and ¢y : y € R — y + 1, (Where we identify 7, with its distribution).

e Linear K-armed bandit models. Assume further that the action sets at all time t € N
are of size K, i.e. X; = (X}) re[k], and that the reward associated with arm & € [K] is
V¥ = (0, XF) + n. This is a linear bandit in dimension d = K.

e Linear K-armed bandit models with shared contexts. Alternatively, assume that the
agent observes a single vector z; € R at time ¢ € N and that each arm k € [K] generates
a different reward distrib ution with respect to z, e.g. ;¥ = (0¥, z;) + ;. This is a linear
bandit in dimension d = K'm with 6} is the concatenation of K vectors 6},...,0/ and
X =(exr ® act)ke[ k), Where ® is the Kronecker product on RE x R™,
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Definition 1.9 (Pseudo regret). Let (1v4)ien a contextual bandit model and p = (pt)ien a sequence
of mappings M{ (R) — R U {£oo} called the risk measures. We assume that v;(X;) C Lt (R) for
all t € R. The cumulative pseudo regret of policy m with respect to the risk measures (p;)ien and
contextual bandit model (v;).cn is the stochastic process

T
(G (Z pr (X)) = i <ut<Xt>>> , (1.16)
t=1

TeN

TeN

where X = argmax,c y, pt(v(z)).

Minimax lower bound for contextual bandits. (¥). Lower bounds have also been derived
for linear bandits under the expectation risk measure and various assumptions on the geometry
of the action sets (A;);en. In the model-dependent setting, for finite action sets, Q(logT’)
bounds have been proven, see e.g. Graves and Lai (1997); Combes et al. (2017). In this thesis
however, we will focus on minimax regret bounds for contextual bandits. In that setting,
Chu et al. (2011) introduced a Q(+/dT) lower bound assuming a finite number K of actions
at each round (as in the bandit model with shared contexts presented above). This result
was recently strengthened to Q(+/dT log(K)log(T/d)) (Li et al., 2019). For infinite action
sets, Rusmevichientong and Tsitsiklis (2010) proved a Q(dv/T) lower bound for actions in the

Euclidean unit ball IB%ﬁ_H2 (0,1) and Gaussian rewards; their proofs was later simplified and
extended to the hypercube Bﬁ_”w (0,1) in Lattimore and Szepesvéri (2020). Drawing inspiration
from the latter, we slightly extend their results to handle (i) generic risk measures that are
linearly parametrised by the actions, and (ii) non-Gaussian models, assuming instead a milder
condition on the bandit log likelihood; we refer to Appendix A.1 for the proof.
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1.2 How to play? An overview of stochastic bandits

Theorem 1.10 (Minimax regret lower bound for contextual bandits). Let vy be a stationary
contextual linear bandit with constant action set X; = X forall t € N, and p a risk measure such
that p(ve(z)) = (0,x) for all z € X. Assume that there exists a mapping g: R — R, such that
Ex g[log ju”:/(())((tt)) (Yy) | Xio] < g((8 — 0',Xy) /o) forall t € N and some fixed o € R such that
g(y) = O(y?) when y — 0. Ifeither (i) X = B¢, (0,1) or (ii) X = B

lllloo II-ll2

(0, 1), we have, for T large
enough,

inf sup Ex g [R77"] = Q(odVT). (1.17)
X geRrd

P The likelihood condition of Theorem 1.10 is satisfied in particular in the linear Gaussian bandit
models vg: x € RY — N ({0, x),02) with g: y € R +— y?/2. In Chapters 5 and 7, we apply this result
to non-Gaussian models (with piecewise quadratic log likelihood) and other risk measures than the

expectation (namely the expectiles).

Although this lower bound is stated on the expected pseudo regret, we favour high proba-
bility bounds when dealing with contextual bandits in this thesis, as we analyse algorithms
based on concentration results that naturally yield such bounds. Of note, Lemma A.1 extends
readily to contextual bandit regret, so that both bounds are essentially equivalent.

Toy example. Contextual bandits offer a richer class of models to analyse the example of
postoperative recommendations recalled above. When addressing the t-th patient to one of
the follow-up pathways, the surgeon has access to clinical informations, represented by a
vector x4; for instance, z; may contain 4 variables: sex, weight, height and age. In terms of
postoperative score, each of the K = 3 options interacts differently with these additional
variables, which we model as a linear K-armed bandit with shared contexts, i.e. the random
reward for choosing option k at time ¢ is Ytk = (O, xt) + n1, where 7, represents noise and
(0;67]4)]46{17”.74} is a vector parameter for option k. As an example, 614 > 0and 24 < 0,034 <0
encodes a preference towards addressing older patients (age is the fourth component of ;) to
the surgery department (k = 1), as it increases the associated mean postoperative score.
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1.3 What is the reward? An overview of statistical models

In this section, we introduce standard statistical models for stochastic bandits, i.e. families of
measures F C M7 (R) to represent reward distributions. Following standard conventions in
statistics, we distinguish two broad categories of statistical models. If 7 can be embedded in a
finite dimensional space (i.e. distributions in F can be described with a vector parameter), it is
called a parametric model, otherwise it is called a nonparametric model. The models we consider
in this thesis are summarised in Table 1.1.

Parametric models and exponential families. A typical example of parametric model is the
family of Gaussian distributions, parametrised by a vector (1, 0) € R x R corresponding to
their means and standard deviations.

More generally, Gaussian distributions form an instance of exponential family. Given a set ),
an exponential family is a set of measures F, EI} r =1{v}oco C M{’ (¥), parametrised in some
open set © C R?, such that given a common base measure 7, for all § € ©, the measure vy has
a density pg = %2 given by

Do Yy — R+
y — h(y) exp((0, F(y)) — L(9)), (1.18)

where F: Y — R% s the feature function, h : Y — R, is the base function, and L represents the
normalisation term (also known as the log-partition function) given by the convex mapping

L:0—R

6+ log /y h(y) exp({6, F(y)))dy. (119)

Note that a change of base measure © only affects the base function &, so we often omit it, and
we resort to a slight abuse of notation and refer to the distribution vy by its density py. We
denote by Op = {# € R? : £(#) < 0o} the domain of £ and by O; = {6 € Op : det V2L(0) > 0}
the set on which its Hessian is invertible. Throughout this thesis, we assume that © C ©p N Oy,
which is tantamount to assuming that the family is minimal, and ensures we only consider
nondegenerate distributions (V£ is one-to-one on its domain). We use the notations Py and
[Eg to explicitly refer to the probability and expectation under the distribution py € F, El} - We
also assume that pg € L (Y) forall § € ©, i.e. Eg [F(Y)] < +oo0.

A fundamental property of exponential families is the following form for the KL divergence
between two distributions with parameters 6, §’ € ©p:

KL(pg || por) = (0 — 6", B [F(Y)]) — L(0) + L(¢") .- (1.20)
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1.3 What is the reward? An overview of statistical models

Here, Eg [F(Y)] is called the vector of expectation parameters (also known as dual parameters),
and is equal to VL(0). Hence, it holds that KL(pg || pe) = B (', 6), where B, is known as the
Bregman divergence (Bregman, 1967) with potential function £, defined as

Bg: @D X @D — R+
(0,0) —s L(0") — L(0) — (0 — 0,V L(0)) . (1.21)

A particular type of exponential families of interest are the single parameter exponential
families (SPEF), i.e. © C R. For instance, for a fixed o € R%, {N(u,0?), u € R} forms a
SPEF. Such statistical models are especially appealing in stochastic bandits since the extremal
Kullback-Leibler operator has an explicit expression for SPEF. Indeed, for F, ,]fl} = 1{ps, 0 € O}
and risk measure p: py € F — Eg[F(Y)], the properties of univariate optimisation shows that:

V0 € ©,Yp" > p(pg), Kii (pe; p*) = KL(pg || pe+) = B (6*,6) (1.22)

inf

where 0* € © is such that Ey«[Y] = p* (assuming it exists).

Nonparametric models. A typical example of nonparametric model is given by the family of
distributions over R with a given bounded support, i.e.

Fipm = v € M{(R), Suppv C (B, B} (1.23)

for some B, B € R. Such families cannot be embedded in a finite-dimensional space: indeed,
any continuous function p: [B, B] — R (which forms an infinite-dimensional vector space)
generates a distribution in |  with density Ipl/ Jp 5lp(x)|dz. These statistical models are
popular in stochastic bandits for a similar reason as the SPEF, i.e. their extremal Kullback-Leibler

operator can be computed easily with the dual form (Honda and Takemura, 2015):

F.._ =
Vv e f[ﬁﬁ],v,u* > By, [Y], K2 P (v;p) = max  Ey., [log (1 — MY —p*)] . (1.24)

1
AE[Q?‘L*}

Fisg F B
Note that the right-hand side does not depend on B, and in fact K, ™ (v; %) = K, " (v; 1)
(Honda and Takemura, 2015, Theorem 2).

A critical property of Gaussian distributions is the behaviour of their tails, characterised by
their moment generating function (MGF) A € R = Ey (.02)lexp(A(Y — p))] = exp(A20?/2)
for 1 € R and o € R’ . A natural extension is to consider sub-Gaussian distributions defined by

For=1{veE M R), VA €R, Ey [exp(\(Y — Ey.,))] < exp(\2R?/2)} (1.25)
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for R € RY, i.e. their MGF are upper bounded by a Gaussian MGF. Bounded distributions
form a subset of sub-Gaussian distributions (Hoeffding’s lemma, see Hoeffding (1963)):

P88 € Fo,E-B)2- (1.26)

For Gaussian distributions, the parameter o2 that controls the MGF also represents the variance;
for sub-Gaussian distributions, it is only an upper bound, as shown by the following lemma.

Lemma 1.12. Let R € R} and v € Fg . Then Vy ., [Y] < R?.

In particular, the MGF of any distribution v, if it is defined in a neighbourhood of zero, is
equivalent to A — 1+ Vy ., [Y]A%. The sub-Gaussian condition simply states that this relation
holds globally for all A € R. A less stringent requirement is to ask that the MGF is locally
defined, which gives rise to the notion of light tailed distributions

Fo={ve MIR), 3N, €RY, VA€ (“\, A), Eyey [] < 400} . (1.27)

In particular, if the MGF exists locally, we may obtain the k-th moments by differentiating it
k € N times, and thus moments of all order exist. An even less stringent condition is thus to

ask only for the existence of a certain (raw or central) moment, i.e.

FMe = {u € M{(R), Ey~, [|Y|1+5} < M} or (1.28)
Feented — [y € MY (R), By [[Y = By [Y]'] < 5} (1.29)

for some ¢, M, k € R’.. These form a subset of the so-called heavy tailed distributions.

Nonparametric models capture a much broader range of distributions than parametric ones
and are less prone to model misspecification. However, this comes at the cost of typically worse
algorithmic performances. For bandits, achieving logarithmic regret may be impossible when
the underlying statistical model is too large, as evidenced by the following lemma.
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1.3 What is the reward? An overview of statistical models

Lemma 1.13 (Obstruction to logarithmic pseudo regret). If F' = Uy pepFp ) (all bounded
distributions), ' = Urers Fg,r (all sub-Gaussian distributions), F = Fy (all light tailed distribu-

tions), F = Uprers Fme = Unemifﬁ‘f;’md for some e € R*. (all distributions with finite 1 + e-th
moment), or F = M{ (R) (all probability distributions), then

Yv € F, Vu* > By [Y], KL (v; %) =0. (1.30)

The counterexample used in the proof (see Appendix A.2) for bounded distributions is
borrowed from Hadiji and Stoltz (2023, Theorem 3, Theorem 11); see also Ashutosh et al.
(2021) and Agrawal et al. (2021) in the sub-Gaussian and finite moment settings respectively.
Informally, such counterexamples show that the main obstruction to logarithmic regret is the
possible “mass leakage at infinity” that results from a lack of compactness in the family 7 (in
bandits idiom, we say that this allows arbitrarily close confusing instances to exist).
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Table 1.1 — Summary of classical statistical models for stochastic bandits.

Name Definition Dimension
Gaussian ,
. . 1 _y=n)
fixed variance FNo = Pu Yy ER= e 20 peR 1
o? e Ry
SPEF FRPEE = {pg: y €Y s h(y)e?TW-L0O) gcoC R} 1
. 1 - (y—;;)2 .

Gaussian Fn = p,M:yE]RHmUe 202 (p,0) € R x Ry 2
EF FE e ={po: y €V o h(y)eF@)=£0) g c @ C R} d
Bounded _
BBCR Fipm = {VEMT(R), Supp v C [ﬁ,B]} 00
Semibounded Fl—oo,B) =1V € M (R), Supp v C (—o0, B} NLY(R) ~
BeR or Fip ) = {¥ € M{ (R), Supp v C [B,o0)} NL'(R)
Sub-Gaussian For= {y € M{(R), VA € R, By, [V v < 25 } %
R e RY ’
Light tailed Fo={ve M{(R), N, € R, YA€ (—X, \), Byny [] < +o0} 0
Finite moment - { € MF(R), E {|Y|1+5] o M}

=qv , By < 00
M eR%, e R, M ! v
Finite moment
(centred) Feented — [y € M{ (R), By [[Y = By [V][7F¥] < 1} %

keRY, e € RY

1.4 How to play (provably) well? Concentration and martingales

In this section, we introduce fundamental results that are ubiquitous in statistics and probability

theory, known as the concentration of measure phenomenon. Not only do they offer powerful tools

to analysis bandit algorithms (and beyond the scope of this these, machine learning at large),

they also directly dictate the design of many policies, known as UCB (see Theorem 1.33). We

adopt a fairly generic formulation that unifies several known results as the methods presented

here form the basis of several key results in Chapters 3, 4 and 5. We conclude with two original
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contributions: an order-optimal time-uniform mixture bound with mixing parameter time

peeling, and a generic analysis of UCB with arbitrary confidence sequences.

Fixed sample concentration and the Cramér-Chernoff method.

We recall here the standard definition of martingales and the classical Cramér-Chernoff bound.

Definition 1.14 (Martingale). Let T = Nor T = Ry, (G¢)ieT a filtration and (Y, ||-||) a normed
space. A stochastic process (My)ieT is said to be a (G)icT-supermartingale if for all t € T, (i) M,
is Gi-measurable, (ii) E[||M||] < +oo, and (iii) E[Mq | G¢] < M. If instead E[M;11 | G] > M,
forallt € T, it is said to be a (G;)ic7-submartingale. Finally, it said to be a (G;)cT-martingale if
it is both a supermartingale and a submartingale.

A typical example of a martingale is ( LY, — p)ien where (V;)sen is an i.id. sequence of
integrable random variables with expectation p. In this thesis, we will mostly consider stochastic
processes over R or R?, in which case the norm ||-|| is implicitly set to be the corresponding
Euclidean norm. Moreover, for a given a nondecreasing, right-continuous mapping F': R — R,
we define the generalised inverse (de La Fortelle, 2020) of F as F~!: u € R — inf{y € R, F(y) >
u}, which satisfies in particular the order-preserving property that F~1(u) < y impliesu < F(y)
forally € R and u € Ry (a similar definition exist for nonincreasing mappings, which we skip
to avoid cluttering). When F' is invertible, its generalised inverse is equal to its inverse, which

we also denote by F—1.
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Proposition 1.15 (Generic Cramér-Chernoff bound). Let t € N, (G,)._, a filtration, (Ss)!_; a
(Gs)t_,-adapted process, an open interval T C R with 0 € T and a function v: T — R such that for
all s € {1,...,t—1} and X\ € Z, we have log E[exp(A(Ss+1— Ss) | Gs] < Y(A). Welet T, = TNR,
and T_ = T NR_ and define the Fenchel-Legendre transforms:

YT u Ry sup Mu—¥(A\) and 0T :u e Ry sup du— (). (1.31)
AeT AET_

Then for any 6 € (0, 1), we have

P (St > t(ypo)7! (1 log ;)) <6 and P (St < t(yo)7t (110g ;)) <. (1.32)

Note that this generic bound applies to martingales (S;):en, not just sums of i.i.d. random
variables (sometimes called weak dependency), as long as the control by ¢ holds. In particular,
this is the case for sub-Gaussian distributions with 1): A € R — A\?R?/2 for some R* .

Corollary 1.16 (Cramér-Chernoff sub-Gaussian bound). Let R € R*, t € Nand (Y;)._, a
sequence of i.i.d. random variables drawn from v € Fg r with expectation ;1 € R. Forany é§ € (0, 1),

/2 2
1y £ Ry/—log =
Mt ; og5

Then ©9 is a confidence set at level 0 for , i.e. P(p € ©)>1-04.

we consider fi; = 1/t L _, Ys and

Q) = , (1.33)

Time-uniform concentration and the method of mixtures

The main limitation of the above confidence sets is that they are only valid for a fixed sample
size t, i.e. we control V¢ € N, P(i € ©?) rather than the much stronger statement P(Vt € N, p €
©?). The latter is of utmost importance to handle sequential settings where data is actively
collected by an agent, rather than studied retrospectively. Stochastic bandits offer a typical
example of such settings: although each arm k € [K] generates i.i.d. samples, the number of
observations Nf at time ¢ € N is a (random) function of past observations and the policy of the
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agent. Similarly, model-based reinforcement learning (Jaksch et al., 2010) suggests exploration

strategies in Markov decision processes from random numbers of visits to state-action pairs.

Definition 1.17 (Time-uniform confidence sequence). Let 7 C M{ (), p: F — R% a mapping
and § € (0,1). A time-uniform confidence sequence at level § for p and F is a sequence of mappings
(©9)4en such that for t € N, ©9: Y — B(RY) and for all v € F, we have

Py en (V¢ €N, p(v) € 8 ((¥)iry)) > 19, (1.34)

where Y = (Yy)ien ~ v® denotes an i.i.d. sequence of random variables drawn from v. When the
context is clear, we identify the mapping ©F with the set O ((Y3)!_,), i.e. (0%)en is a set-valued
stochastic process adapted to the natural filtration of Y.

In this thesis, confidence sequences typically consist of compact, convex subsets of R?, e.g.
for a given t € N, ©! is a closed segment (d = 1) or is (contained in) an ellipsoid (d > 2).
Moreover for any fixed ¢ € N, § € (0,1) — ©Y is typically a nonincreasing mapping (for the set
inclusion), i.e. lower § means less room for errors and thus larger confidence sets.

