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Motivations

Confidence sets

Problem .
Y1, . . . ,Yt i.i.d. samples from a distribution ν.
What is µ = EY∼ν [Y ]?

We want not only an estimator µ̂t = 1
t

t∑
s=1

Ys but also a confidence set:

P
(
µ ∈ Θ̂δ

t

)
> 1− δ .

Asymptotically (CLT) for δ = 5%:

lim
t→+∞

P
(
µ ∈

[
µ̂t ± 1.96 σ√

t

])
≈ 1− δ .

é Does not tell us anything about the small sample size regime...
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Motivations

Nonasymptotic confidence sets

We need some assumptions...
Sub-ψ distributions:

∀λ ∈ I ⊆ R+, logEY∼ν

[
eλ(Y−µ)

]
6 ψ(λ) .

Theorem (Chernoff bound).

P
(
µ̂t − µ > ψ−1

?

(
1
t log

1
δ

))
6 δ ,

where ψ?(u) = sup
λ∈I

λu−ψ(λ) is the Fenchel-Legendre conjugate of ψ.

Explicit ψ if ν is Gaussian or bounded (not much else is known).
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Motivations

Nonasymptotic confidence sets

Fully parametric:
I If you know the quantiles, use them!

Bounded:
I With control of moments:

Bennett, Berstein [Boucheron et al., 2013],
Bentkus [Bentkus, 2004].

I With empirical estimators of moments:
Bernstein [Maurer and Pontil, 2009],
Bentkus [Kuchibhotla and Zheng, 2021].

I Sole boundedness [Phan et al., 2021],
[Waudby-Smith and Ramdas, 2023].

Self-normalised sums:
I [Bercu et al., 2015, Bercu and Touati, 2019].

Is this all for mean estimation?
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Motivations

Anytime-valid statistics
Imagine you are monitoring a prospective clinical trial.

Patient
at time t

Patient
at time t−1

Patient
at time t+1

Surgery department General practitioner Electronic consultation
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Motivations

Anytime-valid statistics

Imagine you are monitoring a prospective clinical trial up to time T .
At time t, you test an hypothesis θ = θ0 and compute a p-value:

Pt = inf
{
δ ∈ (0, 1), θ0 /∈ Θ̂δ

t

}
.

Reject if Pt < 0.05 (i.e. θ 6= θ0 is deemed significant).

? Should you wait until T if Pt < 0.05? (Early stopping.)

? PT = 0.06, should you enrol more patients? (Optional continuation.)

? What if the trial is not randomized and you allocate patients at time t
based on results at times 1, . . . , t − 1? (Sequential sampling.)
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Motivations

Anytime-valid statistics

25 50 75 100 125 150 175 200 225
Number of rounds played

0%

20%

40%

60%

80%

100%
p-values vs. e-values of null hypothesis

fixed sample p-value
time-uniform p-value
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Motivations

Anytime-valid confidence sequence

Fixed sample confidence set:

∀t ∈ N, P
(
θ ∈ Θ̂δ

t

)
> 1− δ .

Anytime confidence sequence (CS):

P
(
∀t ∈ N, θ ∈ Θ̂δ

t

)
> 1− δ

or

∀τ stopping time, P
(
θ ∈ Θ̂δ

τ

)
> 1− δ .
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Time-uniform concentration: method of mixture

Martingale and stopping time
F Stopping times are hard to deal with...
 ... but go well with martingales!

Theorem (From NSM to anytime CS, Ville’s inequality). For t ∈ N,
assume we know an invertible, nondecreasing Ft : R→ R+ s.t.

(i) M =

(
Ft

( t∑
s=1

Ys − µ
))

t∈N
is a > 0 supermartingale (NSM)

(≈ nonincreasing stochastic process);
(ii) E [M0] 6 1.
Then for any stopping time τ , we have

P
(
τ (µ̂τ − µ) > F−1

τ

(
1
δ

))
6 δ .
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Time-uniform concentration: method of mixture

To find a good NSM
The sub-ψ assumption is really a supermartingale condition:

∀λ ∈ I, Mλ =
(

eλt(µ̂t−ψ(λ))
)

t∈N
is a NSM.

For any probability density q(λ) over I,

M =

(∫
I

Mλ
t q(λ)dλ

)
t∈N

is also a NSM (independent of λ).

Theorem (Sub-Gaussian mixture bound). If ψ(λ) = σ2λ2/2 then

(
Θ̂δ

t,c

)
t∈N

=

µ̂t ± σ

√√√√2
t

(
1 +

c
t

)
log

(
2
√

t/c + 1
δ

)
t∈N

is an anytime CS for any c > 0.

Remark: this corresponds to the mixing distribution N (0, 1/c).
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Time-uniform concentration: method of mixture

Confidence width

µ̂t ± σ

√√√√2
t

(
1 +

c
t

)
log

(
2
√

t/c + 1
δ

)
.

∣∣∣Θ̂δ
t,c

∣∣∣ = O

(√
log t

t

)
when t → +∞.

Wider than the fixed sample rate O(1/
√

t).

