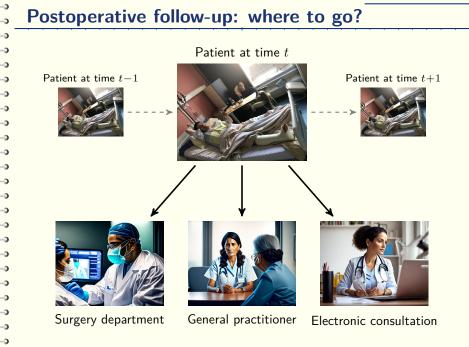
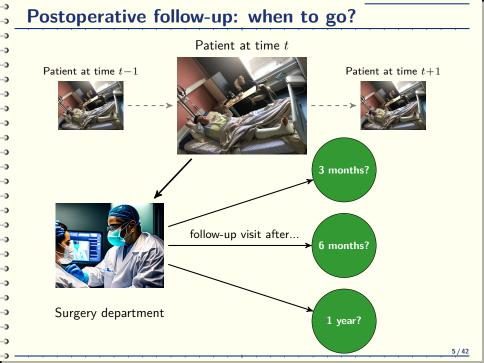
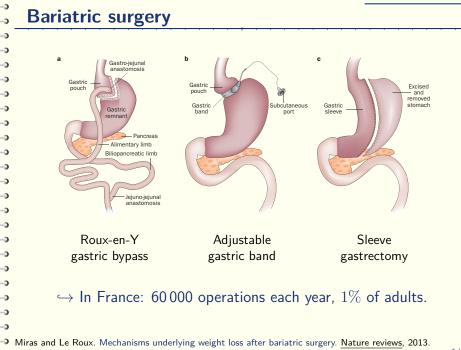
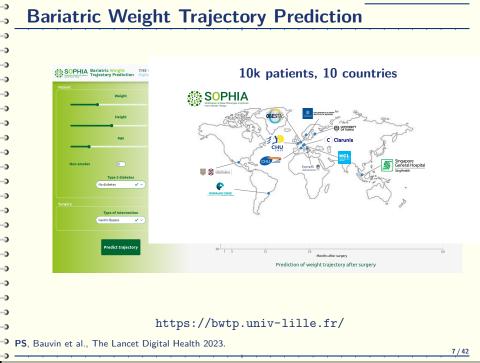
->	
->	
->	
->	
->	
->	Mathematics of statistical
->	iviatnematics of statistical
->	Mathematics of statistical decision making
->	•
->	and applications to bariatric surgery
->	Data science seminar M1-M2
->	
->	
->	Patrick Saux
->	Fattick Saux
->	supervised by Odalric-Ambrym Maillard and Philippe Preux
-0	
-) -)	E-hurren 21 2024
->	February 21, 2024
-3	
->	Inria CRIStal Serie & Adomsted en Information, Serie & Adomsted en Université
->	
->	
	1/42