Remark 1.18 (Equivalence between time-uniform and random time confidence). Howard et al.
(2020, Lemma 3) shows that the time-uniform bound P(Vt € N, p(v) € ©%) > 1 — § is equivalent to
P(p(v) € ©%) > 1 — 4 for any adapted (not necessarily stopping) random time 7.

Of p-values and e-values. We briefly highlight the connections between confidence sets and

p-values, which are ubiquitous in statistical hypothesis testing.
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Definition 1.19 (P-values). Let F ¢ M} (R), p: F — Rand t € N such that for all § € (0,1), ©¢
is a confidence set at level d for p and F. Fix py € R. The p-variable associated to the confidence sets
((:)f)(ge(m) and null hypothesis Ho = {v € F, p(v) = po} is the random variable defined as

PHo = inf {5 € (0,1), po ¢ O} . (1.35)

In particular, we have that Py, (P/* < &) < é forall § € (0,1) and v € Hy. If forall § € (0,1),
(©9) e is a time-uniform confidence sequence for all § € (0,1), then the stochastic process (P}%)en
is called a time-uniform p-process, which satisfies in particular Py_,on(3t € N, P/ < §) < 6)
and Py, en (P < §) < 0) for any adapted N-valued random time 7. Realisations of p-variables and

p-processes are called p-values and time-uniform p-values respectively.

In the light of this definition, the confidence parameter § is an upper bound on the false
discovery rate, or type I error, i.e. the probability of rejecting the null (py & ©9) even though the
observed samples (Y) were drawn from v € H. A typical threshold for type I error is § = 0.05.

Recently, p-values have come under scrutiny due to their frequent misuse and erroneous
interpretation (Wasserstein and Lazar, 2016), leading to the so-called replication crisis in
empirical sciences (Pashler and Wagenmakers, 2012). A major flaw of classical p-variables
built from fixed samples confidence sets is their lack of robustness to stochastic sampling,
ie. Py, e~ (PTH0 < 0) < 0 is not guaranteed if 7 is random. In particular, if an experiment is
designed with sample size T, such p-variables are invalid under optional stopping (concluding
the experiments after ¢ samples if P/* < 0.05), optional continuation (collecting additional
data t > T if P}° > 0.05) or even data peeking (computing P/** before P}*).

To mitigate this issue, Johari et al. (2022) introduced the notion of anytime-valid p-values,
which correspond to our definition of time-uniform p-processes. A related topic, that has gained
widespread attention in the recent years, is that of e-values and e-processes, which are nonnegative
processes (E;)ien such that Ey,, en[E;] < 1 for every adapted stopping time 7 and hypothesis
v € Hyp (in particular, this property allows for seamless testing under optional stopping or
continuation). Equivalently, e-processes are envelopes of so-called test martingales, i.e. there
exists a family of nonnegative martingales { (M} )icn, v € Ho} with My = 1 such that By < MY
for all ¢ € N. While we do not focus on such processes in this thesis, we use and introduce
several time-uniform concentration results derived from nonnegative (super)martingales (see
below, and Chapters 3 and 4 in particular), which are thus examples of e-processes. We refer
to Griinwald et al. (2020); Vovk and Wang (2021) for an introduction, Turner and Grunwald
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(2023); Turner and Griinwald (2023) for applications to contingency tables and count data,
and Ramdas et al. (2022) for a recent overview of this rapidly growing field.

Numerical experiments on p-values. As a witty illustrative example of the importance of
time-uniform statistics, let us consider three friends playing a card game on holidays. At the
end of each round, players are ranked as winner, neutral and looser. One of them (who may
be the author of this thesis) started in a streak of losing hands, and was prone to stop playing
after finishing a few rounds as looser. After a while, this player wanted to test whether he
was unlucky or plain bad at the game. To this end, he considered the statistical Bernoulli
model F = {B(p), p € (0,1)} (p represents the probability of loosing a round) and the null
hypothesis Ho = {p < 1/3}. The three friends played a total of 7' = 226 rounds across N = 29
sessions. Denoting by (7;); the (random) length of these sessions, they collected a dataset
Y = ((Y{);i,)X, where each (Y})]., is an i.i.d. sequence of random variable drawn from
a distribution v € F. We report in Figure 1.2 the fixed sample and time-uniform p-values
computed after each completed round (using the classical binomial test and the time-uniform
Bregman confidence sequence for the Bernoulli SPEF derived in Chapter 3 respectively) on
synthetic data drawn from B(1/2) (in N = 1 session) and on real data (in IV = 29 sessions).

In the synthetic experiments, both methods easily rejected the null (which is indeed false)
at 0 = 0.05 after 226 rounds. Being more conservative in nature, the time-uniform p-process
started rejecting after about 100 rounds, which was much later than the first rejection of the
fixed sample p-variable (about 25 rounds). However, computing in hindsight this p-variable
renders it statistically invalid (peeking at the data, i.e. p-hacking); only the time-uniform process
allows to prematurely stop the experiment while preserving type I error guarantee. In the
real-world experiment, the resulting p-values after playing 226 rounds were 0.06 and 0.93
respectively, thus failing to reject the null (i.e. that player was not so bad after all). However,
we see that the p-variable was deceived and would have rejected the null had the experiment
been stopped after about 60 to 210 rounds (but again, without guarantees on the type I error).
By contrast, the time-uniform p-process never rejected the null, which we interpret as a sign
of its robustness to stochastic sampling. Indeed, although the outcomes of each round are
modelled as i.i.d. random variables, the first sessions were stopped due to the early streak of
bad luck (and grumpiness) of one player, thus skewing the results towards more losses.

Nonnegative supermartingales and method of mixtures. We now introduce the fundamen-
tal result of time-uniform concentration, which is essentially a corollary of Doob’s maximal
inequality for nonnegative supermartingale, also known as Ville’s inequality (Ville, 1939). We
present it here in a slightly more general formulation, and derive it from first principles to
highlight the sort of supermartingale constructions that we use throughout this thesis.
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p-values vs. e-values of null hypothesis p-values vs. e-values of nulII hypothesis
Ho = {l loose 33% of the time or less} Ho = {l loose 33% of the time or less}
(synthetic data 5(0.5)) 100% (real data)
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Figure 1.2 — Realisations of p-variables (fixed sample) and p-processes (time-uniform) to test hypothesis
on the skill of a card player. Left: synthetic experiment (226 i.i.d. realisations of B(1/2)). Right: real
data (226 rounds across 29 sessions). Black dashed line: significance level § = 0.05.

Theorem 1.20 (Time-uniform concentration of nonnegative supermartingales). Let 7 = N
or T = Ry, (St)teT a real stochastic process adapted to a filtration (Gi)ic7, (Fi)ieT a family of
continuous mappings R — Ry and to € T such that

(1) (M), = (Fi(St))e=t, is a nonnegative (Gy)i>t,-supermartingale,
(i) E[M;] < 1,

(iii) All mappings (F})i>y, are either nondecreasing or nonincreasing.
Then for any 6 € (0, 1) and any (G)en-stopping time T such that almost surely T > to, we have

P (sT > F1 <(15)> <8 or P (ST < F (;)) <9, (1.36)

depending on whether the (Fy)i=+, are nondecreasing or nonincreasing. Furthermore, we have

P <w >tg, S; > F ! (;)) <6 or P (Vt >tg, Sy < F[! (;)) <4. (1.37)

In the sub-Gaussian case, we couple the above generic bound with a specific supermartingale
construction obtained by mixing the processes (M) over A € R.
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Corollary 1.21 (Time-uniform sub-Gaussian concentration with the method of mixtures). Let
R € RY and (Y;)ien be a sequence of i.i.d. random variables drawn from v € Fg g with expectation
p € R. Forany oo € R% and § € (0, 1), we consider (fi¢)ren = (1/t 34 Ys)ten and

(85a),., = ( e RJ % <1 + (;) log (?H) ) . (1.38)
teN
Then () ,)ien is a time-uniform confidence sequence at level § for 1, i.e.
P (Vt €N, pe (:)f,a) >1-7, (1.39)
or equivalently for any adapted random time T in N,
P (u € éia) >1-6. (1.40)

Remark 1.22 (Running intersection). Another advantage of the time-uniform formulation is that if
(09)sen is a time-uniform confidence sequence at level 0, then the running intersections (Ns<t©?)sen,
called the confidence envelopes, also form a time-uniform confidence sequence at the same level, which
is at least as tight as the original sequence. Taking the running intersection is standard in sequential

testing and was pioneered in Darling and Robbins (1967).

We notice that the confidence sequence derived from the method of mixtures depends on a
hyperparameter «, that we call the mixing parameter. The following elementary lemma, which
appeared in Howard et al. (2021, Proposition 3), suggests a natural tuning of «.

Lemma 1.23 (Tuning of the mixing parameter). Let to € Nand 6 € (0,1). Then we have

“sto = argmin,cgs \/2(15 + a)log(\/1+t/a /), where ys = —1/(1 + W_1(—6%/e)) and W_4 is
the first negative branch of the Lambert W' function. In particular, in the R-sub-Gaussian case, we have

_ g ay)
Vs/2to = argmlnaeRi|@t07a|.
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For § = 0.05, we have ;5 ~ 0.12 for the one-sided bound and 5,5 ~ 0.10 for the two-sided
confidence interval. Importantly, this tuning only works for a fixed sample size ty. Note that fast
numerical implementations of the Lambert IV function are readily available in many scientific
libraries, e.g. scipy.special lambertw in Python.

Remark 1.24 (Mixtures beyond the sub-Gaussian case). The main idea of the method of mixtures is
to find a suitable mixing measure v to compute the mixture supermartingale ([ M dva(\))en. This
is akin to finding a conjugate prior in Bayesian estimation to make such integral calculations tractable.
Thanks to the natural Gaussian structure of the supermartingales (M})),cn in the sub-Gaussian case,
Gaussian measures make for suitable mixing measures in this setting. Under other assumptions, such as
distributions with bounded supports, there is no such natural mixing measures. Of note, Waudby-Smith
and Ramdas (2023 ) introduced a construction that replaces the mixture process with a so-called hedged
capital process with predictable weights. We detail this construction, which we will use several times
as a benchmark, in Appendix A.3.

P The sub-Gaussian bound of Corollary 1.21 requires the knowledge of the sub-Gaussian parameter
R. In fact, no time-uniform confidence sequences valid over all sub-Gaussian distributions may exhibit
a similar O(y/log(t/0)/t) concentration rate, as stated in Corollary 1.36 below. With this in mind, it
is however tempting to replace R with a data-dependent estimator, e.g. the sample standard deviation
o = \/ 1/t 3°F_ (Y — fir)2. Recently, Waudby-Smith et al. (2021) showed that this procedure induces
an asymptotic time-uniform confidence sequence for the family of square-integrable distributions

UMGR: fM,l/

~ 2 o 2 t
6 - 7> = |2 - Z _
(@t’o‘)teN N ( ’utiat\l t <1+ t)log ((5 bt a) ) ’ (141)
teN

in the sense that there exists a true time-uniform confidence sequence (0)scy (typically unknown)
such that almost surely max ¢ ~ max 09 and min O ~ min ©? when t — +oo (although, much
like the central limit theorem for fixed sample estimation, this does not provide information on the
nonasymptotic regime). In Chapter 4, we consider a subset of the family of sub-Gaussian distributions
satisfying a high order MGF condition that allows to construct a (nonasymptotic) confidence sequence
for the sub-Gaussian parameter R.
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Extension to multivariate distributions. We have so far stated our results for the concen-
tration of real-valued distributions. The same mixture construction may actually be used in
the multivariate setting. The proposition below is taken from Abbasi-Yadkori et al. (2011,
Theorem 1) and Lattimore and Szepesvari (2020, Theorem 20.4).

Proposition 1.26 (Multivariate time-uniform sub-Gaussian concentration with the method
of mixtures). Let d € N, R € R}. We consider two stochastic processes, (X;)ien in RY and
(mt)ten in R, and an adapted filtration (G;)ien such that (n;)ien is conditionally R-sub-Gaussian, i.e.
log E[e?+1 | G;] < A2R%/2 forall A € Rand t € N. For any o € R*., we consider the R%-valued
process (St)ien and the S+ (R)-valued process (V,2)ien (positive definite matrices of size d) defined

as

t—1
(St)sen = (Z nsX ) and  (V),ep = (Z X, X, +0Jd> . (1.42)
teN teR

s=1

Then for any 6 € (0, 1) we have the following inequality (also valid for adapted random times):

p (Elt eN, ||Si|2

1 det V&
(ve) ! > R? (2103; 5 + log t )> <9. (1.43)

P A typical use case of Proposition 1.26 is to construct time-uniform confidence sequences for 6* € R?
in the linear bandit setting Y = (6%, Xi) + 1., where (n:)ien is a centred noise process. In Chapter 5,
we derive a similar multivariate time-uniform concentration bound with the method of mixtures for
linear bandits with risk measures.

Optimal time-uniform concentration rate. We have seen in various instances that the method
of mixtures produces time-uniform confidence sequences of decreasing sizes O(R+/log(t)/t)
when the sample size ¢ goes to +oo and R? is some measure of variance (such as the sub-
Gaussian parameter). A natural question is whether this rate can be improved. The answer is
affirmative, which is a direct consequence of the celebrated law of iterated logarithms (see e.g.
Darling and Robbins (1967)). For completeness, we provide a proof of a weak version, that

also sheds light on the pivotal role of the exponential supermartingale.
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Proposition 1.28 (Law of iterated logarithms). Fix R € RY. If (i) T = Nand (Si)ieT =
(3t Yo — w)ier where (Yz)ieT is an i.id. sequence of random variables drawn from v € Fg g with
expectation p € R, or (ii) T = Ry and (S;)ie7 satisfies the SDE dS; = RdW;, then

P <lim sup 1, liminf

I S St>_1>—1 (1.44)
1stoo Ry/2tloglogt ' ‘t—+oo Ry/2tloglogt ~ i ’

In simpler terms, for many centred Gaussian or R-sub-Gaussian processes (.S;):c7, almost
surely, it occurs infinitely often that S; < O(Ry/tloglogt), which imposes a lower bound
Q(R+/loglog(t)/t) on the width of any time-uniform confidence sequences. Of note, in the
Brownian motion case or if the variance of (Y;):cn is exactly R, the lim sup and lim inf are exactly
1 and —1 respectively with probability 1.

In particular, the method of mixtures appears to produce suboptimal confidence sequences
as their concentration rate is O(/log(t)/t) (this is a universal feature of the method, even with
other controls of the cumulant generating function by a function v, see Howard et al. (2021,
Proposition 2)). Alternative constructions such as time peeling or discrete mixtures Howard
etal. (2020, 2021) are able to achieve this asymptotic concentration rate. However, they typically
do so at the cost of higher leading constant and wider confidence sets for small samples.

Catching the optimal rate with mixtures (V)

We now show that it is possible to force a O(+/loglog(t)/t) concentration rate with the method
of mixtures by combining it with a peeling argument, not on the process (S;):cn itself but on the
mixing parameter «. To the best of our knowledge, this result is new and offers a complementary
view on mixing versus peeling. More precisely, we have seen in Lemma 1.23 that for a fixed
time ¢y € N, the choice a x ty provides the minimal width for the confidence sequence at
time to. However, a time-dependent « is not supported by the theory as it would break the
supermartingale property; in addition, it would make the time-uniform bound of Corollary 1.21
asymptotically bounded by O(1/+/1), in contradiction with Proposition 1.28. Nevertheless, we
show that it is possible to make « partially time-dependent, i.e. piecewise constant over epochs
of geometrically increasing length, resulting in an order-optimal concentration rate. We defer
the proofs of the following two results to Appendix A.3.
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Proposition 1.29 (Asymptotically order-optimal time-uniform concentration with mixing
parameter time peeling). Let (S¢)ien be a real-valued stochastic process adapted to a filtration
(Ge)ten and (F{) ey >0 @ Sequence of mappings such that for each o € R,

(i) foreacht € N, x — F{(x) is nondecreasing,

(it) foreach xz € R, t — F{(x) is nonincreasing,

(iii) (M{),eny = (F£(St))sen defines a nonnegative (G )ien-supermartingale with E [Mg] < 1.
Fix A>1,71>0,0 € (0,1) and a sequence (c,)nen. For t € N, we define

o IOg t _ n _ Qny—1 -1 C(T])TL?
- h}gJ D= A" and = (F) (5 , (1.45)
where ¢(n) = Y729 n=". Then for any (G;)ien-stopping time T in N, we have
P(S: >u,) <9. (1.46)

In the sub-Gaussian case, this result translates to a mixture bound achieving the order-
optimal asymptotic rate. To the best of our knowledge, this is the first time-uniform bound to
achieve this while resorting only to explicit mixtures. In particular, it differs (albeit complemen-
tary) from the so-called discrete mixture bound introduced in Howard et al. (2021, Theorem 2)
(see also Appendix A.3), which implements a peeling-like mixture, leading to a numerical
optimisation problem rather than a closed-form inequality, in contrast to the following corollary.

Corollary 1.30 (Asymptotically order-optimal time-uniform sub-Gaussian concentration with
mixing parameter time peeling). Let R € R’ and (Y})ien be a sequence of i.i.d. random variables
drawn from v € Fg g with expectation i € R. For § € (0,1), v5 = —1/(1 + W_1(—6%/e)) and
t € N, we consider

~ R 2 logt 1 [ logt 1"
G ( utiRJ 2@+ |alEE] J1og (C?),/H% ] )

) . (147)
teN

Then ((92 A )ten is a time-uniform confidence sequence at level & for yu which satisfies the asymptotic

relation |é?,A,n’ =0 (R log(log(t)/é)/t) when t — +o0.
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Remark 1.31. The above result still holds if (t,)nen is replaced by any strictly increasing sequence
of integers such that to = 0 and lim,, o t, = +o00 and if (((n)n")nen is replaced by any posi-
tive sequence (cp)nen such that >0 é < 1. The choice of geometric sequences for both (t,)nen
and (cp)nen provides examples of such sequences and is standard in the literature on time peeling
concentration (Garivier, 2013; Maillard, 2019D).

In Figure 1.3, we compare these asymptotically optimal mixture peeling bounds with the
standard sub-Gaussian mixture bound of Corollary 1.21 (on the right-hand figure, mixture
peeling bounds are smoothed by upper bounding the various ceils and floors in their definition).
We conclude that the improvement due to the O(y/loglog(t)/t) concentration rate is only
asymptotic in nature and leads to wider bounds in practice, even for fairly large samples. The
take-home message is that virtually any mixture bound can be turned into an asymptotically
optimal bound if theory calls for it, but doing so is often detrimental to the actual performances.

