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Towards recommender systems
in healthcare
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Online advertising

↪→ from online marketing to healthcare recommendations.
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Postoperative follow-up: where to go?

Patient at time t

Patient at time t−1 Patient at time t+1

Surgery department General practitioner Electronic consultation
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Postoperative follow-up: when to go?
Patient at time t

Patient at time t−1 Patient at time t+1

Surgery department

3 months?

6 months?

1 year?

follow-up visit after...

5 / 33



Bariatric surgery

2  |  ADVANCE ONLINE PUBLICATION� www.nature.com/nrgastro

observational and mechanistic studies on the effects of 
RYGB (Figure 2), AGB and VSG (Tables 1 and 2).

Food intake and underlying mechanisms
Lifestyle modification in the form of low-calorie diets 
can be very effective in the induction of weight loss; 
however, 80–90% of the population fail to maintain long-
term weight loss due to robust and evolutionary pre-
programmed compensatory processes that come into play 
and resist a drift of body fat stores below the established 
set point.11 Whilst on a low-calorie diet, patients usually 
report an increase in hunger, a decrease in satiety and 
pre-occupation with energy-dense fatty and sweet food.12,13

These findings are very much in contrast with the 
eating behaviour after bariatric surgery. Patients report 
that they are generally less hungry and reach satiation 
faster during a meal.14,15 Even though these procedures 
were originally designed to cause mechanical and con‑
sequently caloric restriction, patients rarely report 
such symptoms. Caloric restriction usually leads to a 
compensatory increase in the consumption of energy-
dense food,13 but this occurrence is not observed in 
patients or animals after RYGB.16,17 Additional evidence 
against the contribution of restriction comes from the 

Key points

■■ Bariatric surgery is the most effective treatment for weight loss and its long-
term maintenance; the most commonly performed procedures are laparoscopic 
gastric bypass, adjustable gastric banding and vertical sleeve gastrectomy

■■ Bariatric surgery improves obesity-related comorbidities and reduces overall 
and cardiovascular mortality

■■ Gastric bypass works by reducing hunger, increasing satiation, changing food 
preferences and increasing diet-induced energy expenditure

■■ Adjustable gastric banding works probably through the reduction in hunger, 
which might be mediated through vagal signalling

■■ Some of the clinical and physiological effects of vertical sleeve gastrectomy are 
similar to gastric bypass

■■ Understanding the mechanisms of action of these procedures could accelerate 
their optimization and the development of novel, and hopefully safer, 
medications for obesity and type 2 diabetes mellitus

responses after RYGB and VSG to caloric restriction. 
When humans and animals lose excessive weight after a 
surgical complication or an experimental manipulation, 
respectively, they eventually compensate for this effect 
by increasing their food intake to pre-surgical levels.18 
This step enables them to gain weight and follow their 
predicted weight trajectory after surgery. Intriguingly, 
patients and animals for whom the operations have 
‘failed’ and they have regained most of the initial weight 
loss can also consume the same amount of calories as 
preoperatively, even though the size of their gastric 
pouch has not increased substantially.19,20

Hypothalamic signalling
The arcuate nucleus of the hypothalamus contains two 
groups of neurons with opposite effects. The first group 
synthesize pro-opiomelanocortin-derived peptides, 
among which melanocyte-stimulating hormone acts 
via the melanocortin receptor 4 (MC4R) on the peri
ventricular nucleus, lateral hypothalamus and the 
ventromedial nucleus to reduce food intake and increase 
energy expenditure. The second group of neurons 
synthesize neuropeptide Y, agouti-related protein 
(AgRP) and γ‑aminobutyric acid, which increase food 
intake and reduce energy expenditure by inhibiting pro-
opiomelanocortin, but also by projecting to the peri
ventricular nucleus, lateral hypothalamus, ventromedial 
nucleus and dorsomedial nucleus. The arcuate nucleus 
is also in direct contact with blood, enabling it to be 
responsive to nutrients and circulating gut hormones.21

The expression of pro-opiomelanocortin, AgRP 
and neuropeptide Y has not been directly assessed in 
animal models of RYGB as yet. The expression of AgRP 
remained unchanged in rats undergoing VSG compared 
with sham surgery, whereas it increased in rats pair-fed 
to the VSG group;18 this finding might suggest that the 
calorically restricted rats were hungry and the VSG rats 
were not. However, in the same experiment, there was 
no change in the expression of pro-opiomelanocortin or 
neuropeptide Y after VSG. In humans, RYGB has been 
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Figure 1 | Anatomical changes in bariatric surgery. a | Gastric bypass, b | adjustable gastric banding and c | vertical 
sleeve gastrectomy.
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↪→ In France: 60 000 operations each year, 1% of adults.