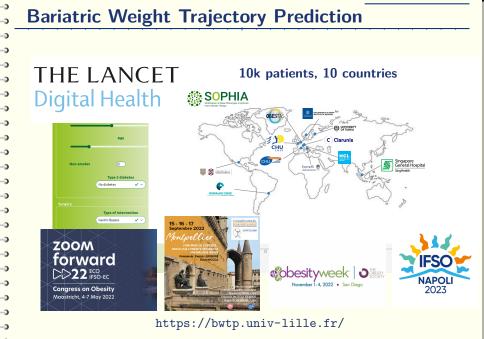


->



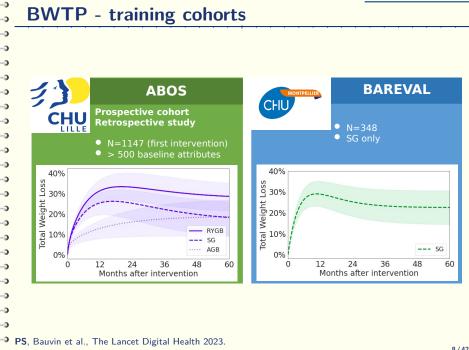
->

Bariatric Weight Trajectory Prediction

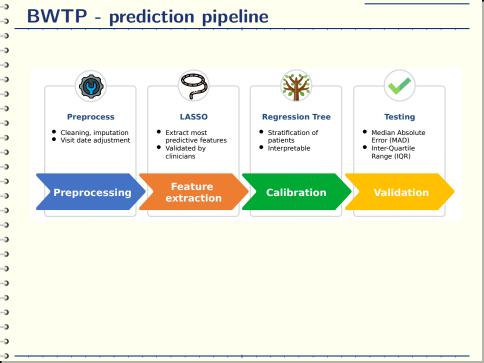

https://bwtp.univ-lille.fr/

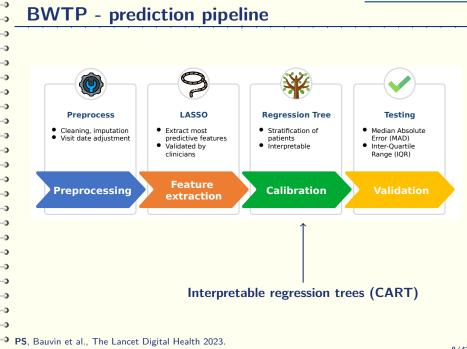
PS, Bauvin et al., The Lancet Digital Health 2023.

-0

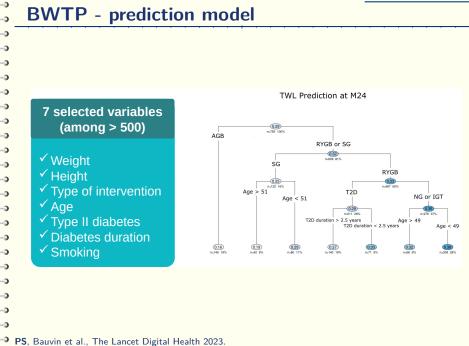

າ ວ

-0

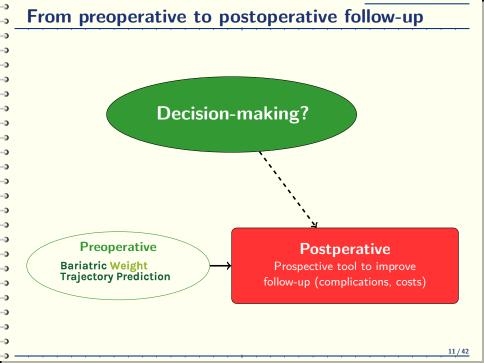


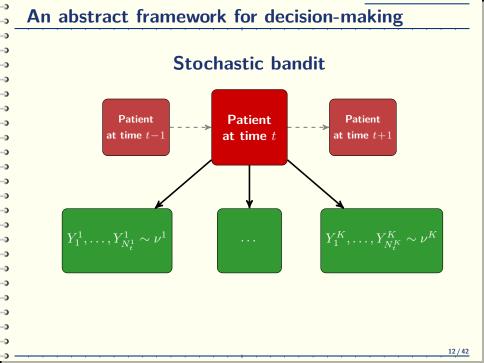

➔ PS, Bauvin et al., The Lancet Digital Health 2023.