Therefore, for the practitioner, we recommend using simple mixture bounds.

P Mixture bounds in various settings beyond the sub-Gaussian case is the focus of Part II.
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6=5%, u=0.00, R=1.00 6=5%
(averaged over 1000 repetitions)
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Figure 1.3 — Left: Comparison of confidence envelopes around the mean for A/(0, 1), as a function of the
sample size ¢, over 1000 independent replicates. Grey lines are trajectories of empirical means fi;. Right:
ratio of upper mixture peeling bounds of Corollary 1.30 to the classical sub-Gaussian mixture bounds
(greater than 1 means the classical mixture bound is tighter).

Generic UCB algorithm for multiarmed bandits (?)

We now show a direct application of time-uniform concentration to the design of deterministic
K-armed bandit algorithms. We already introduced the upper confidence bound (UCB) policy
in Section 1.3. In the original article (Auer et al., 2002), UCB was studied for bandit models
(Qre(r] Vks Qrefx) Fr) with Fy = Fy, (Gaussian) or Fi = FisB (bounded) using sub-
Gaussian concentration bounds. Here, we extend the analysis to any bandit models, provided
there exist a confidence sequence for each arm. Although folk knowledge, this is, as far as
we know, the first occurrence of such generic results. Precisely, we define for arm k € [K]
and § € (0,1) the generalised UCB index UCBJ: R™) — R such that if Y¥ is the reward
history of arm k at time ¢, UCB{(YF) is the upper bound of the confidence sequence at level
§ for pug = Ey.,, [Y]. To emphasise the dependency on the size n = Nf of Y}, we also write
UCBi,n = UCBY{(Y¥); e.g. in the R-sub-Gaussian case with mixing parameter o € R* , we have

Nk
2 2/1+
UCB(YF) = R, | —¢ (1 + O‘,g) log#. (1.48)
t

NF N, )

The main result of this section is the following theorem, that bounds the number of pulls to
a suboptimal arm by the sample size required to statistically separate it from the optimal arm.
We defer its proof, as well as those of the subsequent corollaries, to Appendix A.3.
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Algorithm 1 Generic UCB

Input: K arms and upper confidence mapping Y € (R)™ s UCBY(Y).

Initialisation: Vk € [K], Y¥ = {}, N¥ = 0.

while continue do
T 4 argmaxje g UCBY(Y*); > Best plausible arm
Observe Y., Y™ <~ YT U{YJ.}, N" <~ N™+1; > Update

Theorem 1.33 (Generic UCB pseudo regret analysis). Let § € (0,1) and (@2,n)neN be a time-
uniform confidence sequence at level § for p,, = p(vy,) for each k € [K|, where p is a risk measure. We
recall that Ay, = p* — py, and define

¥ =inf{n €N,

O] < Ak} (1.49)

Fix T € N. Then we have

)

P (Vk € [K], Nf < T,3K> >1-6 and E_ or[NF]<E_ or[r]] +20T. (1.50)
In particular, if 6 = 1/T', we have
AL
E, er[NF] <E_ er[rf]+2. (1.51)

In particular, Algorithm 1 with upper confidence mapping UCBi,n = max (:)in is an
instance of no regret algorithm: after playing each suboptimal arm k € [K]\ {k*} exactly T]f /(2K)
times, the generic UCB policy only selects the optimal arm £* and stops accumulating pseudo
regret with probability 1 —§. This can be translated to an upper bound on the expected number
of pulls to arm k by setting § = 1/T". The take-home message of this analysis is that the regret
of Algorithm 1 is driven by how fast the confidence sequence shrinks for each arm, which is

typically folk knowledge but, as far as we are aware, was never written in this form.

We now instantiate Theorem 1.33 to various statistical models under the expectation risk

measure, for which time-uniform confidence sequences are known.
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Corollary 1.34 (Sub-Gaussian UCB). Let R € R and assume that Fj, = Fg r. For T — +o0,
Algorithm 1 with the time-uniform UCB of Corollary 1.21 satisfies

2R? ART 4R? 4ART 2
E, or [Nf] < 1og< )

R
+ log lo () +o| —=loglogT | . 1.52
A? A, A? glog (A (Ai g log ) (1.52)

This matches (up to constants) the classical pseudo regret bound of UCB (see e.g. Lattimore
and Szepesvdri (2020, Theorem 7.1)). In particular, it proves that Algorithm 1 is asymptotically
optimal (in the sense that it matches the lower bound of Theorem 1.6) in the Gaussian case
(KEY ™ (g p*) = A2/(2R?)) and order-optimal in the sub-Gaussian case (O(log T) pseudo
regret). Note that pseudo regret optimality is achieved even though the concentration rate of
the confidence sequence is suboptimal (O(y/log(t)/t) instead of O(y/loglog(t)/t)). In fact, we
show the iterated logarithm rate only impacts the higher order terms of the regret bound.

Corollary 1.35 (Iterated logarithm UCB). For k € [K], let (@i,n)neN a time-uniform confidence
sequence at level 0 for ju, such that \@gml < Cy/log(log(n)/8)/n for n large enough and C € R
For T' — +o00, Algorithm 1 with these UCB satisfies

C? C? C?
Eml/?T [Nﬂ < A—% logT + A—% log log (A,% logT | + o(logloglogT) . (1.53)

As discussed in Section 1.4, the asymptotic order-optimal of confidence sequences achieving
the iterated logarithm rate often comes at the cost of higher leading constant C'. However, in
the context of UCB algorithms, the constant C' directly impacts the first order term, while the
additional log term only affects the higher order terms of the pseudo regret bound, which

makes for another argument in favour of the method of mixtures.

Interestingly, the pseudo regret lower bound for stochastic bandits sheds light on the

minimum time-uniform concentration rate that is achievable for a family of distributions F.
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Corollary 1.36 (Obstruction to O(/log(n)/n) concentration rate). Let F C M{ (R)and p: F —

R a risk measure. Assume that for all v € F and p* > p(v), we have Kﬁ’fp(u; p*) = 0, and that

(09 )nen is a time-uniform confidence sequence at level § € (0,1) for p and F. Then for any § € (0,1)

and o, f € R such that « > 3, almost surely we have |88 [n®log(n/8) P — +oc.

In particular, following Lemma 1.13, it is hopeless to seek fast shrinking time-uniform
confidence sequences that would hold for all probability distributions, or even distributions
with finite 1+ &-th moment (with no bound on said moment), light tailed distributions (with no
explicit control of their MGF), sub-Gaussian distributions (with no bound on the sub-Gaussian

parameter) or bounded distributions (with no prior knowledge of the support).

Going beyond the sub-Gaussian case, a consequence of Theorem 1.33 is that we may derive
an efficient algorithm for the bandit model (®y¢(x) Vk, @pei] Fk) as soon as we can build
time-uniform confidence sequences that are valid for the families 7}, with k € [K]. We illustrate
this principle on two more examples, starting with the family of heavy tailed distributions

subject to a control of the 1 + e-th moment.

Corollary 1.37 (Heavy tailed UCB). Let M,e < R and assume that F, = Fyr., ie.
Ey oy, [|[Y|Fe] < M. Let (@iyn)neN a time-uniform confidence sequence at level & for ju, such
that \(:)in| < CMY %) (log(n/8)/n)*/1+2) for n large enough and C € R%:. For T — +oo,
Algorithm 1 with these UCB satisfies

1+1 1+2
E, ot |[NF| < M= (i) log <Mi (i) T)
1

L [ C\ e
T)+o| M- () loglogT' | .
Ay

(1.54)

Such confidence sequences satisfying the concentration rate O(M"/(1+)(log(n/8) /n)) can

be derived from Bubeck et al. (2013, Lemma 1, Lemma 2) (using the truncated mean and
median of means estimators respectively), and Catoni (2012, Proposition 2.4) (using Catoni’s M-
estimator) — those provide fixed sample confidence sets, that can be turned into time-uniform
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confidene sequences up to horizon 7" by using 6 /7 instead of § (union bound). Recently, Wang
and Ramdas (2023a) provided a Catoni-style confidence sequence (based on the predictable
weight construction detailed in Appendix A.3) that exhibits this concentration rate with high
probability. Of note, the regret guarantee of Corollary 1.37 matches that of Bubeck et al. (2013).

Finally, we illustrate the flexibility of this generic UCB analysis by applying it to a recent
heavy tailed bandit setting introduced by Basu et al. (2022), namely bandits corrupted by Nature.
In this setting, when pulling arm measure v, € F}, the agent collects a reward drawn from a
different distribution v} such that dpv (v, ) < n € [0,1) (typically v = (1 — n)vy, + nvj, for
some v, € M{ (R), i.e. an outlier is generated with probability 7). In the next corollary, we
consider a corrupted bandit measure 1" = @ (k) ¥, and denote by P ner the probability
induced by a bandit policy 7 for T rounds when observing rewards drawn from v".

Corollary 1.38 (Heavy tailed UCB corrupted by Nature). ,Let k,e € R and assume that
Fi = Feetred e By, [[Y — '] < k. For 6 € (0,1) and n € [0,1), let (O} )nen a
nonincreasing sequence of subsets of R such that

(i) Pﬂ',uﬁ(@T(vn eN, ui € (:)Z:(:L) >1-9,

(i) P_ Vn®T<|ézsz| < O/ (+e)pe/(42)) > 1 — § for any n > log(4/(80"))/n, where C' € R%
and 0" € (0,1).
Assume that Ay, > Ck*/(+€)ne/04€) For T — 400, Algorithm 1 with these UCB satisfies

p
E, ot [Nj’i} < log (2T) +5. (1.55)

First, note that the assumption that the confidence sequences are nonincreasing is mild:
not only are they expected to shrink with increasing sample sizes, but as we have seen in
Section 1.4, time-uniform confidence sequences may be replaced at no further cost by their
running intersections, which are nonincreasing by definition. Furthermore, note that (éZZi)nEN
is a robust time-uniform confidence sequence, in the sense that it captures the expectation
i, of the true reward distribution v, from observations of the corrupted distributions v}!
(indicated by the use of the probability measure P ner ). An example of such robust confidence
sequences is given in Wang and Ramdas (2023b) (the two conditions (i) and (ii) in the above
corollary correspond to Theorem 4 and Theorem 5 in this reference, provided that the corruption
parameter is small enough, i.e. n < ¢/(7(1 + ¢))). Note that this robustness comes at the cost
that the width of the confidence sequence may not shrink to zero; however, in this generic

UCB analyis, we only need \(:)Zi] to become less than Aj. In other words, if the gaps are large
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enough to be “detectable” by the robust confidence sequences (as we assume in Corollary 1.38),
the pseudo regret of Algorithm 1 scales as O(log T'). Of note, Basu et al. (2022) identified in
the finite variance setting (¢ = 1) a similar phase transition, with two separate regimes: easily
distinguishable (low &, high Aj) versus hardly distinguishable (high ~, low Ay ), with detailed
logarithmic guarantees in both cases.

Remark 1.39 (Examples of corruption by Nature). This bandit setting typically represents situations
where rewards are subject to human errors. Basu et al. (2022) motivated this modelling approach with
an application in agriculture (manual counting of fallen mites after applying a treatment). In digital
health, potential use cases include remote consultations, self-assessments by patients, transcripts of
hanwritten medical files, etc. In all these scenarios, rewards are extracted from noisy, potentially faulty,
informations that are corrupted in a nonadversarial fashion.
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Chapter 2

Literature review and outline

Mais, se disait Durtal, du moment que I'on patauge dans I'inconnu,
[...] on peut aussi facilement admettre le « Credo quia absurdum »
de saint Augustin et se répéter, avec Tertullien, que si le surnaturel
était compréhensible, il ne serait pas le surnaturel et que c’est
justement parce qu’il outrepasse les facultés de I'homme qu’il est
divin. Ah ! et puis zut, a la fin du compte !

— Joris-Karl Huysmans, Lad-bas

In this second introductory chapter, we review existing algorithms for stochastic bandits
and concentration bounds, highlighting their scope of applicability and limitations. We argue
that the current state of the art in these fields is somewhat ill-adapted for critical applications
under constraints of small samples, risk aversion and nonparametric model specifications,
such as healthcare. Motivated by this opportunity to make progress towards filling the
long-standing gap between theory and practice, we present our contributions, which we
develop in the rest of this thesis.

Contents
2.1 How do others play? Overview of bandit algorithms. . . . . . ... ..... 41
2.2 How do others concentrate? Overview of confidence bounds . . . . . . ... 48
2.3 Outline and contributions . . ... ... ... ... ... .. . . . 0000 51

2.1 How do others play? Overview of bandit algorithms

In this section, we review classical algorithms that implement bandit policies with sublinear
regret under various statistical models for the rewards. Any efficient learning strategy in a
setting with partial information must face the classical dilemma between exploration and
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exploitation; in bandits specifically, it needs to obtain enough information from arms that have
been scarcely sampled (exploration) to avoid missing the optimal arm, while also focusing on
arms that have already performed well in order to accumulate high rewards (exploitation).
Many algorithms have been proposed for stochastic bandits (see Lattimore and Szepesvari
(2020) for a recent textbook survey), and we propose here a (nonexhaustive) list of such
methods (summarised in Table 2.1), with a particular focus on recent advances in this field.

We recall from Chapter 1 that the quality of a multiarmed bandit policy 7 played on a
bandit model (v, F) is measured by its pseudo regret R7.”, which grows at least logarithmically
in 7, with optimal rate given by the extremal Kullback-Leibler operator K; (Theorem 1.6)
(unless stated otherwise, algorithms presented here consider the expectation risk measure).
It is crucial to consider both the family F and the policy 7 simultaneously since the latter is
often specialised to operate under the specific setting defined by the former. In particular, we
recall that if a family F is “too large”, the K, operator may vanish, which meaning that no
logarithmic instance-dependent pseudo regret is achievable (Lemma 1.13).

A generic template to implement bandit policies is the index policy algorithm, which (i)
computes for each arm an index equal to a given (possibly randomised) function of its reward
history and (ii) consequently plays the arms with the highest such index (Algorithm 2).

Algorithm 2 Index policy

Input: K arms, index function I: N x RN — M (R).

Initialisation: t = 1, Vk € [K], Y* = {}, N* = 0.

while continue do
T 4= argmaXe(g I(Y*) ; > Greedy with respect to the index function
Observe Y., Y™ <= YT U{YJ-}, NT <~ N"+1,t«t+1; > Update

Remark 2.1 (Initialisation and continuation). In practice, it is common to start bandit algorithms
with an arbitrary policy for a few rounds, e.g. play each of the K arms once fort =1, ..., K. Moreover,
most of our algorithms are anytime, i.e. they run without the knowledge of a time horizon T, we thus
refer to the keyword continue to mean either t < T or a user-specified stopping criterion.

Greedy policy. A straightforward instance of such index policies is the greedy policy, for
which I,(YF) = fif (empirical mean of rewards in Y¥) for any k € [K] and ¢ € N. This policy
does not have sublinear regret guarantees. Indeed, imagine a simple two-armed uniform bandit
model v = U([1,2]) @ U(]0, 4]) with the expectation risk measure. Clearly, the second arm is
optimal (ug = 2 vs. 1 = 3/2). Let us assume that each arm is played once at initialisation,
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collecting reward Y;! and Y{? respectively. Under the event {Y{? € [0,1]}, which holds with
probability 1/4, the greedy policy will always play arm 1 since Y;! > Y} for all t > 1 almost
surely, thus accumulating linear pseudo regret. This is typical case of failing to address the
exploration-exploitation tradeoff: an efficient agent must keep the possibility of exploring
seemingly suboptimal alternatives to compensate for the noisy bandit feedback.

Deterministic index policies. The simplest bandit policy to achieve sublinear regret is the
upper confidence bound (UCB) policy (Auer et al., 2002), which computes I,(YF) = pF +
Ry\/2log(1/6,)/NF, where R € R and (d;):en are chosen at initialisation. This is an instance
of the optimism in the face of uncertainty principle: under an R-sub-Gaussian model, I;(Y})
corresponds to the upper bound of a §;-confidence interval around /i, i.e. the policy plays the
arm that has a plausible chance to be the best, rather than the empirical best according to past
observations. This policy was later extended to SPEF F = {14, 0 € O} (with identity feature
function) with better regret guarantees (Ki,t-optimal) by klI-UCB (Cappé et al., 2013) using
I,(Y¥) = max{0 € ©, NFB.(0F;0) < f(t))} where 8F = (VL£)~'(iiF) and f is a slowly growing,
nondecreasing function, corresponding to a concentration rate for the KL divergence. Of note,
ISM-NORMAL (Cowan et al., 2017) circumvents the need for the prior knowledge of R for
Gaussian distributions by estimating the variance.

Other deterministic index policies were introduced for bounded distributions, such as
UCB-V (Audibert et al., 2009) (using empirical Bernstein inequalities rather than sub-Gaussian
concentration bounds) and empirical KL-UCB (Cappé et al., 2013) (exploiting the dual form of
the extremal Kullback-Leibler operator and empirical likelihood), and for upper bounded light
tailed distributions, IMED (Honda and Takemura, 2015), with a lower bound-inspired index
L(YF) = —(NtkIC.f(*”’E] (D 1) + log Nf), where [if = maxye (k) fiy; these last two algorithms
are Kiye-optimal. For heavy tailed distributions, we mention extensions of UCB (Bubeck et al.,

2013) and KL-UCB (Agrawal et al., 2021) under a known moment condition.

inf

Note that these algorithms implement bandit policies 7 that are predictable with respect to
the bandit filtration (G );en (i.e. without introducing an independent filtration (G;-);en). In
particular, 7,11 is constant given Gf, i.e. the same history of past decisions and rewards up to
time ¢t would lead to a reproducible decision at time ¢ + 1.

