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Motivations

Confidence sets
Let X1, . . . ,Xt i.i.d random variables distributed as X ∼ ν ∈ P(Rd ).

Where is = E[X ]?
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Motivations

Confidence sets

We want confidence sets, not just estimation!

For δ ∈ (0, 1) and t ∈ N, we need a set Cδt such that P
(
µ ∈ Cδt

)
≥ 1− δ.

Asymptotically:

Cδ
t =

[
µ̂t −

σ2
√

t
Φ−1(1− δ/2), µ̂t +

σ2
√

t
Φ−1(1− δ/2)

]
is such that

lim
t→+∞

P
(
µ ∈ Cδt

)
= 1− δ ,

where µ̂t = 1
t
∑t

s=1 Xs .

é Does not tell us anything about the small sample size regime...
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Motivations

Nonasymptotic confidence sets

We need some assumptions...
Sub-ψ distributions:

∀λ ∈ I ⊆ R+, logEX∼ν

[
eλ(X−µ)

]
≤ ψ(λ) .

Proposition (Chernoff bound)

P
(
µ̂t − µ ≥ ψ−1

∗

(
1
t log

1
δ

))
≤ δ ,

where ψ∗(u) = sup
λ∈I

λu − ψ(λ) is the Fenchel-Legendre conjugate of ψ.

Examples:
ν = N (µ, σ2), ψ(λ) = σ2λ2/2·
ν has bounded support, ψ(λ) = diam(Supp(ν))2λ2/8·
ν = χ2(k), ψ(λ) = (1− 2λ)−k/2, I =

(
0, 1

2
)
.
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Motivations

Nonasymptotic confidence sets

Proof:

P

( t∑
s=1

Xs − µ ≥ tu
)

= P

( t∏
s=1

eλ(Xs−µ) ≥ etλu

)

≤ e−tλuE

[ t∏
s=1

eλ(Xs−µ)¸
]

(Markov)

= e−tλu
t∏

s=1
E
[
eλ(Xs−µ)

]
(independence)

≤ e−tλu+tψ(λ) (sub-ψ),

then optimise in λ ∈ I.
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Motivations

Nonasymptotic confidence sets

Other possible assumptions:
Fully parametric
I If you know the quantiles, use them!

Bounded
I With control of moments:

Bennett, Berstein Boucheron et al. [2013], Bentkus [2004],
I With empirical estimators of moments:

Bernstein Maurer and Pontil [2009],
Bentkus Kuchibhotla and Zheng [2021].

I With only boundedness: Phan et al. [2021].
Self-normalised sums
I Bercu et al. [2015], Bercu and Touati [2019]

Is this all for mean estimation?
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Motivations

Detour: stochastic bandit

(a) 15% chance to win 10e (b) 5% chance to win 10e

�

The casino does not tell you which one is the winner!
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Motivations

Optimism in face of uncertainty

Optimism: play the machine with highest plausible reward.
More formally:
I play argmaxk=1,2 Uk

τk (δ),
I τk : number of pulls to machine k (random stopping time),
I Uk

τk (δ) is a measurable function of τk samples from machine k such that

P
(
µ ≥ Uk

τk (δ)
)
≤ δ.

�

Concentration bound for sample of random size!
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Motivations

Optimism in face of uncertainty

1 2
Machine #
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0.5

1.5

Machine 1: 5 pulls. Machine 2: 5 pulls.
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Motivations

Optimism in face of uncertainty

1 2
Machine #

-1.5

-0.5

0.5

1.5

Machine 1: 5 pulls. Machine 2: 20 pulls.

12



Motivations

Optimism in face of uncertainty

1 2
Machine #

-1.5

-0.5

0.5

1.5

Machine 1: 5 pulls. Machine 2: 30 pulls.

13



Motivations

Optimism in face of uncertainty

1 2
Machine #

-1.5

-0.5

0.5

1.5

Machine 1: 10 pulls. Machine 2: 30 pulls.

14



Motivations

Optimism in face of uncertainty
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Machine 1: 100 pulls. Machine 2: 30 pulls.
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Time-uniform concentration: method of mixture

Martingale and stopping time

F Stopping times are hard to deal with...
 ... but go well with martingales!

For t ∈ N, assume we know an invertible, nondecreasing Ft : R→ R+ s.t
(i) Mt = Ft (St) defines a supermartingale adapted to the filtration
Ft = σ (Xs , s ≤ t), with St =

∑t
s=1 Xs − µ;

(ii) E [M0] ≤ 1.
Then for any F-stopping time τ ,

P
(

Sτ ≥ F−1
τ

(
1
δ

))
= P

(
Mτ ≥

1
δ

)
≤ δE [Mτ ] (Markov)
≤ δE [M0] (Doob)
≤ δ .

17



Time-uniform concentration: method of mixture

To find a martingale

The sub-ψ assumption is really a martingale condition:

∀λ ∈ I, Mλ =
(

eλSt−tψ(λ)
)

t∈N
is a nonnegative supermartingale.

Proposition
For any F-stopping time τ ,

∀λ ∈ I, P
(
µ̂τ − µ ≥

1
λ

(
1
τ

log
1
δ

+ ψ(λ)

))
≤ δ .

�

Cannot optimise in λ for all values of τ !
(optimising for a fixed time t0 recovers the Fenchel-Legendre formula).
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Time-uniform concentration: method of mixture

To find a good martingale

For any mixture density q(λ) over I,

M =

(∫
I

eλSt−tψ(λ)q(λ)dλ
)

t∈N
is also a nonnegative supermartingale.