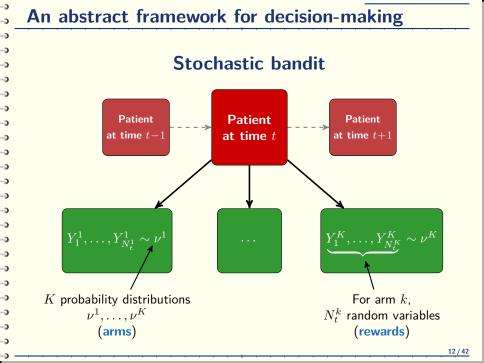
-**-**) -

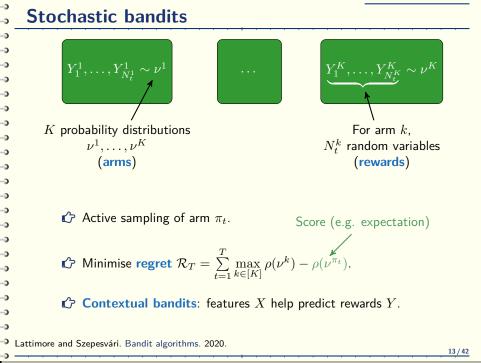


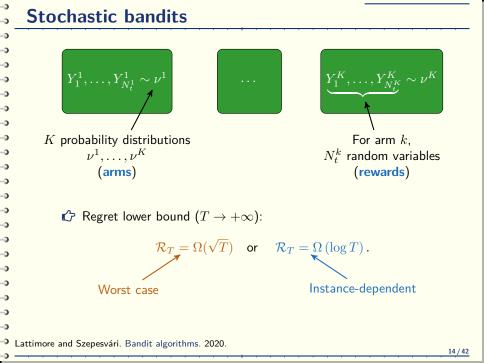
8/42

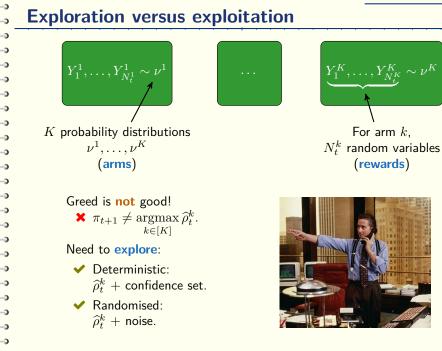


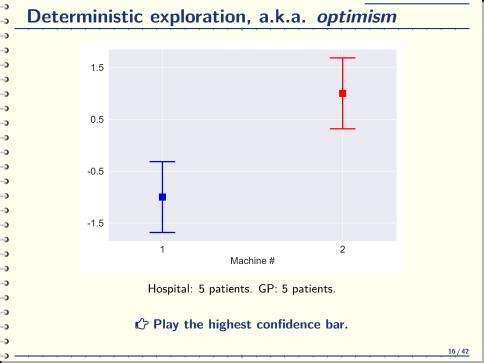


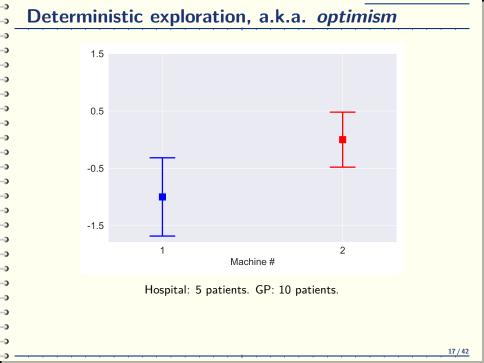

- -

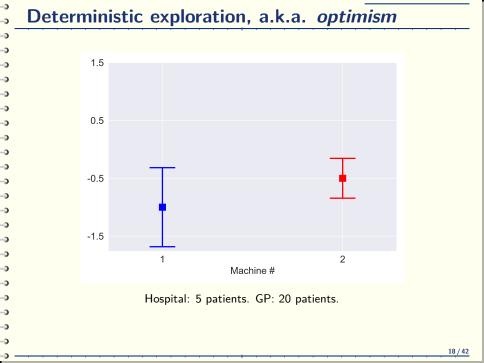


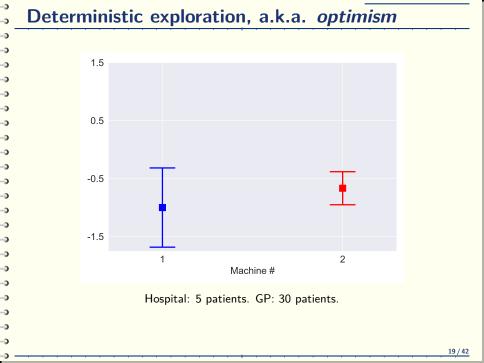

10/42

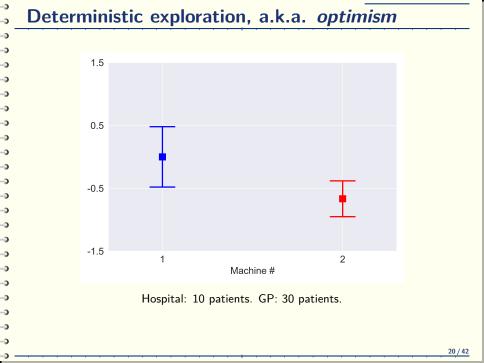


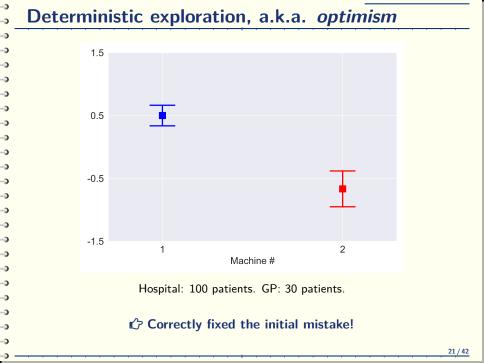












Challenges of healthcare recommendations

Online advertising

-)

• • • • • • • • • • • •

-) -)