Randomised policies. The policies described above ensure sufficient exploration by exploit-
ing the concentration of deterministic estimators of the mean for each arm. An alternative
way to induce exploration is to consider instead randomised estimators. The first example
of such policies, going back as far as Thompson (1933), is Thompson sampling (TS), where
I(YF) ~ p(ux | YF) is the posterior distribution of j, after observing Y¥ (for a given prior
p(1x)). This policy was proven Kipe-optimal for SPEF in Korda et al. (2013) and logarithmic
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for bounded distributions using a reduction to the Bernoulli case called the binarisation trick
(Agrawal and Goyal, 2012). Recently, it was further extended to multinomial and bounded
distributions by nonparametric Thompson sampling (NPTS) (Riou and Honda, 2020), with
L(YF) = vaztkl Wik’tYl-k + W]]f,t,f +1§, where (I/Vik’t)Z]-V:’fkfrl follows the Dirichlet distribution Dy 4,
and recently to heavy tailed distributions (Baudry et al., 2023). Other algorithms using boot-
strapping schemes have also been proposed (Osband and Roy, 2015; Kveton et al., 2019a,b;
Wang et al., 2020): they share the idea of computing a noisy mean for empirical samples,

enhanced by some exploration aid appropriately tuned to the statistical models they consider.

A different class of algorithms implement randomised policies that are not necessarily index
policies but instead sample arms at random according to a carefully tuned distribution. Such
algorithms are often designed primarily for adversarial bandits and draw inspiration from
optimisation techniques in online learning, see for instance the family of EXP algorithms and
its variants (Seldin et al., 2013; Seldin and Slivkins, 2014; Seldin and Lugosi, 2017). While robust
to adversarial attacks (with formal minimax regret guarantees), these policies often exhibit
poor performances in stochastic environments. Recently, Zimmert and Seldin (2021) combined
online mirror descent with Tsallis entropy regularisation to obtain policies with best-of-both
worlds guarantees for bounded rewards, i.e. O(logT) and O(v/T) instance dependent and
minimax pseudo regrets respectively. Furthermore, inspired by the early works of Maillard
(2011); Honda and Takemura (2011), Bian and Jun (2022) used Boltzmann-like sampling
probabilities in the context of sub-Gaussian rewards, an approach called Maillard sampling.

Finally, an altogether different approach based on subsampling was introduced in Baransi
et al. (2014) and later extended in Chan (2020); Baudry et al. (2020); in particular, this last
work established Cin¢-optimality for all SPEF without having to know which family precisely (up to
possible forced exploration). The common design principle to these algorithms, which do not
implement index policies, it to simulate instead noisy estimators by artificially restricting the
amount of information used by the seemingly optimal arm. However, these proofs heavily rely
on tail properties of SPEF and are thus difficult to generalise beyond these parametric families.

Contrary to deterministic algorithms, these randomised policies 7 are predictable with
respect to the natural filtration induced by the bandit and the random variables used within the
algorithms. For instance in NPTS, we let G;- = U(Wf’t, kec[K|,ie{l,...,NF+1})fort € N

k —
such that ;1 = argmax;,c ZZN:tl I/Vf’tY;-’l‘C + W]’f/t,f 1B is measurable with respect to o/(G{" U GiH).
In particular, given only GJ, m; 11 remains a nondeterministic random variable, i.e. the same

history of decisions and rewards up to time ¢ could lead to a different decision at time ¢ + 1.
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Remark 2.2. Of note, several of these algorithms developed and rigorously analysed for multiarmed
bandits have recently been extended to the framework of Markov decision processes for reinforcement
learning, in particular UCB (Bourel et al., 2020) and IMED (Pesquerel and Maillard, 2022).

With so many existing algorithms, why look for more? While many algorithms achieve
optimal regret for bounded distributions with the sole knowledge of their supports (IMED,
NPTS, etc.), the assumptions needed for algorithms working with unbounded distributions
(e.g. SPEF, sub-Gaussian, subexponential) generally assume a known parametric model for the
tails. While such assumptions entail convenient theoretical properties, they may be ill-suited
for use by practitioners, for whom identifying the setting and parameters of interest may be
tedious or infeasible. Still, we believe that actionable, theoretically grounded algorithms for
generic unbounded distributions, or for bounded ones without precisely knowing the range,
would make for a significant step towards a broader adoption of sequential decision-making
methods. For instance, as seen in the foreword, a recommender system for health based on
the body mass index (BMI) may consider this variable to be bounded. Indeed, while class
III obesity is defined by a BMI exceeding 40 kg/m?, extreme BMI have been recorded (up to
204 kg/m?). An algorithm operating under the sole assumption that BMI lies in the range
[0, 204] would therefore likely be overly conservative; for instance, such an algorithm would be
designed to be efficient even for an absolutely unrealistic BMI distribution 1/2d¢ + 1/2d204.

This raises the question of robustness with respect to model misspecification: on the one
hand, deploying recommendation algorithms in such challenging real-world settings calls for
efficient policies across a large spectrum of (possibly loosely defined) distributions; on the other
hand, Lemma 1.13 suggests that optimality is fundamentally incompatible with such weak
hypotheses. In this thesis, we argue that there exists a sweet spot between these two extremes
(rigid parametrisation versus virtually no assumption at all), albeit a scarcely investigated one.

A first step in this direction is the robust R-UCB algorithm of Ashutosh et al. (2021), that
trades off logarithmic regret for O (f(T) log T'), where f is a slowly growing function replacing
the fixed sub-Gaussian parameter of the standard UCB, essentially tracking the possible mass
leakage at infinity. However, it inherits the typically suboptimal practical performances of UCB
and thus hardly constitutes a viable alternative for practitioners.

Linear bandit policies. The main index policies (UCB, TS) were also extended to contextual
linear bandits, resulting in LinUCB (Abbasi-Yadkori et al., 2011) and LinTS (Agrawal and
Goyal, 2013; Abeille and Lazaric, 2017). Moreover, instance-dependent optimal algorithms
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have recently been developed for finite action sets, such as Degenne et al. (2020) for sub-
Gaussian SPEF rewards (with identity feature function F"), which is inspired by saddle-point
problems in pure exploration (interestingly, its formulation is flexible enough to adapt to other
structured bandit models); Tirinzoni et al. (2020) for sub-Gaussian rewards using a primal-dual
approach to match the structured lower bound; also for sub-Gaussian rewards, Kirschner et al.
(2021), which couples information-directed sampling with a similar primal-dual analysis.

Risk-aware algorithms. Another hindrance to the adoption of existing recommendation
algorithms that real-world agents may have a preference for policies that do not maximise
average rewards but rather a different, risk-adjusted criterion. Besides the motivating example
in healthcare (see Foreword), we mention the recommendations of crop management practices
in agriculture, with specific risk-aversions to price fluctuations (market-oriented farmers) or
food insecurity (smallholder farmers in developing countries) (Gautron et al., 2022).

While mathematically convenient (linear, naturally expressed by Gaussian likelihood, etc.),
the expectation risk measure is known to equally weight large positive and negative outcomes,
possibly leading to risky policies unsuitable to critical applications, and is also sensitive to
outliers. In contrast, risk-aware measures emphasise different characteristics of the observed
reward distributions, e.g. by stressing out the impact of adverse outcomes (Dowd, 2007). Such
measures include the mean-variance (Markowitz, 1952), conditional Value-at-Risk (Rockafellar
and Uryasev, 2000), which is a special case of spectral risk measures (Acerbi, 2002), entropic
risk (Ahmadi-Javid, 2012) and the expectiles (Newey and Powell, 1987). These risk measures,
in particular the conditional value at risk (CVaR), have been studied as alternatives to the
expectation criterion in classical multiarmed bandits (Galichet et al., 2013; Gopalan et al.,
2017; Cassel et al., 2018; Tamkin et al., 2019; Prashanth et al., 2020; Pandey et al., 2021; Baudry
et al., 2021a); the latter in particular proposes an extension of NPTS that is optimal in the
sense of Theorem 1.6 for p = CVaR. We also refer to Maillard (2013) for the entropic risk. In
distributional reinforcement learning, quantile regression has been studied for DQN (Dabney
et al., 2018). However, the literature on risk aware contextual bandits is much sparser, see
e.g. Wirth et al. (2022) with mean-variance and CVaR bandit optimisation in the context
of vehicular communication. Despite promising empirical results, contributions outside of
multiarmed bandits are largely devoid of theoretical regret guarantees.
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Table 2.1 — Summary of classical bandit algorithms for the expectation risk measure and various
stationary bandit models. Elements listed as prior knowledge are used within the algorithm.

Algorithm

Regret guarantees

Algorithm prior knowledge

UCB1
Auer et al. (2002)

UCB-V
Audibert et al. (2009)

kl-UCB
Cappé et al. (2013)

Empirical KL-UCB
Cappé et al. (2013)

IMED

Honda and Takemura (2015)

LB-SDA, RB-SDA
Baudry et al. (2020)

TS
Thompson (1933)
Korda et al. (2013)

Agrawal and Goyal (2012)

NPTS
Riou and Honda (2020)

Robust UCB
Bubeck et al. (2013)

Kint-UCB
Agrawal et al. (2021)

h-NPTS
Baudry et al. (2023)
R-UCB

Ashutosh et al. (2021)

Generic UCB
Chapter 1

Dirichlet sampling
Chapter 6

Kins-optimal on Fi/ »
Logarithmic on Fg r

Logarithmic on 7 7

; PEF
Kint-optimal on F 5 -

King-optimal on F, (B.B]
King-optimal on F ‘N .7-"(7OO 5

Kint-optimal on F SPEF

Kint-optimal on F SPEF

Logarithmic on 7 7

King-optimal on F, (B.E]
Logarithmic on Fjy .

King-optimal on Fjs .

Kint-optimal (7 € R* ) on
]_‘g};\tred n ( U fM,1+2e+n)

MeR%
O (log(T) £(T)) on
Depends on the confidence bounds

Logarithmic on Fg g, F; El} s Fe, etc.

ICinf—optimal on new settings
O (log(T') loglog(T)) on F; (RDS)

o€ R} or R e R%
B,B
(0,0") € ©2 — B.(0',0)
BB
B
None

(may require forced exploration)

Suitable SPEF conjugate prior
B, B (binarised)

B,B

M,e

M,e

K, €

Slowly growing function f

Time-uniform confidence

sequence (see Table 2.3)

New settings
None for RDS
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2.2 How do others concentrate? Overview of confidence bounds

Many learning tasks, and specifically bandits, require to estimate some characteristics of an
unknown distribution (typically the mean) solely based on observed samples. The theory of
concentration provides a natural way to control the magnitude of the estimation error. Besides
the background material of Chapter 1, we refer the interested reader to the monographs of
Boucheron et al. (2013); Raginsky et al. (2013); Dembo and Zeitouni (2009).

Fixed samples. In applied statistics, confidence sets and corresponding p-values are often
derived from Gaussian assumptions (e.g. the ubiquitous mean=+1.96 x standard deviation/\/n
formula at 95% significance). However, these are typically only valid asymptotically (central
limit theorem) or for Gaussian distributions only (Student ¢-test), which is incompatible with
our aim towards small samples and nonparametric guarantees. Similarly, resampling methods
(bootstrap, jacknife, see Efron (1992)), although very flexible, lack finite sample guarantees.

Many concentration inequalities have been developed over the years to provide nonasymp-
totic confidence sets with provably high probability, most notably! Chernoff (1952); Hoeffding
(1963) for sub-Gaussian or bounded distributions and Bernstein (1924); Bennett (1962) for
bounded distributions with specified variance, all derived from bounding the MGF (as in
Proposition 1.15), and later improved by Bentkus (2004) using tighter polynomial bounds. Mo-
tivated by practical applications, the variance specification was also replaced by data-dependent
estimators, giving rise to empirical bounds, see e.g. Maurer and Pontil (2009); Kuchibhotla
and Zheng (2021). While mathematically convenient, these simple inequalities are often quite
loose, resulting in much less statistical power compared to parametric tests. Of note, such
concentration bounds are nonetheless useful in other areas of statistical learning such as PAC
learning, with e.g. the recent unexpected Bernstein inequality of Mhammedi et al. (2019),
extended to CVaR generalisation bounds in Mhammedi et al. (2020). Recently, an altogether
different method for bounded distributions (Phan et al., 2021), building on Anderson’s bound,
provided numerically sharp confidence sets for small samples, which however lack closed-form
expressions and require Monte Carlo estimation to be calculated.

Outside the scope of bounded distributions, a vast corpus of the concentration literature has
studied self-normalised sums, drawing inspiration from Student’s ¢-statistic in the Gaussian case
(Bercu and Touati, 2008; Delyon, 2009; Pefa et al., 2009). The latest developments in this field
provide deviation bounds under the sole assumption of known and finite variance (Bercu and
Touati, 2019, Theorem 2.6); to our knowledge, no empirical extension of this self-normalised
bound has been derived, thus again limiting the potential for practical applications.

!Like many other areas of science, the literature on the concentration of measure is no stranger to Stigler’s law of
eponymy. Many standard bounds can be traced back to the seminal work of Sergei Bernstein in the 1920s and 1930s,
and then rediscovered several decades later. For ease of reference, we use the most common names.
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Anytime-valid statistics The challenge of bridging the gap between theory and practice in
bandits is all the more arduous as it requires more sophisticated concentration tools than those
presented above. Although any fixed sample confidence set can be made uniformly valid over
a finite horizon (union bound, known as Bonferonni correction in multiple testing), this comes
at the cost of dramatically decreasing the power of the associated statistical tests. A better
approach is to combine supermartingale techniques with such union arguments over geometric
time grids, a technique known as time peeling (or stitching) — see Bubeck (2010); Cappé
et al. (2013) for early uses in bandits, Garivier (2013), and more recently Maillard (2019b);
see also Howard et al. (2020, 2021) for a recent, complementary survey of the history of this
tield. These peeling-based confidence sequences are able to match the O(+/loglog(t)/t) lower
bound prescribed by the law of iterated logarithm (Proposition 1.28); however, as argued in
Chapter 1, a subtlety of time-uniform statistics is that such asymptotically optimal rates are
often associated with wide confidence sets for small samples, which is undesirable in practice.

Another approach, which we favour in the thesis, is the method of mixtures, initiated by
Robbins and Pitman (1949); Robbins (1970) and popularised further in Pefia et al. (2009). It
constitutes a powerful alternative to peeling for developing anytime-valid confidence sequences
with explicit expressions and tight practical performances. It was originally developed for
(sub-)Gaussian families, and has seen widespread use in bandits after the seminal work of
Abbasi-Yadkori et al. (2011). Still, generalising this method beyond the sub-Gaussian case, for
which natural conjugate mixing measures exist, has been a challenging issue. Kaufmann and
Koolen (2021) applied an ad hoc discrete mixture construction to SPEF, with explicit bounds

restricted to Gaussian and Gamma distributions (known variance and shape).

Finally, a fairly different capital process construction, has been recently developed in Shafer
and Vovk (2019), in relation to the notion of e-processes mentioned in Chapter 1. It has been
further analysed for bounded distributions in Waudby-Smith and Ramdas (2023), leading to so-
called hedged capital confidence sequences with predictable mixtures, with sharp concentration
with the sole knowledge of the distribution support.

With so many existing confidence bounds, why look for more? First, given their widespread
use in statistical modelling, in particular in bandits, it is perhaps surprising that no cromulent
anytime-valid confidence sequence was developed for generic exponential families. Moreover,
following our discussion on extending nonparametric bandit algorithms to more practitioner-
friendly settings, we believe it is worthwhile to investigate concentration tools for alternative
specifications, for instance unbounded distributions with no prior information on the variance

nor the sub-Gaussian parameter (in a similar fashion to empirical Bernstein inequalities).
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Table 2.2 — Summary of nonasymptotic, fixed sample confidence sets for the mean. The dependency on
the confidence level § € (0, 1) is typically O(4/log(1/9)).

Confidence set Concentration rate Prior knowledge
Chernoff, Hoeffding

R _ B-B
Chernoff (1952) @) (%) on Fg r and f[§7*} R= 5

Hoeffding (1963)

Bernstein, Bennett B
Bernstein (1924) @ < + B_B) on ]:[BE] N f;ﬁntrw o0,B,B
Bennett (1962)

Bentkus, Pineli B—
entkus, Pinelis o < n BtQ ) on ]:[Bf] n J,—_;cr’egntred

Bentkus (2004) 0,e>1,B,B
Pinelis (2006) (tighter)
Bercu-Touati
' Self-normalised, Fgentred oe=1
Bercu and Touati (2019) ’
Student ~
O (“°t)on F Gaussian

Student (1908) (ﬁ) N
Empirical Bernstein 0 ( th n E; B ) on Fiy BB
Maurer and Pontil (2009) t =
Empirical Bentkus O (a + B_B) onFipp —

Vit t (B.B] B, B
Kuchibhotla and Zheng (2021) (tighter)
Anderson-Phan Simulated, ]:[ BB BB
Phan et al. (2021) (very tight for small samples) -
Hedged capital @ <BB> on Fiz 5 —

Vit [B,B] B, B
Waudby-Smith and Ramdas (2023) (implicit bound, quite tight)
B deviati
regrman ceviations @ (i> on Fri. . Generic EF
Chapter 3 t o
Empirical Chernoff ~ O (2
mpirical Cherno <p\/£) b (0.1]

Chapter 4 (second order sub-Gaussian)
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Table 2.3 — Summary of nonasymptotic, time-uniform confidence sequences for the mean. The depen-
dency on the confidence level § € (0, 1) is typically O(4/log(1/6)).

Confidence sequence Concentration rate Prior knowledge
Union bound over any @ (\/ b%T> at most Depends on the bound
T fixed sample bounds (usually very slow) Horizon T

O(R /loglogt >
Geometric time-peeling ( t Depends on the bound
(usually slow for small samples)

Method of mixtures o <R 1Ogt\/,;) on Fo n R
(sub-Gaussian)
Inverted stitching < [ p—

O | Ry/ 2752 ) on F R
Howard et al. (2021) oH
Kaufmann-Koolen o ( \/@) on }_SPEF Gaussian (known variance)
Kaufmann and Koolen (2021) Gamma (known shape)

Hedged capital @ ((B - B) \/@ ) on F, [B,B] BB

Waudby-Smith and Ramdas (2023) (implicit bound, quite tight)

Bregman deviations . .
Chapter 3 O (\/ 8 f) on Fi'lp Generic EF
Empirical Chernoff ~ O (E/f\/ bg’tﬁ) € (0,1]

P )
Chapter 4 (second order sub-Gaussian)

2.3 Outline and contributions

In these two preliminary chapters, we have introduced a statistical toolbox (stochastic bandits,
concentration) to formally analyse statistical sequential decision-making problems. The main
goal of this thesis is to adapt these well-known tools to the specific context of healthcare
recommendations, which raises several new and difficult challenges compared to current use
cases of such methods.