Optimal width O(
√

log log(t)/t) (but rarely useful in practice).
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Bregman uniform concentration for generic exponential families

Exponential families

Parametric family indexed by θ ∈ Θ ⊆ Rd (open set) with densities

pθ(y) ∝ e〈θ,F (y)〉−L(θ) .

F : feature function (of y ∈ Rd ),
L: log-partition function (of θ ∈ Θ), convex.
I Assume det∇2L(θ) > 0 for all θ ∈ Θ.

Bregman divergence:

BL(θ′, θ) = L(θ′)− L(θ)− 〈θ′ − θ,∇L(θ)〉
= KL(pθ ‖ pθ′) .

15



Bregman uniform concentration for generic exponential families

Examples
Gaussian N

(
µ, σ2) with known variance σ2:

θ = µ,Θ = R ,

BL(θ′, θ) =
(θ′ − θ)

2

2σ2 .

Gaussian N
(
µ, σ2):

θ =

(
µ

σ2 ,−
1

2σ2

)>
,Θ = R× R∗− ,

BL(θ′, θ) =
1
2 log

θ2
θ′2

+
θ′2

2θ2
− θ′2

(
θ′1

2θ′2
− θ1

2θ2

)2
− 1

2 .

Bernoulli B(p):

θ = p,Θ = (0, 1) ,

BL(θ′, θ) = θ log
θ

θ′
+ (1− θ) log

1− θ
1− θ′ .

16



Bregman uniform concentration for generic exponential families

Bregman martingale

Lemma . For θ ∈ Θ and λ s.t. θ + λ ∈ Θ,

logEθ
[
e〈λ,F (Y )−Eθ [F (Y )]〉

]
= BL(θ + λ, θ) .

 The Bregman divergence BL plays the role of ψ.

If µ̂t = 1
t
∑t

s=1 F (Ys) and µ = Eθ [F (Y )] then

∀λ, Mλ =
(

e〈λ,t(µ̂t−µ)〉−tBL(θ+λ,θ)
)

t∈N
is a NSM.

Mixture: for any c > 0 and qθ(λ|c) ∝ e〈θ+λ,c∇L(θ)〉−cL(θ),

Mt =

∫
Mλ

t qθ(λ|c)dλ is a NSM.
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Bregman uniform concentration for generic exponential families

Bregman confidence sequence

Theorem (Bregman¸ mixture bound for exponential families).(
Θ̂δ

t

)
t∈N

=

({
θ ∈ Θ, (t + c)BL

(
θ, θ̂t,c(θ)

)
6 log

1
δ

+ γt,c(θ)

})
t∈N

is an anytime CS.

Regularised parameter estimate (c = 0 ⇐⇒ MLE):

θ̂t,c(θ) = ∇L−1
(

t
t + c µ̂t +

c
t + cL(θ)

)
.

Bregman information gain:

γt,c(θ) = log

∫
Θ

e−cBL(θ′,θ)dθ′∫
Θ

e−(t+c)BL(θ′,θ̂t,c (θ))dθ′
.
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Bregman uniform concentration for generic exponential families

Bregman confidence sequence

(t + c)BL
(
θ, θ̂t,c(θ)

)
6 log

1
δ

+ γt,c(θ) .

Laplace’s method for approximating integrals: when t → +∞,

BL(θ, θ̂t,c) ∝∼ ‖θ − θ̂t‖2 ,

γt,c(θ) =
dim Θ

2 log
(

1 +
t
c

)
+O(1) ,∣∣∣Θ̂δ

t

∣∣∣ = O

(√
log t

t

)
.

Implicit confidence set in θ...
I ...but convex: easy numerical solution.
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Bregman uniform concentration for generic exponential families

Numerical experiments
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(a) Pareto
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Bregman uniform concentration for generic exponential families

Numerical experiments

0 1 2

1

2

=5%, =1, =1, c=1.0

Figure: Gaussian (mean and variance) for t ∈ {10, 25, 50, 100} observations
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Bregman uniform concentration for generic exponential families

Numerical experiments

0 50 100 150 200
Sample size

0.0

0.2

0.4

0.6

0.8

1.0

=5%, p=80%, c=1.0
(averaged over 1000 repetitions)

Chernoff-Laplace
Bentkus-peeling
Hedged Capital
Bregman

Comparison of median confidence envelopes around the mean for B(0.8). Grey lines
are trajectories of empirical means µ̂t .
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Bregman uniform concentration for generic exponential families

Examples
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Bregman uniform concentration for generic exponential families

Conclusion

o Beware of the sampling mechanism/early stopping/optimal continuation!

Ë Anytime valid CS:
I Bounded [Waudby-Smith and Ramdas, 2023],
I Bregman [Chowdhury et al., 2023],
I Sub-Gaussian (cf. my thesis).

� Many applications:
I Safe statistical inference,
I Stochastic bandits, reinforcement learning,
I Changepoint detection,
I etc.
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Bregman uniform concentration for generic exponential families

Questions?

25



Bregman uniform concentration for generic exponential families
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