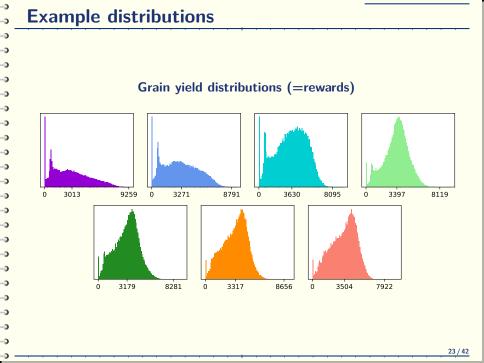
-) -) -)

-)

0 0 0

າ ວ

->


- Huge volume of data.
- Easy to model (Bernoulli, logistic...).
- ✓ Limited risks ($\rho = \mathbb{E}$).

Healthcare

- × Slow and scarce data.
- × Nonparametric models.

-) I. Efficient deterministic exploration -0 -> -> -) \mathcal{O} Quantify uncertainty for the score ρ from i.i.d. Y_1, \ldots, Y_N . -> -> -) -) Confidence sets: $\forall n \in \mathbb{N}, \mathbb{P}\left(\rho \in \widehat{\Theta}_n\right) \ge 1 - \delta$ (e.g. $\delta = 5\%$). -) ? -> -> -> -> -> -> -) -) -) -> -> -> -> -> 24 / 42 -0

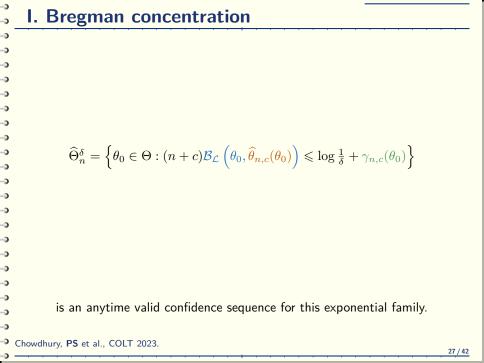
-0 I. Efficient deterministic exploration -0 -> -> -) -> \mathcal{O} Quantify uncertainty for the score ρ from i.i.d. Y_1, \ldots, Y_N . -) -) -) Confidence sets: $\forall n \in \mathbb{N}, \ \mathbb{P}\left(\rho \in \widehat{\Theta}_n\right) \ge 1 - \delta \text{ (e.g. } \delta = 5\%\text{)}.$ -) -) **\times** p-hacking: incompatible with random (active, data-dependent) N. -> -> -> -> -> -) -> -) -> -> -> -> -> 24 / 42 -0 I. Efficient deterministic exploration -0 -> -> -) -> \mathcal{O} Quantify uncertainty for the score ρ from i.i.d. Y_1, \ldots, Y_N . -> -) -) Confidence sets: $\forall n \in \mathbb{N}, \ \mathbb{P}\left(\rho \in \widehat{\Theta}_n\right) \ge 1 - \delta \text{ (e.g. } \delta = 5\%\text{)}.$ -) -) **×** p-hacking: incompatible with random (active, data-dependent) N. -> -> -> -) Anytime valid confidence sequence: -) -) \forall stopping time N, $\mathbb{P}\left(\rho \in \widehat{\Theta}_N\right) \ge 1 - \delta$. -> -) -> -> -> -> Pamdas, Grünwald, et al. Game-theoretic statistics and safe anytime-valid inference. Statistical Science, 2023. 24/42

J. Concentration bounds

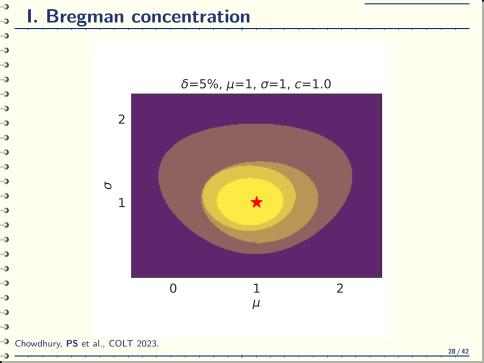
->

Method	Assumption	Variance adaptive	Random N
t-test	Gaussian (or $N ightarrow +\infty$)	~	×
Method of mixtures (MM) supermartingale inequality	Sub-Gaussian	×	~

I. Concentration bounds


-0

-) -)


Method	Assumption	Variance adaptive	Random N
<i>t</i> -test	Gaussian (or $N ightarrow +\infty$)	~	×
Method of mixtures (MM) supermartingale inequality	Sub-Gaussian	×	~
Bregman MM	Exp. families	~	~
Empirical Chernoff MM	Second order sub-Gaussian	~	~

Robbins and Pitman. Application of the method of mixtures to quadratic forms in normal variates. 1949.
 Peña, Lai, and Shao. Self-normalized processes: Limit theory and statistical applications. 2009.