First, although we live in the era of big data, heralded with the large-scale use of internet,
many fields of applications, among which healthcare is a prominent example, work with small,
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highly specialised datasets. To put it simply, what constitutes big data for a medical professional
that has carefully monitored a cohort of patients over several years for a clinical trial is orders
of magnitude lower than what is available for prediction and recommendation in an online

marketplace, streaming platforms, advertisement company, etc.

e In Chapter 3, we adapt the method of mixtures, primarily designed for (sub)-Gaussian
distributions, to the broader setting of generic exponential families. While these are
parametric models, we believe these new concentration inequalities fill an important gap
in the literature and provide practitioners with more extensive modelling tools. With
applicability in mind, we instantiate our novel bound to many classical families and
illustrate a use case in change point detection.

e In Chapter 4, we introduce the notion of second order sub-Gaussian distributions, a
refinement on the classical notion of sub-Gaussian tail control that allows for empirical
concentration inequalities without the need for a prior bound on the variance or on the
support. We derive implementable confidence sets using special functions (Lambert I/,
confluent hypergeometric functions), both in fixed samples and time-uniform. We believe
this new class of nonparametric distributions offer an appealing modelling alternative
for practitioners, more flexible than rigid parametric specifications a la Gaussian, but
sharper than many other nonparametric families (e.g. bounded distributions).

Second, it is noteworthy than the majority of the sequential decision-making literature
considers only the expectation risk measure. Besides the fact that it makes for a convenient
mathematical setting, we believe this is also driven by the current industrial applications of
such methods, since most online recommender systems aim to maximise clickthrough rate,
i.e. the expected frequency of visits to given ads, movies, purchasable items, etc. Although
some risk-aware algorithms have been analysed for the simple multiarmed bandit problem,
more sophisticated models such as contextual bandits have been almost exclusively studied in

risk-neutral settings, barring a few mostly empirical studies.

e In Chapter 5, we revisit the LinUCB algorithm for linear bandits to optimise certain risk
measures of the reward distributions, generalising beyond the standard mean criterion.
We consider risk measures that are elicitable by convex loss functions, extending the
classical sequential ridge regression to a broader class of empirical risk minimisation
problems. Under a bounded curvature assumption of the loss, we are able to derive
pseudo regret upper bounds based on a variant of the multivariate method of mixtures,
that naturally extend the guarantees of the standard LinUCB.

Third, we study an alternative approach to deterministic UCB-style algorithms based on

randomisation, continuing our effort towards more flexible, nonparametric models.
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2.3 Outline and contributions

e In Chapter 6, we introduce Dirichlet sampling, a resampling scheme for multiarmed bandits
with a generic exploration incentive structure that can be adapted to different, original
settings. In particular, we obtain optimal guarantees for two new families of distributions,
namely bounded under a detectability assumption alone (without knowing the bounds),
and semibounded distributions with a quantile condition. We also derive near-logarithmic
pseudo regret for the class of all light tailed distributions, with competitive performances

on a vast range of experiments.

e In Chapter 7, we extend the Dirichlet sampling scheme to contextual linear bandits (in
the generic elicitable risk framework of Chapter 5) using weighted bootstrap regression.
We propose a heuristic regret analysis, backed by the theory of strong approximation of
empirical processes, revealing a connection between Dirichlet sampling for nonparametric
statistical models and the linear Gaussian Thompson sampling. We also show substantial
improvements on numerical experiments compared to optimistic algorithms.

These first three parts offer different approaches to improve the current state of sequential
recommendation algorithms and help bridge the gap between theory and practice. However, we
believe that in order to truly contribute to applications beyond the scope of machine learning
and mathematics, here in healthcare, it is essential to collaborate conjointly with medical
practitioners and work with real patient data on clinically relevant issues. The last part of this
thesis illustrates this commitment to such an interdisciplinary approach.

As mentioned earlier, this thesis is part of a broader, long-term collaboration between
machine learning researchers at Inria Scool and medical surgeons and researchers at Lille
University Hospital, aiming to develop data-driven recommendations for bariatric postoperative
follow-up. We identified early on that a first step towards this ambitious goal was to predict
with reasonable accuracy the expected weight trajectories of patients living with severe obesity.
Indeed, long-term weight loss is the primary outcome of this type of surgical procedures, and
irregular weight trajectories are often associated with complications, the early detection and
prevention of which being the main concern of postoperative follow-up. In this part, we focus
on more traditional machine learning methods than bandits, however we hope this paves a
way to build further towards personalised prospective recommendations for patients.

e In Chapter 8, we report the development of a white box prediction model for weight
trajectories, and its validation on a large international cohort. Starting on a rich dataset
of patients who underwent surgery in Lille, we extract a subset of predictive covariates
using LASSO feature selection, which we further use to train a set of decision trees to
predict weight loss. This simple method is highly interpretable even by non-specialists,
such as primary care providers. The prediction model, as well as a graphical overlay to
display smooth weight trajectories, is embedded in a freely available website.
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Literature review and outline

Finally, we acknowledge that this thesis is rather long. To help readers navigate it, we
suggest a reading order, indicated by the following symbols.

38 For readers with a background in statistics and probability interested in concentration
bounds: start with Chapters 3 and Chapters 4.

ata For readers interested in stochastic bandits: start with Chapters 5, 6 and 7.

@ For readers with a medical background interested in bariatric surgery, start with Chapter 8.

Furthermore, readers may find in appendix technical results and complementary discus-
sions. Appendix sections that we believe may be skipped at first reading and that are available
in a similar form in published articles are indicated by the symbol .
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Part 11

Safe, anytime-valid and efficient
concentration

or how to play smart with few data






Chapter 3

Bregman deviations of generic
exponential families (33)

I mention his talk about angles because it suggests something
Wilcox had told me of his awful dreams. He had said that the
geometry of the dream-place he saw was abnormal, non-Euclidean,
and loathsomely redolent of spheres and dimensions apart from outs.
— H.P. Lovecraft, The Call of Cthulhu

The content of this chapter was published at the 2023 Conference On Learning Theory
(COLT) (Chowdhury et al., 2023), and was presented at the 2022 Probability PhD Day at the
University of Lille, the 2022 Safe, Anytime-Valid Inference (SAVI) workshop, and the 2023
Machine Learning and Massive Data Analysis (MLMDA ) seminar at ENS Paris-Saclay. Compared
to the article, we report here in the main text (i) the proofs of the time-uniform (Theorem 3.3)
and doubly time-uniform (Theorem 3.8) confidence sequences, highlighting connections with
the classical method of mixtures presented in Chapter 1, and (ii) additional numerical
experiments, especially for the GLR change point test. The instantiation of our novel bound to
classical families is summarised in Table 3.1 and is available off-the-shelf in the
concentration-lib Python module. To avoid cluttering, the complete derivation of these bounds,
which amounts to simple but tedious algebra, is deferred to Appendix B .
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3.2 Time-uniform Bregman concentration . ..................... 60
3.3 Specification to classical families . ... .............. ... ..., 69
3.4 Numerical experiments . . ... ...... ... .. .. .. ... 74
3.5 GLR test in exponential families and change point detection . . . . ... .. 79
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Bregman deviations of generic exponential families (33)

Outline and contributions

In this chapter, we revisit the method of mixtures for parametric exponential families of arbitrary
dimension, expressing deviations in the natural (Bregman) divergence of the family. The setting
of exponential families is convenient for integration in a Bayesian setup, thanks to the notion of
conjugate prior that enables us to reduce computation of tedious integrals to simple parameter
updates. Here, we exploit this property to obtain explicit mixtures of martingales, following the
principle outlined in Theorem 1.20. Exponential families are largely used in modern machine
learning, yet concentration tools available to the practitioner are comparatively scarce — the
only previous work on exponential families (Kaufmann and Koolen, 2021) used a discrete
mixture construction limited to SPEF, with numerical implementation only for Gaussian (known
variance) and Gamma (known shape) distributions. To help close this gap, we obtain both
sharp and computationally tractable confidence sets, especially in the small sample regime.

In Section 3.1, we first recall some background material on exponential families and their
associated Bregman divergences. Section 3.2 states our main result (Theorem 3.3): a time-
uniform concentration inequality for exponential families. Specifically, we control the Bregman
deviations associated with the log-partition function of the family using a novel information-
theoretic quantity, the Bregman information gain. On a high level, this quantifies the information
gain about the parameter of a distribution in a given family after observing i.i.d. samples from
it, which is measured in terms of the natural Bregman divergence of the family. To illustrate
the utility of this general result, we detail in Section 3.3 how the Bregman information gain
and deviation inequalities specialise for well-known exponential families, resulting in fully
explicit confidence sets (Table 3.1). To the best of our knowledge, this is the first explicit time-
uniform inequality for two-parameter Gaussian (i.e. both mean and variance are unknown),
Chi-square, Weibull, Pareto, and Poisson distributions. In Section 3.4, we numerically evaluate
the high-probability confidence sets built from our method for classical families, and achieve
state-of-the-art time-uniform bounds. Finally, in Section 3.5, we generalise Theorem 3.3 to obtain
a doubly time-uniform concentration inequality for generic exponential families (Theorem 3.8).
We present an application of both these results in controlling the type I error of the generalised
likelihood ratio (GLR) test, used for change point detection in exponential family models.

3.1 Preliminary: Bregman tail and duality properties

We start by introducing classical properties of Bregman divergences which are central to our
confidence sequence construction. We consider an exponential family ]—",];:FF = 1{py, 0 € O}
over a set ), parametrised by an open set © C R? (see Section 1.3 in Chapter 1). We recall the
expression of the density and the Bregman divergence associated with the (finite, invertible)
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3.1 Preliminary: Bregman tail and duality properties

convex mapping £ : © — R:
po: Y — Ry and B:Ox60 — Ry

y — h(y)e®FWN—L£0) (0',0) — L(0") — L(6) — (0 —0,VL(O)) . (3.1)

The first property links the Bregman divergence B, to the moment generating function of
the random variable F'(Y') where Y ~ py and 6 € ©, which makes Bregman divergences well
suited to control the tail behaviour of random variables appearing in concentration inequalities.
The second one highlights duality properties that enables convenient algebraic manipulations.
To this end, we let Ag = {\ € R?, A + 0 € ©} and define the function

8579: Ag — R
A B (04X, 0) = L0+ N) — L(0) — (A, VL(O)). (3.2)

We also introduce its Legendre-Fenchel dual B 4: © — supyep, (A, ) — G(A).

Lemma 3.1 (Properties of Bregman divergences). Let § € © and X € Ay. The following equality
holds:

log Eg [exp (A, F(Y) — Eq[F(Y)]))] = Bro(A) - (33)

Furthermore, if VL is one-to-one, the following Bregman duality relations hold for any parameters
6,0 € ©:

Be(0',0) = B o (VL(O) — VL)) = Bex(VL(O), VL)) . (3.4)
More generally, the following holds for any o € [0,1] :
B g (a(VL(9) — VL)) = B (8,60, (35)
where

0o = VL HaVLO) + (1 —a)VL®P)). (3.6)

The second half of this technical lemma is essentially a change of variable formula to move

back and forth between two representations of an exponential family: in natural parameters
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(measured by the Bregman divergence between #" and 6) and in expectation parametrisa-
tion (measured by the dual Bregman divergence between VL(0) = E¢[F(Y)] and VL(¢') =
Eg [F(Y)] ). For more background on this, which forms the basis of the information geometry
field, we refer to Amari (2016, Sections 2.1 and 2.7). This result is at the root of the martingale
construction behind Theorem 3.3 in the next section.

Proof of Lemma 3.1. The first equality is immediate, since Eo[F'(Y)] = VL(6) and

log Eg [exp((A, F(Y)))] = log/exp((/\vF(y» +(0, F(y)) — £(0))dy (37)

=LA+0)—L(). (3.8)
We now turn to the duality formula. Using the definition of each terms, we have

Bh o (VL(O) — VL)) = sup (\, VL) - VLO)) — [C0 +\) — L(O) — (N, VLEO))] (3.9)

= fu{{) (A VL)) — L0+ X))+ L(0). (3.10)

An optimal X must satisfy VL(6) = VL(6' + \). Hence, provided that VL is invertible, this
means \ = 0 — ¢’. Plugin-in this value, we obtain

Bt o (VL(0) — VL)) = (6 — 0, VL)) — L(0) + L(0') = B(6,6) . (3.11)

The remaining equality B, (¢, 0) = Bz« (VL(0), VL(')) is a standard result. Finally, regarding
the generalisation, we note that

Br (a(VE(0) = VE@)) = sup (A, aVL(D) + (1= a)VLW)) = £(0' + 1) + £(0). (312)

Hence, an optimal A must now satisfy aVL(0) + (1 —a)VL(0') = VL(O' + ), thatis A = 6, — 0.
This further yields

B g (a(VL(O) = VL)) = (8o — 0/, VL)) — L(02) + L) = Be(0/,0,) . (3.13)

3.2 Time-uniform Bregman concentration
In this section, we are interested in controlling the deviation between a fixed parameter 6* € ©

and its estimate §t built from ¢ observations from distribution pg+. We naturally measure this
deviation in terms of the canonical Bregman divergence of the family. As in Section 1.4 in
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3.2 Time-uniform Bregman concentration

Chapter 1, we would like to control this deviation not only for a single sample size ¢, but
simultaneously for all t € N. Namely, we would like to upper bound quantities of the form
P (Elt eN:B(6%,6,) > ... ) We recall that such controls are paramount when observations
are gathered sequentially (either actively or otherwise), especially when the number of obser-
vations is unknown beforehand, as in stochastic bandits or reinforcement learning.

Bregman information gain

We first introduce a quantity that measures a form of information gain about 6* after observing t

samples, but expressed in terms of the natural Bregman divergence.

Definition 3.2 (Bregman information gain). Let (Y;)!_, be i.i.d. samples drawn from pgs, where
0* € © C Or, and let Oy € © be a reference parameter. For any constant ¢ > 0, the Bregman
information gain about 0* from 0y after observing (Ys)'_, is defined as

Jo exp (—cBc(9',60)) dO’ ) (3.14)

t,C fo) = lo 6,
L (f@ exp (—(t + ©)Be (0", 0e(60)) ) 4O

where we defined the reqularised parameter estimate of 6* by

t

) F(Ys) 4+ ¢VL(0o)

B;0(60) = (VL)™' | = " . (3.15)

Parameter estimate. To gain intuition, we observe that ét,c(eo) is essentially a maximum a
posteriori (MAP) estimate. Indeed, the likelihood of a sample (Y;)._; drawn from py is given by
p((Ys)i_ | 0) o exp ((9, St F(Yy) — tﬁ(ﬁ)). Now, given a reference point 6, € O, consider
the prior p (0) o exp ({8, VL(0y) — cL(0)), that involves the log-partition of the family at hand.
Then the posterior over 0 given the sample (Y;)._, takes the form

p (0] (Yo)isy) ocexp (<e ZF +eVI( 90)> - (t+c)£(9)> . (3.16)

In particular, p() is a conjugate prior in the Bayesian sense as the posterior distribution takes the
same form as the prior distribution, with updated parameters. The MAP estimator gMAP(HO) =
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argmaxgee p (0 | (Ys)L_,) can be derived by differentiating the exponentiated term (assuming
mild regularity conditions as noted above in Section 1.3), resulting in @YICAP(QO) = 0,..(60).

To better interpret ¢, we examine the specific case of Bernoulli distributions, i.e. © = (0, 1),
po(y) = 0Y(1 — 0)1~Y for y € {0,1} (density with respect to the counting measure). The
conjugate prior to py is given by the Beta(a,b) distribution with a,b € R?%, leading to the
posterior distribution Beta(a + Sy, b + (t — S;)) with S; = 3% V;. The MAP estimator is then
§t’a7b = (St +a)/(a+ b+ t). For integer values of a and b, this corresponds to the maximum
likelihood estimator (MLE) after observing a success and b failures in addition to the ¢ Bernoulli
trials (Ys)!_,. Anticipating on the sequel (see Appendix B.2), the regularised parameter
estimate of Definition 3.2 with reference point 6y € © takes the form §t’c(00) = (St+cbp)/(t+c),
which corresponds to the MAP with parameters a = cfy and b = ¢(1 — 6). Therefore, ¢ can be
interpreted as a virtual number of prior samples drawn from the reference distribution py,.

Dependence on ¢y and example. The acute reader can note that the considered parameter
estimate 0 .(fy) and Bregman information gain +; .(fy) involve a reference parameter 6. It
makes sense to have such a local reference point since the Bregman divergence is typically
linked to metrics with local (non-constant) curvature. Hence, the (information) geometry seen
from the perspective of different points 6 may vary, unlike in the Gaussian case. Specifically,
for a Gaussian N (1, 0?) with known variance o2, the Bregman information gain with respect
to a reference point p reads

2?1 1 20?1 t+c

=1 . 3.17
c 20gt+c 20g c ( )

1
(o) = 5 log

It is independent of the reference parameter 19, which is a consequence of the fact that the
Bregman divergence in this case is proportional to the squared Euclidean distance; in other
words, Gaussian distributions with known variance exhibit invariant geometry. However,
for other exponential families, the geometries are inherently different, and hence Bregman
information gain depend explicitly on local reference points (see Section 3.3 for details). For
reference, the classical Gaussian information gain, i.e. the mutual information between a
prior 4 ~ N(ug,0?) and the average of an i.i.d. sample (Y;)!_; drawn from N (u,co?) is
$1og((t + ¢)/c), which matches the Bregman information gain.

Method of mixtures for generic exponential families

We now present the main result of this chapter — a time uniform confidence bound connecting
the Bregman geometry of the exponential family with its Bregman information gain.
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3.2 Time-uniform Bregman concentration

Theorem 3.3 (Method of mixtures for generic exponential families). Let § € (0,1] and t € N.
Under the assumptions of Definition 3.2 and assuming the Bregman information gain is well-defined,
consider the set

A ~ 1
o, = {00 € ©: (t-+ 0)Bc (60,01c(00)) < log 5 + %,6(90)} | (3.18)

Then ((:)gc)teN is a time-uniform confidence sequence at level ¢ for 6, i.e.