Proposition (Chernoff-Laplace mixture bound (sub-Gaussian))

If ψ(λ) = σ2λ2

2 , then for any F-stopping time τ and any c > 0,

P

µ̂τ − µ ≥ σ
√√√√√2

(
1 + c

τ

)
log

(√
τ
c +1
δ

)
τ

 ≤ δ .
Remark: this corresponds to the mixture distribution N

(
0, 1

c
)
.
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Bregman uniform concentration for generic exponential families

Exponential families

Parametric family indexed by θ ∈ Θ (open set) of distributions νθ over Rd

given by
dνθ
dνθ◦

(x) = h(x)e〈θ,F (x)〉−L(θ) .

F : feature function (of x ∈ Rd ),
L: log-partition function (of θ ∈ Θ), convex, twice differentiable.
I Assume det∇2L(θ) > 0 for all θ ∈ Θ.

Bregman divergence:

BL(θ′, θ) = L(θ′)− L(θ)− 〈θ′ − θ,∇L(θ)〉
= KL (νθ‖νθ′) .
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Bregman uniform concentration for generic exponential families

Examples
Gaussian N

(
µ, σ2) with known variance σ2

θ = µ,Θ = R ,

BL(θ′, θ) =
(θ′ − θ)

2

2σ2

Gaussian N
(
µ, σ2)

θ =

(
µ

σ2 ,−
1

2σ2

)>
,Θ = R× R∗− ,

BL(θ′, θ) =
1
2 log

θ2
θ′2

+
θ′2

2θ2
− θ′2

(
θ′1

2θ′2
− θ1

2θ2

)2
− 1

2 .

Bernoulli B(p)

θ = p,Θ = (0, 1) ,

BL(θ′, θ) = θ log
θ

θ′
+ (1− θ) log

1− θ
1− θ′
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Bregman uniform concentration for generic exponential families

Bregman supermartingale

Lemma
For θ ∈ Θ and λ s.t θ + λ ∈ Θ,

logEθ
[
e〈λ,F (X)−Eθ [F (X)]〉

]
= BL(θ + λ, θ) .

Consequence: let µ̂t = 1
t
∑t

s=1 F (Xs) and µ = Eθ [F (X )], then

∀λ, Mλ =
(

e〈λ,t(µ̂t−µ)〉−tBL(θ+λ,θ)
)

t∈N
is a nonnegative (super)martingale.

Mixture: for c > 0,

qθ(λ|c) ∝ e〈θ+λ,c∇L(θ)〉−cL(θ) ,

Mt =

∫
Mλ

t qθ(λ|c)dλ .
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Bregman uniform concentration for generic exponential families

Bregman-Laplace confidence set

Regularised parameter estimate:

θ̂t,c(θ) = ∇L−1
(

t
t + c µ̂t +

c
t + cL(θ)

)
.

Bregman information gain:

γt,c(θ) = log

∫
Θ

e−cBL(θ′,θ)dθ′∫
Θ

e−(t+c)BL(θ′,θ̂t,c (θ))dθ′
.

Theorem (Bregman-Laplace mixture bound for exponential families)
For any F-stopping time τ and any c > 0,

P
(

(τ + c)BL
(
θ, θ̂τ,c(θ)

)
≥ log

1
δ

+ γτ,c(θ)

)
≤ δ
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Bregman uniform concentration for generic exponential families

Remarks

P
(

(τ + c)BL
(
θ, θ̂τ,c(θ)

)
≥ log

1
δ

+ γτ,c(θ)

)
≤ δ

Laplace’s method for approximating integrals: when t → +∞,

γt,c(θ) =
dim Θ

2 log
(

1 +
t
c

)
+O(1) .

Implicit confidence set...
I ...but convex: easy numerical solution.
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Bregman uniform concentration for generic exponential families

Numerical experiments
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Bregman uniform concentration for generic exponential families

Numerical experiments

0 1 2

1

2

=5%, =1, =1, c=1.0

Figure: Gaussian (mean and variance) for t ∈ {10, 25, 50, 100} observations
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Bregman uniform concentration for generic exponential families

Numerical experiments
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Comparison of median confidence envelopes around the mean for B(0.8). Grey lines
are trajectories of empirical means µ̂n.
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Bregman uniform concentration for generic exponential families

Examples
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Bregman uniform concentration for generic exponential families

Questions?
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Bregman uniform concentration for generic exponential families
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Time-uniform concentration: other methods

A bad idea: union bound

Say we have:
∀t ∈ {1, . . . ,T}, P

(
µ ∈ Cδt

)
≥ 1− δ .

Then:

P
(
∀t ∈ {1, . . . ,T}, µ ∈ Cδt

)
= 1− P

( T⋃
t=1
{µ /∈ Cδt }

)

≥ 1−
T∑

t=1
P
(
µ /∈ Cδt

)
≥ 1− T δ .

Proposition (Union bound)

(Cδ/T
t )T

t=1 is a uniform confidence sequence at level δ.
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Time-uniform concentration: other methods

Turning a bad idea into a good one: time-peeling

Proposition (Doob’s maximal inequality)
Let (S)t∈N be a nonnegative supermartingale w.r.t a filtration (Ft)t∈N.
Then for all p ≥ 1 and ε > 0, it holds for all T0 < T that

P
(

max
T0≤t≤T

St ≥ ε
)
≤

E
[
Sp

T0

]
εp

.

Idea: apply union bound over a geometric grid (tk)k∈N with tk = (1 + η)k .

Proposition (Geometric time-peeling)
Let τ a (Ft)t∈N-stopping time. Then for η > 0 and δ ∈ (0, 1),

P
(
µ̂τ − µ ≥ ψ−1

∗

(
1+η

τ
log

(
log(τ) log ((1+ η)τ)

δ log2(1+η)

)))
≤ δ
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