Par	rameter
$rac{1}{c}$ Exponential family: $p_{\theta}(q)$	$y) = h(y) \exp(\langle \theta, F(y) \rangle - \mathcal{L}(\theta)).$
Feature func	tion Log-partition function
🖒 Bregman divergence:	
0	$(\theta) - \langle \theta' - \theta, \nabla \mathcal{L}(\theta) \rangle = \mathrm{KL}(p_{\theta} \parallel p_{\theta'}).$
0	$(heta) - \langle heta' - heta, abla \mathcal{L}(heta) angle = \operatorname{KL}(p_{ heta} \parallel p_{ heta'}).$ Known anytime valid concentration
$\mathcal{B}(\theta',\theta) = \mathcal{L}(\theta') - \mathcal{L}(\theta')$	Known anytime valid concentration

-) I. Bregman concentration -0 -> Regularised estimator -> -> $\widehat{\theta}_{n,c}(\theta_0) = (\nabla \mathcal{L})^{-1} \left(\frac{1}{n+c} \left(\sum_{i=1}^n F(Y_i) + c \nabla \mathcal{L}(\theta_0) \right) \right)$ -> -> -> -) -) $\widehat{\Theta}_{n}^{\delta} = \left\{ \theta_{0} \in \Theta : (n+c) \mathcal{B}_{\mathcal{L}} \left(\theta_{0}, \widehat{\theta}_{n,c}(\theta_{0}) \right) \leq \log \frac{1}{\delta} + \gamma_{n,c}(\theta_{0}) \right\}$ -> -> -> Bregman divergence -> -> Bregman information gain -> -) $\gamma_{n,c}(\theta_0) = \log\left(\frac{\int_{\Theta} \exp\left(-c\mathcal{B}_{\mathcal{L}}(\theta',\theta_0)\right) d\theta'}{\int_{\Theta} \exp\left(-(n+c)\mathcal{B}_{\mathcal{L}}(\theta',\widehat{\theta}_{n,c}(\theta_0))\right) d\theta'}\right)$ -0 -> -> -> is an anytime valid confidence sequence for this exponential family. -> -> Chowdhury, PS et al., COLT 2023. 27 / 42

Challenges of healthcare recommendations

Online advertising

-)

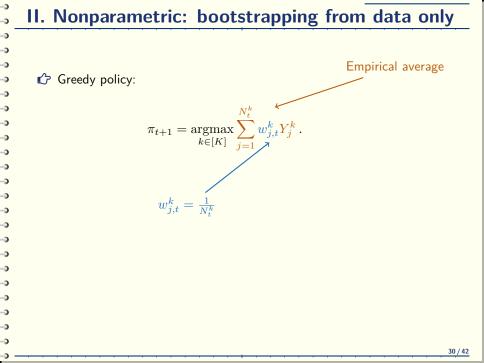
• • • • • • • • • • •

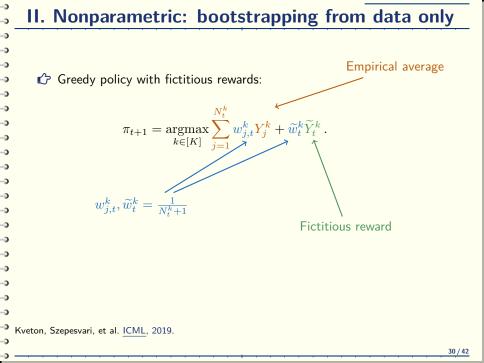
))))

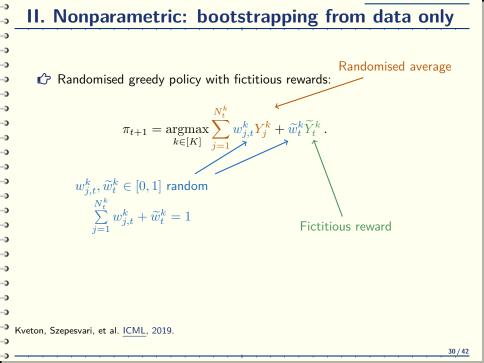
-) -)