Py (VtEN, 0" €8),) >1-4, (3.19)
or equivalently, for any random time T in N,

Py (e* € éﬁ,c) >1-6. (3.20)

Note the implicit definition of the confidence set @f,c, where the parameter of interest 6 appears
in both arguments of the Bregman divergence, and also in the Bregman information gain ; (o).
Because of this, computing this confidence set from the equation in Theorem 3.3 may seem
nontrivial at first glance. However, we show in Section 3.3 how these sets simplify for many
classical families, revealing how the computation can be made efficiently. Moreover, we observe
that these confidence sets are actually tighter than those of prior work, and as such are especially
well suited to be used when ¢ is small (for large ¢, most methods produce essentially equivalent
confidence sets).

Proof of Theorem 3.3. We adapt here the method of mixtures, leveraging properties of Breg-
man divergences recalled in Lemma 3.1 to build suitable exponential martingales and mixing
measures. Let (Y;),cy denote an i.i.d. sequence drawn from pg+ € Fi¥, ..

Martingale and mixture martingale construction. Let us note that Eg«[F(Y1)] = VL(6*) and
log Eg+ [exp(\, F'(Y1))] = L(6* + X\) — L(6*). Hence, we deduce that

log Egr [exp(\, F(Y1) — Ege[F(Y)])] = Brge (\LE* + ) — L(O%) — (A, VLO")).  (3.21)
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Now, for t € N, we let fi; = + >25_; F(Y;) and p = Eg«[F(Y1)]. For any A € R, the following
quantity

M} = exp (A, t(fiy — 1)) — tBr o+ (M) (3.22)

thus defines a nonnegative martingale such that Eg-[M})] = 1.

We now introduce the distribution ¢(0|c, 3) = H(a, 5) exp((8, ) — BL(0)) over € O,
where H is the normalisation term. We further introduce the following quantity

Mt:/ M} (6" + Mo, B)dA, (3.23)
AQ*

where we recall that Ag- = {\ € R%, 6* + \ € ©}. This also satisfies Eg«[M;] = 1. Further, we
have the rewriting

M, = H(a, B) /A exp (A (7 = ) = tBear () + A+ 0%,0) = BLW + X)) dX. (3.24)

Choice of parameters and duality properties. Setting a = cVL(6*) and 5 = ¢, we obtain

M, = H(cVL(0Y), ¢) /A exp (A 17— 1)) — B2+ (V) + eA+ 0%, VL)) — cL(0 + 1)) dA

= G(8".0) [ exp (Ot — ) — (t+ OB (V) A, (3.25)

where we introduce the following quantity

G0, c) = H(cVL(O), c) exp (c(0, VLO)) — cL(67)) = A Z’;i ((iif;gf((g))g :Ccf((g,)))) =

_ [/@ exp (—cBe (0, 6%)) db’ B

(3.26)

At this point, let us introduce # = 7 (fi; — 11). We also consider the Legendre-Fenchel dual
function B}, »(z) = max)(A, x) — B¢« (A) and denote A} its maximal point. Now, we note that
x4+ VL(O*) = VL(O* + \}) and thus

(N x) — Bege(\) — (A5, 2) + Brge(AL) = (A — XS, + VL(O)) + L0 + X5) — L(0* + N)
= (A= N5, VL0 + X)) + L(0* + X)) — L(0" + X).
(3.27)

Also, since we have the equality « = HLC (1i—VL(0%)), the quantity z+V L(0*) = VL(O*+X))

rewrites t%c fit+ 7. VL(0*) = VL(0"+ ), which justifies to introduce the following regularised
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3.2 Time-uniform Bregman concentration

parameter estimate:

Ry *\ -1 to c
Orc(07) = (VL) <t+c“t+t+c

vc(a*)) . (3.28)

Martingale rewriting and conclusion. Using this property, we note that

M,; = exp ((t + ¢)BL o« (:1:)) G(6%,¢)
X /A exp (£ + ) [(A = A%, VL(O0% + A5)) — L(0% + \) + L(6" + \5)]) dA
= exp ((t+ 0)BL g+ (2)) G(0", )
x /A exp (A + 0%, (t + ) VLO" + A1) — (¢ + )LO" + \)) dA

X exp (—(t+ ) (AL + 0", VLO + X5) + (t+ ) L(0" + \))))
G(0*,¢) B . G(6*,c)
G(G* + )\;775_’_ C) = exp ((t+6)8£,6* (ZL')) G(é\t’c(e*)’n_‘_ C) )
(3.29)

= exp ((t + ¢)BE g ()

Using Theorem 1.20, we obtain the following inequality for any random time 7 in N:

T 1 Gé\T’CQ*,T—FCl
V6 € (0,1], Ppe (32,9* (m(’” - M)) > Hclog( ( G((H*) - >5>> <o (330)

To conclude, we use the duality property of the Bregman divergence (Lemma 3.1), considering
that VL is invertible. Indeed, letting o = 7/(7 + ¢), and 0, = (VL)~L(ji,), we obtain

B - (aliir = p)) = B (67, 6a) (3.31)
where 6, satisfies the equation
0o = VL Y (aVL(O,) + (1 — a)VL(EY)) = 0,..(6%). (3.32)

We conclude by the equivalence between time-uniform, stopping times and random times
concentration (Remark 1.18). [ |

Interestingly, this proof shows that the parameter ¢, introduced as a local regularisation
term in Definition 3.2 and interpreted as a virtual number of prior samples, is also a mixing
parameter in the method of mixtures, in the same spirit as « in the sub-Gaussian setting
(Corollary 1.21).
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Remark 3.4. We provide in Appendix B.1 a complementary result (Corollary B.2) using a Legendre
function Ly instead of the mixing parameter c, which eschews the use of a local reference 6y. However,
we argue that such a global regularisation is actually less convenient to use except for univariate
and multivariate Gaussian distributions that anyway exhibit invariant geometry. Furthermore, in
Theorem B.1, we prove a more general result that handles the case of a sequence (Yy)ien of random
variables that are not independent, and having possibly different distributions from each other, which
we apply to build confidence sets in linear bandits (see Appendix B.1).

Comparison with prior work. Similar to Theorem 3.3, Kaufmann and Koolen (2021) extend
the method of mixtures technique to derive time-uniform concentration bounds for exponential
families. However, their proof technique is fairly different, relying instead on discrete mixtures
and stitching, which only works for single parameter families, and involves case-specific
calculations that are difficult to generalise beyond Gaussian (with known variance) and Gamma
(with known shape). In contrast, our method applies to generic exponential families, including
distributions with more than one parameter such as Gaussian when both mean and variance
are unknown. Moreover, their discrete prior construction leads to technical constants seemingly
unrelated to the exponential family model. Our prior is naturally induced by the exponential
family, leveraging key properties of Bregman divergences, yields more intrinsic quantities
(Bregman information gain) and perhaps a more elegant and shorter proof. Hence, our results

are not only more general, but also of fundamental interest.

Asymptotic behavior. The asymptotic width of @f’c depends on the behavior of v, .(6y) as
t — +o00. Standard arguments show that @76(00) — 6* and the Taylor expansion of the mapping
0' — Be(0',60*) around ¢’ = 0% is B(0/,60%) = 3(0" — 0*)TV2L(0%)(0' — 0*) + o (|0 — 60*|]?)
(V2L(0*) is positive definite by assumption). Laplace’s method for integrals (chapter 20 in
Lattimore and Szepesvéri (2020), Shun and McCullagh (1995)) gives the following estimate:

t+c

/@ exp (—=(t + ©)Be(0/,01,(00)) ) db’ ~ /Rd exp (— (0 — 0)TV2L(0%) (6" — 9’)) o,

(3.33)
which is a simple Gaussian integral, and thus ¢ .(6p) = % log(1+t/c) + O(1). This asymptotic
scaling is worse than the log log ¢ rate prescribed by the law of iterated logarithm. However,

this is a standard feature of the method of mixtures (see Section 1.4 in Chapter 1), which is
compensated by its improved nonasymptotic sharpness, as evidenced in Section 3.4.
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3.2 Time-uniform Bregman concentration

Dependency on the parameter c. In the Gaussian case, the parameter ¢ corresponds to the
mixing parameter « of the sub-Gaussian method of mixtures (Corollary 1.21), and as such
can be tuned to ¢ = sty to tighten the confidence bound around ¢ = ¢(, with e.g. 75 ~ 0.12
for 6 = 0.05 (Lemma 1.23). It is however insightful to study its influence for other families.
We provide in Section 3.4 a detailed study of this parameter, concluding that the confidence
bounds are not significantly altered over a large range of values, and that ¢ = 75ty remains a
valid heuristic for non-Gaussian families. Note that similarly to the sub-Gaussian method of
mixtures, choosing a variable c changing with ¢ is not allowed by the theory, as this would break
the martingale property used in the proof and would be incompatible with the time-uniform
lower bound |67 .| = (+/loglog ¢/t) provided by the law of iterated logarithm (see Section 1.4
in Chapter 1). Indeed, the Bregman information gain with ¢; o< t would be asymptotically
Y (00) = Llog(1 + O(1)) + O(1) = O(1), leading to |07 | = O(1/+/t) when t — +oc.

Application to bandits

One can apply the technique developed in Theorem 3.3 to build confidence sets in standard
multiarmed bandit problems. Indeed, consider the bandit model v = ®.¢ (x| Po: € Qre(r] Fr-
where Fy is a generic exponential family (e.g. Gaussian) for each arm & € [K] and (6;)re[x] €
[Treix) Ok C RE. As seen in Chapter 1, this setting is standard to analyse optimal bandit
algorithms (Cappé et al., 2013; Korda et al., 2013; Baudry et al., 2020). We recall that, at each
time ¢ € N, we choose an arm 7; € [K] based on past observations, and draw a sample reward
Y™ from its distribution py; . The samples are then used to update knowledge about the
parameters (0f).c(x] by building confidence sets for each of them. Let NF =3t _ 1, be
the number of pulls to arm  up to time ¢, and 0, yx .(60) and 7, yi (o) be the parameter
estimate and Bregman information gain for arm k, respectively (similarly to Definition 3.2 with
t replaced by N} and samples taken from ppr — we recall that this construction is well-defined
thanks to Doob’s optional skipping). We construct the confidence set for arm k at time ¢ as

~ ~ 1
@i,Nt’“,c = {90 € Ok, (Nf +¢)B. (90, ek,Ntk,c(@o)) < log 5+ Wk,Ntk,c(Ho)} - (3.34)

5
E.NF.c
with probability at least 1 — ¢. Finally, we take a union bound over k € [K] to obtain confidence

Then, similarly to Theorem 3.3, the true parameter 8 lies in the set © for all time stepst € N
sets for all arms (with widths inflated by an additive log K factor). Such construction is standard
and is used in Abbasi-Yadkori et al. (2011) for (sub)-Gaussian families. Possible applications
include UCB algorithms for regret minimisation (see Section 1.2 in Chapter 1) and designing
GLR stopping rules for tracking algorithms in pure exploration (Garivier and Kaufmann, 2016)
in the context of generic exponential families (see also Section 3.5 for another application of
GLR tests using the parameter estimate (/9\,570(00) ). For regret minimisation specifically, we extend
the generic UCB framework of Theorem 1.33 to generic exponential families.
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Proposition 3.5 (EF-Bregman-UCB). Let © C R¢, K € N, (Ok)ker) € OF and a bandit model
(Qrerr) Poy> (Fir o)X ). For a given mapping o: R? — R, we consider the risk measure on F
defined as p: 0 € © — o(Eg[F(Y)]) = ¢(VL(0)). Assume that
(i) the curvature of the log-partition function is uniformly bounded, i.e. there exists m, M € R
such that mIy < V2L(0) < M1, forall § € ©;

(if) yis L-Lipschitz with respect to the Euclidean norm ||-||.
Let c € RY.. Then for T' — +oo, Algorithm 1 with the risk measure p and UCB given by (P(éi,n,c»neN
satisfies, for all suboptimal arm k € [K|\ {k*},

2L2M? ALMT L2M?
E NE| < 1 ——logT]| , 3.35
rug [NE] mAl Og(\/mAk>+0(mAg o > (3:35)

where Ay, is the suboptimality gap for arm k.

This shows that Algorithm 1 provides an example of an order-optimal deterministic algo-

rithm for generic exponential families. The proof is deferred to Appendix B.4.

For the family 7V of Gaussian with known variance o € R?, the log-partition function is
quadratic, i.e. £(0) = 6?/(20?), and thus has a constant curvature V2£(0) = 1/0? for all § € R.
The expectation risk measure corresponds to ¢: 1 € R ~ 202, and therefore the proposition
above applies with m = M = 1/0% and L = 20?. Consequently, we recover the classical
(sub-)Gaussian UCB regret. Beyond the SPEF case, this paves a way to analyse Gaussian
bandits with unknown variance under risk measures that depend on both mean and variance.

Remark 3.6. The regret bound of Proposition 3.5 is by no mean optimal and is intended to illustrate
applications of the time-uniform confidence sequence of Theorem 3.3. We anticipate that a more refined
algorithm and analysis in the spirit of kI-UCB (Cappé et al., 2013) could yield asymptotically optimal
UCB algorithms for generic exponential families.

P In Chapter 5, we analyse a more general framework for contextual bandits under a vast class of risk

measures, with similar curvature assumptions as in Proposition 3.5.
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3.3 Specification to classical families

In this section, we specify the result of Theorem 3.3 to some classical exponential families.
Interestingly, the literature on time-uniform concentration bounds outside of random variables
that are bounded, gamma with fixed shape or Gaussian with known variance is significantly
scarce, even though many more distributions are commonly used in machine learning models.
We derive below explicit confidence sets for a range of distributions, which we believe will
be of interest for the wider machine learning and statistics community. For instance, consider
active learning in bandit problems (Carpentier et al., 2011), where one targets upper confidence
bounds on the variance (rather than the mean); in the Gaussian case, this can be achieved with
Chi-square concentration. Hao et al. (2019) studies the classical UCB algorithm for bandits
under a weaker assumption that sub-Gaussianity, involving the Weibull concentration. In
differential privacy, concentration of Laplace distribution (symmetrised exponential) is often
used to study the utility of differentially private mechanisms (Dwork et al., 2014). Finally,
heavy-tailed distributions such as Pareto have recently been of interest to study risk-averse or
corruption in bandit problems (Holland and Haress, 2021; Basu et al., 2022).

We now make explicit the Bregman information gains and confidence sets for some illustra-
tive families (more examples and full derivations are provided in Appendix B.2).

Gaussian (unknown mean and variance). LetY ~ N(u,0?). Given samples (Y;)!_,, we
define S; = °%_; Y, and ji; = S;/t. Further, for u,0 € R x R*, we define the normalised sum
of squares Z;(p,0) = 0—12 ZtS:l(YS — u)?. Then, for reference parameters yi9 € R, 09 € R*, ¢ > 0,

the Bregman information gain reads

C
Zy(it,
15 o2l o0)

3
(o 0) = 5 o ( Ziposon) +¢) + free (336)

where f; . = (#) log (t+¢) — (§ +2)logc— (1 +1og2) + logT (%) —logT (%)

Bernoulli. LetY ~ B(u), with unknown mean p € [0, 1]. Define, for reference parameter

to € R, ¢ > 0, the estimate 117 .(1o) = % Then, the Bregman information gain is given by

B(cpo, (1 — up))
((t + ) pee(po)s (t+ ) (1 — pee(po))’
(3.37)

Yelp0) = ¢HE (10) = (t + YH (urc(10)) + log 5

where H®(y) = —(1 — p)log(1 — p) — plog p denotes the Bernoulli entropy function and
B(a, ) = [y u® (1 — u)?~'du is the Beta function.
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Exponential. LetY ~ £(1/u), with unknown mean p > 0. For reference parameters 19, ¢ > 0,

the Bregman information gain reads

I'(c)
L'(t+c¢)

fyfc(,ug) = log (S¢/po + ¢) + log +(t+c—1)log(t+c) —clogec—t. (3.38)

Pareto. LetY ~ Pareto (a), with unknown shape « > 0. Define L; = Zf;:l log Ys. Then, for
reference parameters o, ¢ > 0, the Bregman information gain is given by

I'(c)
I(t+c¢)

’ygireto(ao) = log (gL + ¢) + log +(t+c—1)log(t+c)—cloge—t. (3.39)

Poisson. LetY ~ P()\), where A > 0. For reference parameters \g,c¢ > 0, the Bregman

information gain can be expressed as

St +cA
.(Ao) = (St + cho) log ;TCO — S, — eXolog Ao
+logI (¢,cXg) —log I (t+ ¢, St + cho), (3.40)

where I(a,b) = [12° emae’+H0 g, Although, to the best of our knowledge, the integral I(a, b)
does not have a closed-form expression, it can be numerically estimated up to arbitrary precision.

Chi-square. LetY ~ y%(k), where k € Nis unknown. Define K; = 3! _; log 2. For reference

kt,c(ko)) _ Kitedo(R)

2 t+e . In

points kg € N, ¢ > 0, introduce an estimate k; (ko) satisfying 1o (
this case, the Bregman information gain is given by

’Y@i(ko) = M (Kt + ¢t (?)) —(t+c¢)logT (kt’céko)> + clogT (ko) —c %wo (k20>

2 2
J(c, co (%))
J(t+c, Ki + eo(R2))

+ log (341)

where J(a,b) = § exp (—a logT’ (%/) + b%') This integral can be estimated using numerical
methods (see Sgc;ilon 3.4). This paves a way to build high-probability confidence sets for
chi-square distributions which have not been adequately captured in prior work. The sums
over k/ above derive from the martingale construction of Theorem 3.3 with discrete mixture
(i.e. with respect to the counting measure). A continuous (i.e. with respect to the Lebesgue

measure) mixture is also possible, as detailed in Remark B.3 in the appendix.

Explicit confidence sets. We now illustrate the confidence sets for the exponential families
above, obtained by specifying the generic form and simplifying the resulting expression, in
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Table 3.1. The technical details of the derivation of the specific forms for each illustrative
family is postponed to Appendix B.2. In particular, we note that the confidence sequence with
regularisation parameter c for the SPEF of Gaussian distributions with fixed variance o2 is
equivalent to the time-uniform bound of Corollary 1.21 for R-sub-Gaussian distributions (with
R=ocand a =c).
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Table 3.1 - Summary of Bregman confidence sets given by Theorem 3.3 for representative families.
Throughout the following notations are used:

t
= Z Y, fe=3t Quu) =3 (Ys—p)®, Zi(uo) =LY,

=1 s=1

¢ t
S =S VE L= Yy, K=Y los%,
s=1

s=1

J(a,b) = fo exp (—a log (g) + %) dk (dk is the Lebesgue measure if k € R and the counting measure if £ € N).

Name Parameters Formula
. Sp—tp)?
Gaussian peR Hic( t%t{‘) <log 1 + 3 log &<
. . Q2t[£2) t+c +1)1 g( )
aussian o€ Ry
< log 3 +log ((fz)) Llog2—(5+1)log e+ (B +1) log(t+c)
peR 3Z¢(, ) Lt log (L Zu(fiu, 0) + 2 Zi(p, 0) + )
: t 1
Gaussian s ER, <logi—13 log2 — (§+2)logc+ 3 log (t+c)

+log (%) —logT’ (#)

Sy log +(t—Sy) log1 —i—logr(sﬁ}c(’z Lg&;gﬁ:%lﬂ )
I (t+c)

Bernoulli p e [0,1] log gl
3 I'(c)

%—(t+c+1) log (i + c)

()

Exponential p € Ry
< log i 5+log () —log(t 4+ ¢)—clogc

St~ ((t+0)k+1) log (5 + ck)

Gamma AeRy .
< log 1+log %—log((t—i—cﬂc) — cklog ck
5 —(t+c+1)lo ( 5 —i—c)
Weibull AER, XF SN

L(c)
T(t+c)

< log i 5 +log —log(t + ¢) — clogc

al, — (t+c+1)log (aL; + ¢)
Pareto a€eR 1 I'(c)
< log 5 + log Frg log(t + ¢) — clogc

, tA—S;log A
Poisson AeRy < log %+logl (¢, e)) —log I (t+¢, Sy-+c))
. kEeN tlogF(2) Kt—logJ<c co %))
Chi-square 1
ork€Ry  tlogJ (t+e Kit+epo (§)) <logh
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3.3 Specification to classical families

We now provide a set of illustrative numerical experiments to display the confidence
envelopes resulting from Theorem 3.3 in the case of classical exponential families. We plot
for a given value of the confidence level § and regularisation parameter c the convex sets
t = Nsst (:)ic (running intersection, see Section 1.4 in Chapter 1). In dimension d = 1, we
report the extremal points of these intervals, which we call the upper and lower envelopes
respectively (taking the running intersection ensures that these are respectively nonincreasing
and nondecreasing, as explained in Remark 1.22). We refer to Figure 3.1 for Pareto, Chi-square
and Gaussian (with unknown p, o) and Appendix B.3 for many other families. Because we
exploit the Bregman geometry, our bounds capture a larger setting than typical mean estimation;
for instance, we are able to concentrate around the exponent « of a Pareto distribution even
when the distribution is not integrable (o < 1). Furthermore, for two-parameter Gaussian,
apart form being anytime, our confidence sets are convex and bounded in contrast to the one
based on Chi-square quantiles with a crude union bound (see Appendix B.3).
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6=5%, u=1, o=1, c=1.0

(a) Gaussian (mean and variance).

6=5%, a=0.5, c=1.0
(averaged over 1000 repetitions)
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(c) Pareto.
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6=5%, p=80%, c=1.0
(averaged over 1000 repetitions)
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(b) Bernoulli.
6=5%, u=5.0, c=1.0

10 (averaged over 1000 repetitions)
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Sample size

(d) Chi-square.

Figure 3.1 — Example of Gaussian time-uniform joint confidence sets for (i, o) = (1,1) with sample
sizes ¢t € {10, 25, 50, 100} observations (smaller confidence sets correspond to larger sample sizes), and
examples of time-uniform confidence envelopes for 5(0.8), Pareto(0.5) and x2(5) on several realisations
as a function of the number of observations ¢. Thick lines indicate median curves over 1000 replicates.

3.4 Numerical experiments

In this section, we provide illustrative numerical results to show the resulting confidence

bands built from Theorem 3.3 are promising alternatives to existing competitors (detailed in
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3.4 Numerical experiments

Appendix B.3). All the confidence sets presented here are implemented in the open source
concentration-lib Python package. !

Comparison. We plot our confidence envelopes for Gaussian, exponential, Bernoulli and
Chi-square distributions in Figure 3.2 and compare them to state-of-the-art time-uniform
bounds, except for the Chi-square distribution, for which no prior benchmark existed; we report
instead the confidence envelopes under two different mixture constructions (see Remark B.3 in
Appendix B.2 for more details). Numerical experiments for other, less common distributions,
with a similar scarcity of existing time-uniform bounds, are deferred to Appendix B.3. We fix
9 = 0.05 (note that all bounds exhibit the typical log 1/ dependency) and ¢ = 1.

Interestingly, our upper and lower envelopes are not necessarily symmetric, and in the
Bernoulli case, they fit within the supports of the distributions without clipping, contrary
to most other methods, thus adapting to the local geometry of the family. Our bounds are
comparable to those of Kaufmann and Koolen (2021), if slightly tighter; however, we emphasise
again that our scope is wider and captures more distributions.

'https:/ /pypi.org/project/concentration-lib.
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6=5%, u=0, 0=1.0, c=1.0 6=5%, u=1.0, c=1.0
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(a) Gaussian. (b) Exponential.
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() Bernoulli. (d) Chi-square.

Figure 3.2 — Comparison of median confidence envelopes around the mean for N'(0,1), £(1), B(0.8) and
x?(5), as a function of the sample size ¢, over 1000 independent replicates. Grey lines are trajectories of
empirical means fi;.

Numerical complexity. Some of our formulas (Poisson, Chi-square) require the evaluation
of integrals for which no closed-form expression exist. However, these can be estimated up
to arbitrary precision by numerical routines, see Remarks B.4 and B.5 for details. Similarly,
the use of special functions (digamma, ratio of Gamma) may lead to numerical instabilities or
overflows for large t; we recommend instead to use the log-Gamma function and an efficient

76



3.4 Numerical experiments

implementation of the log-sum-exp operator. We report results for ¢ <200 as we believe the
small sample regime is where our bounds shine (most reasonable methods produce similar
confidence sets for large ). Finally, most confidence sets reported in Figure 3.2 are implicitly
defined (after reorganizing terms) as level sets {F'(f) < 0} for some function F. For one-
dimensional families, we use a root search routine for a fast estimation of the boundaries of
such sets; in higher dimension, we evaluate F' on a uniform grid (e.g. in Figure 3.1a, we use a
1024 x 1024 grid over [-2, 4] x[0.1, 4]).

Influence of the local regularisation parameter c. We also performed additional experiments
to get more insights on the tuning of c. Specifically, for varying values of ty € N, c was chosen to
minimise the width of the confidence interval at sample size ¢ = t, i.e. ¢;, = mingo|Oy, . (5)].
We report in Figure 3.3 the resulting plots in the case of Bernoulli, Gaussian, exponential
and Chi-square distributions. The resulting optimal choice ¢; = argminc@t,c (0)| exhibits a
linear trend ¢; ~ 0.12¢, which seems consistent across the tested distributions. Of note, the
constant 0.12 is reminiscent of the optimal tuning of the sub-Gaussian method of mixtures
(Lemma 1.23). This is in line with the observation in Section 3.2 that the confidence width
\(:)t,c (0)] is equivalent to the Gaussian confidence width when ¢t — +o00, which implies that
asymptotic tuning of ¢; should be similar for all distributions. The experiments in Figure 3.3
thus confirms that this tuning is also near optimal for nonasymptotic, small sample sizes.

Furthermore, we report in Figure 3.4 the confidence envelopes for ¢ varying between 0.1
and 30. We find that in practice, for small samples, c has a rather limited influence on the
width of the confidence interval. We also report the heuristic ¢; ~ 0.12¢, which indeed provides
the tightest envelope. However, we restate that such a sample size-dependent regularisation
parameter c is not supported by the theory (as it would violate the martingale construction and
the law of iterated logarithms). With this in mind, it is however possible to choose a specific
horizon of interest t) and set t = 0.12¢( to promote sharpness around ¢ = .
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Figure 3.3 — Optimal (smallest confidence interval diameter) local regularisation parameter c}

argmin,|©; . (§)| with § = 5% for N'(0,1), £(1), B(0.8) and x2(5). Note the apparent common linear

trend ¢; ~ 0.12t. Results are averaged over 1000 independent simulations.
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Figure 3.4 — Comparison of the time-uniform Bregman confidence envelopes for N'(0,1), £(1), B(0.5)
and x?(5), and varying mixing parameter ¢ € [0.1,20], as a function of the sample size ¢, over 1000
independent replicates. Grey lines are trajectories of empirical means ji;. Thick black dashed line: .

Dotted black line: heuristic ¢; ~ 0.12¢.
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3.5 GLR test in exponential families and change point detection

In this section, we apply our result to control the false alarm rate (type I error) of generalised
likelihood ratio (GLR) tests when detecting a change of measure from a sequence of observa-
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tions. More precisely, we consider a sequence of observations (Y;):cy such that for all t € N,
Y: ~ pg~(y) and 0*(t) € © is a (possibly time-varying) parameter describing an exponential
family 7. We consider the composite null hypothesis that this sequence is stationary, i.e.

Ho=30" €O, Vt €N, 0*(t) = 0~ (3.42)

and we aim to test it against the composite alternative that there is a change point at time ¢* in
the distribution of the sequence, i.e.

Hq = 3It* €N, 96, 0{ €0, VteN, (9*(t) = 96ﬂt<t* + 9I1t>t* . (343)

The GLR test in the exponential family model F is defined, for a threshold o > 0, as

7(o; F) = min{t € N, max Gis:t > al, (3.44)

s€[0,t)

Hi:l Pogy (YT)Hi:s—Q—l Poq (YT) )
T po ) . Then, the

false alarm rate of the GLR test (i.e. the probability that a change is detected under the null,

where the GLR is defined to be G¥,,., = infy supgp, g, l0g (

also known as the type I error) can be bounded using
Poe (T(a; F) < 00) = Ppe (€N, Is <, GTy > a). (3.45)
Observe that solving for the inner supremums in the expression of GLR, we obtain

Gl = inf sB (¢ 0s) + (t — $)Br(0',05414), (3.46)

where we introduce parameter estimates 6, and 0 1, such that V£(6,) = i1y | F(Y,)and

-~

VL(Ost1:4) = i Zizs 41 F(Y;), respectively. Hence, the false alarm rate can be controlled as

Pos (T(c; F) < 00) < Py (Els €N, sB.(6%,6,) > al)
+ P (€N, s <t, (t— 5)Be(0",05114) > a2) (3.47)
for appropriate terms a1, ap such that o = a + ap. The control of the first term comes naturally
from our time-uniform deviation result (Theorem 3.3) using a regularised version of the

estimate 0. For the second term, we need to study the concentration of B (6, §S+1:t) uniformly

over s and t.
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Doubly time-uniform concentration. For any s < ¢, ¢ > 0 and reference parameter 6, € O,

we define the regularised estimate

N 1 t

Osi1:0.c(00) = (VL' | ——— | D F(Y;)+¢VL(©O) | |, (3.48)
t—s—+c el

built from (¢ — s) observations (Y;)!_,_ . Similarly, we introduce the corresponding Bregman

information gain v 1.¢..(6o) as in Definition 3.2. The following result extends the time-uniform

bound of Theorem 3.3 to control the Bregman deviation of §5+1:t70(60) around 6.

Theorem 3.8 (Doubly time-uniform concentration). Let 6 € (0,1] and g: N — R*_ such that
S0 1/g(t) <1 (e.g. g(t) = w(1 + t)log?(1 + t) where k = 2.10975). Under the assumptions of
Definition 3.2, consider the set

,\ ~ t
0%, 14, = {90 €O : (t— 5+ )Be(60, Bsr10(80)) < log 9(5) + ’ys+1;t,c(90)} L (349)

Then ((:)g +1:t’c)teN t is a doubly time-uniform confidence sequence at level 0 for 6*, i.e.

)

Ppr (VEEN,Vs <t, 0 €0),1,.) >1-4. (3.50)

Remark 3.9. Maillard (2019a) proves a doubly uniform concentration inequality for means of (sub)-
Gaussian random variables and conjectures that it could be extended to other types of changes, such as
changes of variance in a Gaussian family. Theorem 3.8 can be seen as a generalisation of this result to
generic exponential families. Again. this extension naturally comes with additional challenges due to
the intrinsic local geometry of exponential families.

Proof of Theorem 3.8. The proof follows a similar strategy based on exponential martingales as

in Theorem 3.3.

Assume that the null hypothesis holds, i.e. thatall the (Y;).en come from a single distribution
belonging to an exponential family model F with parameter §* € Nand lett € Nand s €

{0,...,t —1}. We introduce the scan mean fis;1.; = i 3:8+1 F(Y;) and its expectation, i.e.
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the true mean 1 = VL(6*). We define as in the proof of Theorem 3.3, for each A the martingale

M1y = exp (A, (t = 8) (fss1e — 1)) — (t = 8)Bro (M) - (3.51)

Then, applying the method of mixtures and replacing each term with its scan version from
s + 1 to t, we introduce the quantity

G(6*%,¢)
M, =exp ((t—s+c)Br g (x — ’ 3.52
1= exp (( )BE g+ () a6t =373 (352)
where z = t:ﬁ(,usﬂzt — VL(6*)) and §S+1:t7c(9*) is the regularised estimate from the scan
samples

t

> F(Yr)+ VL)

Osiiae(0) = (VL) | = . (3.53)

Remarking that Eg«[M; ;] < Eg«[Miy1,:] = 1 and that (Ms41,)s is a nonnegative super-
martingale, we can now control its doubly-time uniform deviations following the proof of
Maillard (2019b)[Theorem 3.2]. More precisely, for any non-decreasing function g, we show
below that the following peeling-like result holds:

g(t)) [ Ms+1:f} — 1
Mgy 2 —— ) < 0y < — . .
Py (Elt eN,Is <t: Msi1y 5 0Eg mMax Max o0 6; o0 (3.54)

Rewriting the terms thanks to the duality formulas, yields

o~ 1
Py~ <E|t eN,Is <t:(t—s—c)B(0%,0541:4,(0%)) > log <ggt)) + Ws+1:t,c(9*)> < 52 Ok
t=1
(3.55)

Doubly time-uniform control of supermartingale sequences. For completeness, we repro-
duce below the derivation from Maillard (2019b)[Theorem 3.2], applied to our setup. First, let
us note that

g(t) M 14 1
* 4> ) =Py« > —
Py (Ht eN, ds<t, Mgi14 2 5 ) Py (r{lg\lx HSlth o(0) =

Mgy,
< 0Eg- {max max — (3.56)

teN s<t  g(¢)

Let us also denote 7 the random stopping time corresponding to the first occurrence ¢ of the event

it

maxe(o,¢—1] % > 1. Itis convenient to introduce the quantity M, = ﬁ 2ose{0,. -1} Mste
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3.5 GLR test in exponential families and change point detection

for each t € N. Since each M, ; and g(t) is nonnegative, we first get that for every random

stopping time 7 € N, the following inequality holds:

maxge, M. — _ o _
Egy- %SHT < Eg» |:MT:| = K¢ | M1 + Z(Mt—l-l - Mt)ﬂwt} . (3.57)
t=1
Furthermore, we note that, conveniently,
— — My (Ms+1 41 Mg t>
My — My = —/———"=+ - =) (3.58
M=yt 2 ey a0 )

Next, by assumption, we note that Eg«[Mgy1 41 | Ft] < Msy1,. Thus, since 1,5¢ € Fi, we
deduce that

maXs<r Ms+1,T
Fo: 9(7)
Egx [My41,141] K 1 1 > }
< Eg« | M — —— | M 1,
0 [ 1}+Z g+ 1) —I—;;t 0 90 +1,tlr>t
Egx [Mi11,641] 1
= Eg- [Ml} + Z T ; ; ( -5 (t)> Eor [Mss141,54) . (3.59)

>0

Hence, the assumption that g is non-decreasing ensures that the last sum is upper bounded by
0. Since on the other hand Egp+[M;11 ++1] < 1 holds for all ¢ (and thus Egy- [Ml} < 1/g(1)), we
deduce that the following inequality holds:

o0

<01
Z t+1 ,:Z@ (3.60)

—19

maxs<r Ms-l—l,T

o g(7)

A regularised GLR test. For a given false alarm (i.e. false positive) probability ¢ € (0,1] and
parameter ¢ > 0, we define the regularised GLR test 72(F) as follows:

-~ ~ 1
Ol =10 €O : (s +)Bc(fo, bs.c(00)) < log < +7sc(f) ¢ (3.61)
N——
a
. ~ t
9(ss+1:t,c = 00 €0: (t — s+ 6)85(007 05+1:t,c(00)) < log 9(5) + 75+1:t,c(00) s (362)
a2
(F) =min{teN:3s < 1,020 87, =0}, (3.63)
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Note that, under the measure Py, the event §* @‘2{3 holds with probability at least 1 — §/2

by time-uniform concentration over s (Theorem 3.3), and 6 € é‘jflzt’c holds with probability
at least 1—0/2 by doubly time-uniform concentration over both s and ¢ (Theorem 3.8). Then,
by a union bound, this test is guaranteed to have a false alarm probability controlled by 4.
The factor g(t) is essentially a function growing slightly faster than linearly that inflates the
width of the confidence set in the doubly time-uniform bound to allow for the peeling-like
construction above. It can be tuned to satisfy > ;77 1/¢(t) < 1, thus controlling the above
deviation probability by at most & (ideally, >;- 1/¢(¢) should be close to 1 to avoid overinflating
the confidence width, which would decrease the statistical power of change point test). A
natural choice for this is g(¢) = (1 +t)log?(1 4 t) where k = 2.10974 > >, m (for
completeness, we derive in Appendix B.4 an elementary way to compute suitable values for «);
other common choices include g(t) o t" for some n > 1, though it leads to a looser bound due to
the faster growth. Furthermore, if one is interested in detecting changes up to a known horizon
T, one can replace the function g(t) by the slightly tighter factor g(t) = x(1 +t) log?(1 +t) with

k=31, 1/g(t) and still guarantee a false alarm rate under 4.