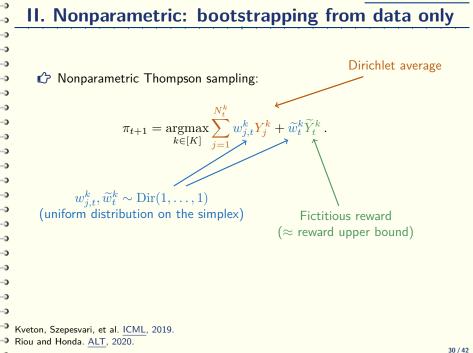
->

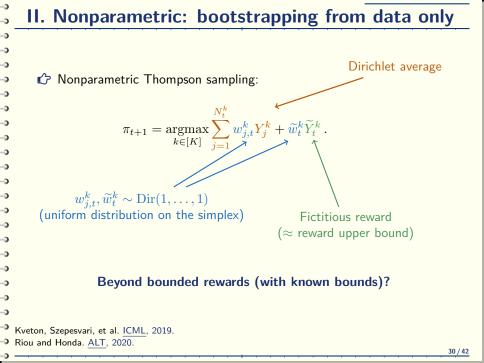
- ✓ Huge volume of data.
- Easy to model (Bernoulli, logistic...).
- Limited risks ($\rho = \mathbb{E}$).

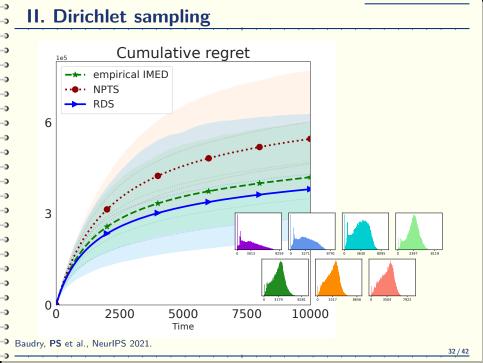



Healthcare


- Slow and scarce data.
- × Nonparametric models.




0 0	II. Nonparam	etric: bootstrapping from data only
ວ ວ		
->		Empirical average
•	🖒 Greedy policy:	
->		
0		N_t^k
0 0		$\pi_{t+1} = \operatorname*{argmax}_{k \in [K]} \frac{1}{N_t^k} \sum_{j=1}^{N_t} Y_j^k.$
5		$N_{t+1} = \underset{k \in [K]}{\operatorname{argmax}} \overline{N_t^k} \sum_{j=1}^{T_j} I_j$
9		J
0		
0		
0 0		
0		
0		
0		
9		
о о		
0		
0		
o -		30/42



-0 II. Regret guarantees for Dirichlet sampling -0 -> -> -> -) $\pi_{t+1} = \operatorname*{argmax}_{k \in [K]} \sum_{j=1}^{l} w_{j,t}^k Y_j^k + \widetilde{w}_t^k \widetilde{Y}_t^k \,.$ -> -) -) -) -> -> -> Regret guarantees (instance-dependent) -> -> Optimal in several settings -> (bounded, bounded detectable, semibounded + quantile condition) -> -) -) Light tailed: $\mathcal{R}_T = \mathcal{O}(\log(T) \log \log(T)).$ -> -> -> -> Baudry, PS et al., NeurIPS 2021. 31/42

Challenges of healthcare recommendations

Online advertising

-)

-) -)

-) -) -)

-) -)

->

- ✓ Huge volume of data.
- Easy to model (Bernoulli, logistic...).
- Limited risks ($\rho = \mathbb{E}$).

Healthcare

- Slow and scarce data.
- ✓ Nonparametric models.