Experiments on change point detection for Gaussian with unknown variance. We illustrate
the change point GLR test above in a numerical experiment as follows. We consider the one-
dimensional exponential family of centered Gaussian distributions with unknown variance
F = {N(0,0%),0 > 0}. A sequence of independent random variables (Y}):cy is drawn from
N(0,03)ift < t* and from Y; ~ N(0, %) if t > t*, where t* = 50 and g = 1 and o7 € [1,2,3,4].
Of note, this setting corresponds to an open question in Maillard (2019a), which studies GLR
tests in sub-Gaussian families, which are adapted to the detection of changing means but
not variances. Detection times are reported as min(7°(F),T) with T = 100, and 7(F) > T
is interpreted as no change being detected. For the doubly time-uniform confidence set in
the definition of the regularised GLR test, we use the factor g(t) = r(1+t)log?(1+t) with
k = 2.10974.

An example of practical motivation for this setting is the design of remote health monitoring
devices. In the case of diabetes for instance, for which there exists such wearable devices,
it is important to control not only the average level of blood glucose but also its intraday
variability, to ensure the metabolism adequately responds to the antidiabetic medication; if not,
the concentration of glucose in the haemoglobin may exhibit a steady average but an increased
variance, which should be detected as early as possible.

In Figure 3.5, we report the histograms of detection times across 1000 independent sim-
ulations for increasingly abrupt changes of variance (01 € {1,2,3,4}). As expected, the
distribution of detection times shifts closer to the actual change point t* when o, increases, i.e.
more obvious changes are detected earlier. This is confirmed in Figure 3.6, where we report the
median and interquartile range of detection times for o7 € [1,4].
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3.5 GLR test in exponential families and change point detection

We empirically validate in Figure 3.5a the control of the false positive probability by at
most § = 5%. However, the actual false positive rate appears much lower (0.2%), which is
a consequence of the looseness of the union bound involving the factor g(t) in the doubly
time-uniform confidence set. Following Maillard (2019a), a sharper approach would involve
a direct concentration result on the pair (@S,c, §S+1:t,c) (i-e. in the terminology of Maillard
(2019a), a joint bound, as opposed to the current disjoint one). This is a nontrivial result which
we leave for future work. Finally, note that the high false negative rate of Figure 3.5b (27.6%)
is an artifact of thresholding the detection time at 7" = 100; increasing 7" would enable later
detections, thus reducing the number of observed false negatives, at the cost of increasing the

average detection delay (as well as the computational burden of the experiment).
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6=5%, 01,=1.0, c=1.0 6=5%, 0,=2.0, c=1.0
(averaged over 1000 repetitions) (averaged over 1000 repetitions)
1000 | False positive: 0.8% 300 | True positive: 68.8%
True negative: 99.2% False negative: 31.2%
800 250 |
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(a) o0 = 01 =1 (no change). (b)op=1,01 =2.
6=5%, 0,=3.0, c=1.0 6=5%, 0,=4.0, c=1.0
(averaged over 1000 repetitions) (averaged over 1000 repetitions)
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(C) 0'020'1:3. (d) 0’021,0'1 = 4.

Figure 3.5 - Histograms of detection times 72 (F) in the Gaussian setting described in Section 3.5. Green:
correct detection (negative in (a), positive in (b), (c) and (d)). Blue: incorrect detection (positive in

(a), negative in (b), (c) and (d)). Black dashed line: change point ¢*.
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6=5%, T=100, c=1.0
(averaged over 1000 repetitions)
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Figure 3.6 — Detection time 7°(F) in the Gaussian setting described in Section 3.5. Solid line: median

detection time. Shaded area: interquartile range of detection times (25th and 75th percentiles). Black
dashed line: change point ¢*.

Conclusion

We adapted the method of mixtures to derive a time-uniform deviation inequality for generic
parametric exponential families expressed in terms of their Bregman divergences, highlighting
the role of a quantity, the Bregman information gain, that is related to the geometry of the
family. We specialised this general result to build confidence sets for classical examples. Our
method compared favourably to the state-of-the art for Gaussian, Bernoulli and exponential
distributions, and extends to other families like Chi-square, Pareto and two-parameter Gaussian,
where no known time-uniform bound existed. Our method is also general enough to design
GLR tests for change detection. An interesting direction for future work would be to consider
the case where the log-partition function (and thus the Bregman divergence) is misspecified or
unknown and has to be learned alongside the parameter.
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Chapter 4

Empirical Chernoff concentration:
beyond bounded distributions (3Q)

Des crépuscules blancs tiédissent sous mon crine
Qu'un cercle de fer serre ainsi qu'un vieux tombeau
Et triste, j'erre aprés un réve vague et beau,

Par les champs ol la séve immense se pavane.

— Stéphane Mallarmé, Renouveau

The content of this chapter is new and has not been previously published. This work was
initially inspired by modelling questions in agriculture, a domain that presents similar
modelling challenges to healthcare, in particular small data samples and the need for adaptive
nonparametric methods. As a tribute to this, we illustrate our novel concentration bounds on
real and simulated agricultural data, showcasing the new second order sub-Gaussian
condition as an alternative modelling option for practitioners. We defer to Appendix C.1
proofs and numerical evidence that certain classical distributions satisfy this condition, which
amounts to checking simple but tedious inequalities.
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Empirical Chernoff concentration: beyond bounded distributions (33)

Outline and contributions

In this chapter, we introduce a subclass of the family of sub-Gaussian distributions, called second
order sub-Gaussian, that satisfies an additional cumulant condition, extending the standard
Chi-square setting, and spans a vast range of nonparametric families, including Gaussian,
Bernoulli, uniform, triangular and (presumably) Beta. This alternative model specification
enables to substitute the prior knowledge of the sub-Gaussian parameter in the standard
Cramér-Chernoff bound (Corollary 1.16) and method of mixtures (Corollary 1.21) with a
data-dependent estimate, eschewing the need for a known bounded support as in previous em-
pirical approaches. We detail the new concentration inequalities in Section 4.3, both in the fixed
sample (Theorem 4.8) and time-uniform (Theorem 4.10) settings. We further instantiate these
results in Section 4.4 to construct implicitly defined confidence sets for the mean, which can be
easily implemented with a root search routine (Corollary 4.14). Building on an alternative sym-
metrised cumulant control, we also provide fully explicit confidence intervals (Corollary 4.17).
We conclude by conducting a range of numerical experiments to (i) illustrate properties of the
new mixture measure used to derive the time-uniform bounds, and (ii) compare these new
bounds to state-of-the-art competitors on several illustrative examples, including a real-world
field experiment in Canada, highlighting their merits in the small sample regime.

4.1 Concentration of the mean without knowing the variance

We consider the same setting as in Section 1.4 in Chapter 1, i.e. we observe an i.i.d. sequence
(Y;)¢en drawn from a distribution v € L!(R) and we seek to construct a sequence (0?);cy of
(random) subsets of R, such that either P( € ©9) > 1 — § for all t € N (fixed sample) or
PVt €N, p € ©) > 1 — § (time-uniform) for any 6 € (0, 1).

In some cases where v belongs to a known parametric family, such confidence sets may
be computed exactly. For instance, in the fixed sample setting, if v is a Gaussian measure, the
statistic 7; defined as

_ _ R . _
T, = \/E(ut — ) /oy, with oy = n ZYS and af =
s=1

follows the Student distribution with (¢ — 1) degrees of freedom, and therefore

R 5 1 1-9
@f = {Mt + 7ttQStudent(t—1) <2 + 2)] 2
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4.1 Concentration of the mean without knowing the variance

is a confidence set at level 6 and sample size t for u, where gsdent(t—1) denotes the quantile
function of the distribution of 7;. In practical settings however, this Gaussian assumption is
often an imperfect idealisation of the observed distributions. Moreover, even though such
confidence sets are valid in an asymptotic sense as long as the underlying distribution is square
integrable (thanks to the central limit theorem), they are not theorically valid for small samples.

A weaker assumption, at the heart of the Cramér-Chernoff method (Proposition 1.15), is to
control the cumulant generating function (CGF) of v, defined as A — log Ey ., {e’\(y_“)} , typi-
cally by bounding it from above by the cumulant generating function of a reference distribution
such as AV (0, R?) (these distributions form the family of R-sub-Gaussian distributions Fg g).

Knowing the parameter R is of utmost importance in order to build actionable confidence
intervals, as larger R correspond to larger intervals and thus more uncertainty around the
estimation of yu. Assuming the support of v is bounded, i.e. v € F; 5, Hoeffding’s lemma
(Hoeffding, 1963) suggests R = (B — B) /2 as a valid choice for the sub-Gaussian parameter.
However, this value is obtained through a worst case analysis that is only tight for Bernoulli-like
distributions, and therefore likely to be rather loose for most other distributions that share the
same support. Using a subexponential control under the same boundedness assumption and a
bound on the variance paves the way for Bernstein inequalities (Hoeffding, 1963); for instance,

R 2log2 (B - B)log?2
uti(m/ tg5+( 32 g‘*)] (4.3)

is a confidence set at level 6 and sample size ¢ for ;» and the family ]-"[ BB " ]-"]C%%“tl’wd. In this

example, the dependency on R may be lifted, giving rise to the so-called empirical Bernstein

5
@t_

bounds; for instance, Maurer and Pontil (2009, Theorem 4) shows that

0e® (B - B)loe3
- (@ /21tg5 . 7(Bg(f)11)g5)] 14)

is a confidence set at level § and sample size ¢ for 1 and the family Rg{* FiB B ﬁ}"fze;}tlred = Fls 3
+

SHES

To motivate our setting and the need to move beyond boundedness, let us consider the
toy example of a Beta (a/e, a/e) distribution with a € RY and € € (0, 1) a small parameter.
Intuitively, the confidence interval (4.2) should nearly apply since this distribution is close
to being Gaussian (precisely, e~ /?(Beta (a/c, /) — 1/2) — N(0,1/(8a)) in distribution).
However, if the only information at hand is the support, one would pay an extra O (1/t) in the
Maurer-Pontil bound, and although this term decays faster with ¢ than the variance contribution
(@) (O‘ / \/f), it may considerably widen the confidence interval in the small sample regime.
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Anticipating on the rest of this chapter, we illustrate this phenomenon in Figure 4.1, where
we provide an empirical comparison of several bounds, including other confidence intervals for
bounded distributions (we refer to Table 2.2 for an overview), and the novel empirical Chernoff
confidence sets we introduce in Section 4.4. We observe that our bounds appear to adapt to
the small variance of the Beta distribution, thus outperforming other methods for bounded
distributions, even the state-of-the-art hedged capital bounds (Proposition A.5). We also report
Student’s confidence interval (4.2), which we recall is not a priori valid for non-Gaussian
distributions; indeed, at level 6 = 5%, the boundary crossing rate (i.e. the frequency of the
event 11 ¢ ©7) for small samples is around 8% for this last bound, whereas a valid confidence
set would cap this rate to at most § = 5%.

6=5%
(averaged over 1000 repetitions)

0.6

Empirical Chernoff (implicit) —
—¥— Empirical Chernoff (explicit)
—4— Hedged Capital »
—— Empirical Bentkus
—e— Empirical Bernstein

/—*— Student
0.4 =

25 50 75 100 125 150 175 200
Sample size

Figure 4.1 - Comparison of median fixed sample confidence bounds around the mean for a Beta (50, 50)
distribution, as a function of the sample size ¢, over 1000 independent replicates. Grey lines are trajectories
of empirical means fi;.

4.2 Second order sub-Gaussian distributions

Motivating example. The goal of empirical concentration is to replace the prior knowledge of
a parameter R controlling the size of the resulting confidence sets by a data-dependent estimate.
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4.2 Second order sub-Gaussian distributions

When this parameter is related to the variance of a distribution v € F, 5,5 the empirical variance
process (57)cn itself is bounded, which allows to similarly control its deviations around the
true variance. Of course, doing so bluntly would require the knowledge of a parameter related
to the variance of 57 itself, typically a bound on the kurtosis of v. Interestingly, Lattimore
(2017) analysed such concentration in the context of multiarmed bandits; however for empirical
concentration, this merely shifts the required prior knowledge to higher moments, which may
not be convenient in practice. Alternatively, we may exploit solely the boundedness to control
all further moments (Maurer and Pontil, 2009; Kuchibhotla and Zheng, 2021).

In the unbounded case however, additional assumptions are required to derive a confidence
set for R. To build intuition, let us consider a Gaussian random variable Y ~ N (u, R?) for
which we seek to establish a deviation bound around i € R independent of R € R’.. As seen
in equation (4.2), Student’s statistic provides a way to achieve this goal, however this approach
is specific to the Gaussian and hardly generalisable; we apply instead the Cramér-Chernoff
method (Proposition 1.15). The cumulant generating function (CGF) of the distribution of Y is
K:X€R e logEy . lexp(AMY —pu))] = R2A\?/2, leading to a deviation bound of R+/2tlog(1/§)
(Corollary 1.16). On the other hand, (Y — 1)? /R? follows a Chi-square distribution with a
single degree of freedom, for which we denote the CGF as K3: A — —1/2log (1 — 2)), defined
for A < 1/2. Applying the Cramér-Chernoff method a second time with Co(\) for A < 0, we
establish after some simple algebra that:

plpe | T8 (G—p)’

(K57) " (1083

>1-4, (4.5)

where K37 : u € Ry +— supycgp_ Mu — Ka()\) is the Fenchel-Legendre transform of the second
order CGF K. Finally, combining with a union bound the above equation with the sub-Gaussian
bound obtained earlier enables to factor out R, resulting in a deviation bound on 3! _, (Yy — 1)
controlled only by >>f_ (Vs — 1), § and ¢, i.e.

t t
P> Y—pz S (X —pw?| <. (4.6)
s=1

Second order sub-Gaussian distributions. Drawing inspiration from this simple example,
we generalise this approach to distributions other than Gaussian by bounding their second
order cumulant by that of a Chi-square distribution.
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Definition 4.1 (Second order sub-Gaussian). Let v be a distribution on R with expectation 1. We
define the second order (centred) cumulant generating function (CGF) of v as

Ko:R—RU {+OO}
A log By, [0 . (4.7)

Let p, R € R*.. We define the family of (p, R)-second order sub-Gaussian distributions as

1 1
]:§7p7R = {v/\ € (—oo, 2R2) , Ka(A) < —ilog (1 —2R?((p—1) 1yeo + 1) A)} . (4.8)

Moreover, we define the family of p-second order sub-Gaussian (SOSG) as

Foo= U Fé,r- (4.9)
RERY,

Let us clarify this definition. The second order CGF of a (p, R)-second order sub-Gaussian
distribution v is controlled on its right tail (A € [0,1/(2R?))) by the second order CGF of the
square of a Gaussian random variable with variance R?, and on its left tail (A € R* ) by that of

Gaussian random variable with variance (pR)?, i.e.

(4.10)

0 € {—;mg (1—2R%\) A€ (0, 55)
2 X

—2log (1 —2(pR)*)) if A € R:

Properties of second order sub-Gaussian distributions

Interestingly, the right tail control shows that this definition is a special case of the classical
notion of R-sub-Gaussian distributions, which we summarise in the lemma below.

94



4.2 Second order sub-Gaussian distributions

Lemma 4.2 (Second order sub-Gaussian distributions and other families). Let p, R € R*. Then
we have
7

ok CFgr and FnprCFéig- (4.11)

Proof of Lemma 4.2. The first inclusion is a direct consequence of Wainwright (2019, Theo-
rem 2.6), which shows that the (first order) R-sub-Gaussian control Ey ., [e*Y =] < AR/ for
A € R is equivalent to the second order control K()\) < —1/2log(1 — 2R?)) for A € [0,1/(2R?)).
The second follows immediately from the expression of the CGF of the Chi-square distribution
(in particular, the CGF control is tight for Gaussian distributions). [

More generally, the case p = 1 means that both tails of the CGF K3 are controlled by the
same scale parameter R. In general however, they may exhibit different scaling, which is why
we explicitly introduce p as the ratio of the left and right tail scaling parameters. The case p =1

is actually a limiting case, as shown in the next lemma.

Lemma 4.3 (Lower bound on the variance). Let p, R € R and v € .7-"57 o.r- Then we have the
inequalities (pR)*> < Vy.,[Y] < R2. In particular, p € (0,1], and if p = 1 then R> = Vy., [Y].

Proof. Since v € Fg g (Lemma 4.2), the upper bound Vy ., [Y] < R? follows from Lemma 1.12.
The reverse bound is obtained from the left tail CGF control of Definition 4.1. Indeed, let € R
and 7: A € R% = Ey[exp(=A\(Y — p)?)] — (1 + 2(pR)?)\)~1/2. By definition, y(\) < 0 for
A € R and a first order expansion around A = 0 yields y(\) = A((pR)? —Ey ., [(Y —)?]) +0(}).
Since the dominating term must be nonpositive (and A > 0), we obtain Vy.,[Y] > (pR)?. B

Arbel et al. (2020) introduced a unifying framework to study strictly sub-Gaussian distri-
butions, for which the sub-Gaussian parameter R? is exactly the variance (rather than just an
upper bound). In particular, they show that for some classical families (uniform, triangular,
Bernoulli, Beta, etc.), only the symmetric distributions are strictly sub-Gaussian (e.g. 5(1/2)).
A consequence of Lemma 4.3 is that SOSG distributions with p = 1 are special instances of
strictly sub-Gaussian distributions. We extend their approach in the next proposition, which
provides conditions for a sub-Gaussian distribution (v € Fg r) to be SOSG (v € ]-"57 )
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Proposition 4.4. Let R € R* and p € (0, 1]. For a distribution v € L?(R) with expectation p and
variance o2, we recall that KC: A € R ~ log Ey ., [exp(A(Y — w))] is the first order CGF of v and we
define the following mappings:

H:R*— R and Ho: R*¥ — R

_ .—2K2(N)
2K ) o, B (4.12)

A — 2 o

which we extend by continuity as H(0) = Ho(0) = o2. Then the following results hold.
(i) v € Fg.rifandonlyifsupycp H(N) < R?, andifso, v € ]:§7ij ifand only ifinfyxer _ Ha(A) >
(pR)*.

(i) v e F§, ifand only if supyep H(A) = infrcr_ Ha(N).

(iii) Ifv € Fg o and (1 + 2XdKCa/dA(N)) exp(—2/Co(N)) < Lforall X € RY, then v € ]-"5,1.

Proof of Proposition 4.4. The first result is simply a rewriting of the CGF control of sub-Gaussian
and second order sub-Gaussian distributions wi