III. From risk-neutral to risk-aware

-0

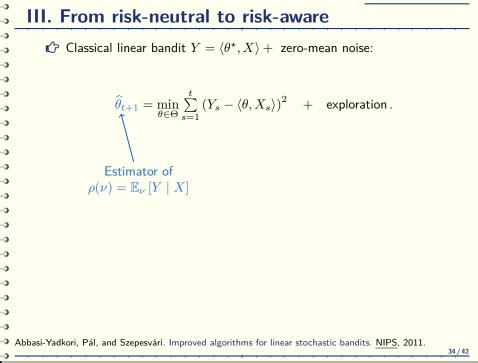
າ ວ

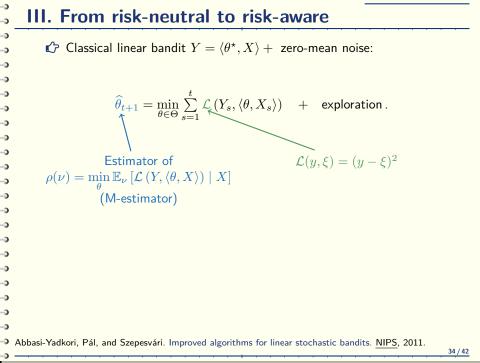
ວ ວ

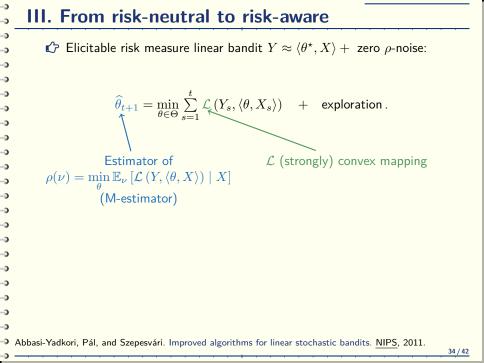
ာ ဂ

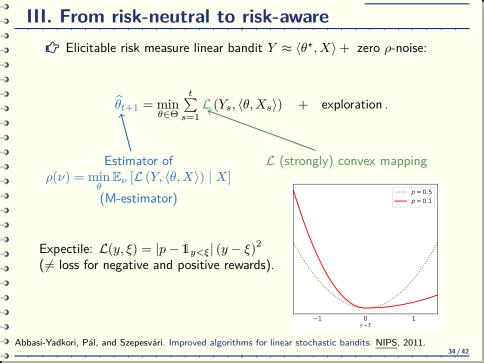
ာ ဂ

-)

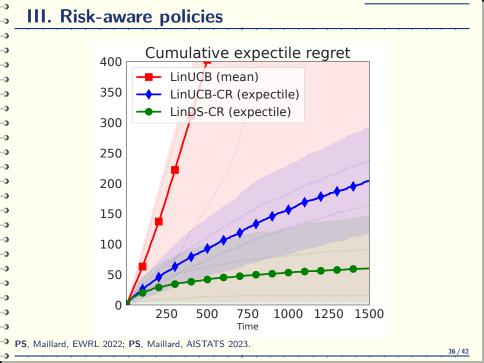

->


0 0 0


-0


- Maillard. Robust risk-averse stochastic multi-armed bandits. <u>ALT</u>, 2013.
- Baudry, Gautron, et al. Optimal Thompson sampling strategies for support-aware CVAR bandits. ICML, 2021a.

Contextual bandits?



III. Risk-aware policies -0 -> Deterministic exploration: -> -> $\pi_{t+1} = \operatorname{argmax}_{x} \left\langle \widehat{\theta}_{t+1}, x \right\rangle + \operatorname{UCB}(x),$ -> -> -) Worst case: $\mathcal{R}_T = \widetilde{\mathcal{O}}\left(\sqrt{T}\right)$. -) -) -) -> C Randomised Dirichlet exploration: -> -> $\widetilde{\theta}_{t+1} = \min_{\theta \in \Theta} \sum_{s=1}^{t} w_s^t \mathcal{L}\left(Y_s, \langle \theta, X_s \rangle\right) + \widetilde{w}_{t+1}^t \mathcal{L}\left(\widetilde{Y}, \langle \theta, \widetilde{X} \rangle\right),$ -> -> $\pi_{t+1} = \operatorname{argmax}\left\langle \widetilde{\theta}_{t+1}, x \right\rangle,$ -) -) Worst case: $\mathcal{R}_T \stackrel{?}{=} \widetilde{\mathcal{O}}\left(\sqrt{T}\right)$. -> -> Linear Gaussian Thompson sampling? -> (strong approximation of weighted bootstrap) -> -> PS. Maillard, EWRL 2022; PS, Maillard, AISTATS 2023. 35 / 42

-)

Challenges of healthcare recommendations

Online advertising

-)

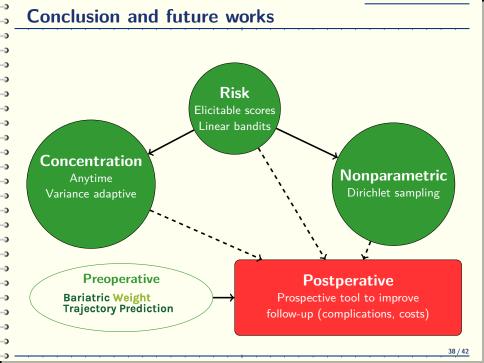
• • • • • • • • • • •

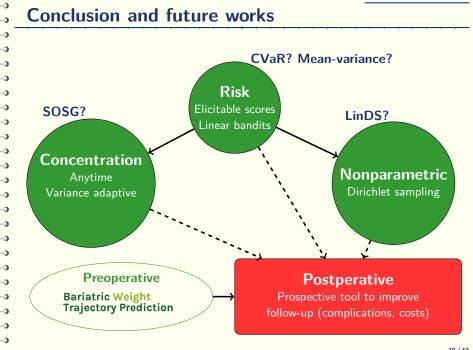
-) -) -)

-) -)

->

- ✓ Huge volume of data.
- Easy to model (Bernoulli, logistic...)
- Limited risks ($\rho = \mathbb{E}$).




Healthcare

- Slow and scarce data.
- ✓ Nonparametric models.

-) -)	Conclusion and future works	
->		
->		
-) -)		
->		
->		
->		
->		
->		
->		
->		
-) -)		
->		
->		
->		
->	Preoperative Postperative	
->		
-) -)	Bariatric Weight Trajectory Prediction Trajectory Prediction	
->	follow-up (complications, costs)	
-0		
		38 / 42

38 / 42

Contributions in medical sciences

Publications in peer-reviewed journals

-0

-) -)

)))

-0

-0

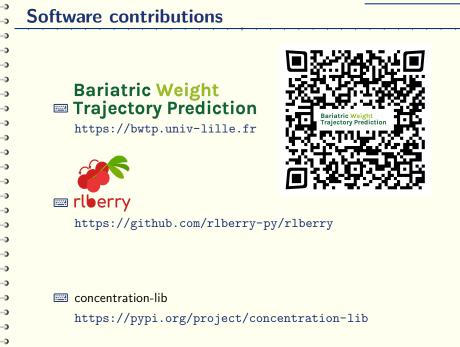
-0

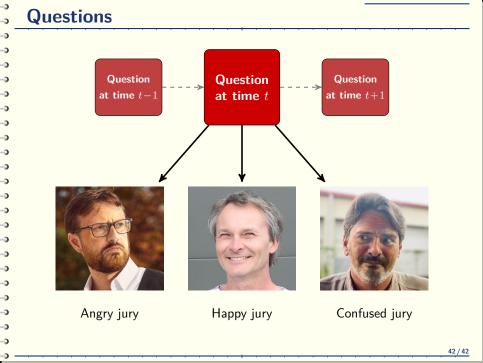
-0

->

0 0 0

- PS, Pierre Bauvin, Violeta Raverdy, Julien Teigny, Hélène Verkindt, Maxence Debert, Philippe Preux, François Pattou, et al. Development and validation of an interpretable machine learning based calculator for predicting 5 year-weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study.
- The Lancet Digital Health, 2023
- Robert Caiazzo, Pierre Bauvin, Camille Marciniak, PS, et al. Impact of robotic assistance on complications in bariatric surgery at expert laparoscopic surgery centers.
 a retrospective comparative study with propensity score.
 - Annals of Surgery, 2023





-) -)	Contributions in statistics and machine learning		
-> - ->	Publications in peer-reviewed international conferences with proceedings		
-> ->	Sayak Ray Chowdhury, PS, Odalric-Ambrym Maillard, and Aditya Gopalan. Bregman deviations of generic exponential families.		
->	In <u>Conference On Learning Theory</u> , 2023		
->	PS and Odalric-Ambrym Maillard. Risk-aware linear bandits with convex loss.		
->	In International Conference on Artificial Intelligence and Statistics, 2023		
-) -)	Dorian Baudry, PS, and Odalric-Ambrym Maillard. From optimality to robustness: Adaptive re-sampling strategies in stochastic bandits.		
->	Advances in Neural Information Processing Systems, 2021b		
• • • • •	 Workshop presentations in peer-rewiewed international conferences PS and Odalric-Ambrym Maillard. Risk-aware linear bandits with convex loss. In European Workshop on Reinforcement Learning, 2022 (poster) 		
0	Ongoing PS. Empirical chernoff concentration: beyond bounded distributions		
	PS, Romain Gautron, Odalric-Ambrym Maillard, Marc Corbeels, Chandra A. Madramootooe, and Nitin Joshi. Quantifying the uncertainty of crop management decisions based on crop model simulations		

-0