Miras and Le Roux. Mechanisms underlying weight loss after bariatric surgery. Nature reviews, 2013.
6 / 33



Contributions in medical sciences
Publications in peer-reviewed journals
� PS, Pierre Bauvin, Violeta Raverdy, Julien Teigny, Hélène Verkindt, Maxence Debert,

Philippe Preux, François Pattou, et al. Development and validation of an interpretable
machine learning based calculator for predicting 5 year-weight trajectories after
bariatric surgery: a multinational retrospective cohort SOPHIA study.
The Lancet Digital Health, 2023

� Robert Caiazzo, Pierre Bauvin, Camille Marciniak, PS, et al. Impact of robotic
assistance on complications in bariatric surgery at expert laparoscopic surgery centers.
a retrospective comparative study with propensity score.
Annals of Surgery, 2023
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Contributions in statistics and machine learning
Publications in peer-reviewed international conferences with proceedings
� Sayak Ray Chowdhury, PS, Odalric-Ambrym Maillard, and Aditya Gopalan. Bregman

deviations of generic exponential families.
In Conference On Learning Theory, 2023

� PS and Odalric-Ambrym Maillard. Risk-aware linear bandits with convex loss.
In International Conference on Artificial Intelligence and Statistics, 2023

� Dorian Baudry, PS, and Odalric-Ambrym Maillard. From optimality to robustness:
Adaptive re-sampling strategies in stochastic bandits.
Advances in Neural Information Processing Systems, 2021b

Workshop presentations in peer-rewiewed international conferences
� PS and Odalric-Ambrym Maillard. Risk-aware linear bandits with convex loss.

In European Workshop on Reinforcement Learning, 2022 (poster)

Ongoing
� PS. Empirical chernoff concentration: beyond bounded distributions
� PS, Romain Gautron, Odalric-Ambrym Maillard, Marc Corbeels, Chandra A.

Madramootooe, and Nitin Joshi. Quantifying the uncertainty of crop management
decisions based on crop model simulations
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Software contributions

¥

https://bwtp.univ-lille.fr

¥

https://github.com/rlberry-py/rlberry

¥ concentration-lib
https://pypi.org/project/concentration-lib
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Bariatric Weight Trajectory Prediction

Interpretable tree-based prediction model

  

10k patients, 10 countries

PS, Bauvin et al., The Lancet Digital Health 2023.
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From preoperative to postoperative follow-up

Preoperative Postperative
Prospective tool to improve

follow-up (complications, costs)

Decision-making?
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An abstract framework for decision-making

Stochastic bandit

Patient
at time t

Patient
at time t−1

Patient
at time t+1

Y 1
1 , . . . , Y

1
N1
t
∼ ν1 . . . Y K1 , . . . , Y K

NKt
∼ νK

K probability distributions
ν1, . . . , νK

(arms)

For arm k,
Nk
t random variables

(rewards)

︸ ︷︷ ︸
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Stochastic bandits

Y 1
1 , . . . , Y

1
N1
t
∼ ν1 . . . Y K1 , . . . , Y K

NKt
∼ νK

K probability distributions
ν1, . . . , νK

(arms)

For arm k,
Nk
t random variables

(rewards)

︸ ︷︷ ︸

� Active sampling of arm πt.

� Minimise regret RT =
T∑
t=1

max
k∈[K]

ρ(νk)− ρ(νπt).

� Contextual bandits: features X help predict rewards Y .

Score (e.g. expectation)

Lattimore and Szepesvári. Bandit algorithms. 2020.
13 / 33



Stochastic bandits

Y 1
1 , . . . , Y

1
N1
t
∼ ν1 . . . Y K1 , . . . , Y K

NKt
∼ νK

K probability distributions
ν1, . . . , νK

(arms)

For arm k,
Nk
t random variables

(rewards)

︸ ︷︷ ︸

� Regret lower bound (T → +∞):

RT = Ω(
√
T ) or RT > log(T )

∑
k∈[K]

ρ? − ρ(νk)

Kinf(ν; ρ?)
.

Worst case Instance-dependent

Kinf(ν; ρ?) = inf
ν′
{KL(ν ‖ ν′), ρ(ν′) > ρ?}

Lattimore and Szepesvári. Bandit algorithms. 2020.
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Exploration versus exploitation

Y 1
1 , . . . , Y

1
N1
t
∼ ν1 . . . Y K1 , . . . , Y K

NKt
∼ νK

K probability distributions
ν1, . . . , νK

(arms)

For arm k,
Nk
t random variables

(rewards)

︸ ︷︷ ︸

Greed is not good!
é πt+1 6= argmax

k∈[K]

ρ̂kt .

Need to explore:
Ë Deterministic:

ρ̂kt + confidence set.
Ë Randomised:

ρ̂kt + noise.
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Challenges of healthcare recommendations

Online advertising

Ë Huge volume of data.

Ë Easy to model
(Bernoulli, logistic...).

Ë Limited risks (ρ = E).

Healthcare

é Slow and scarce data.

é Nonparametric models.

é Risky.
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Example distributions

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

0 3179 8281 0 3317 8656 0 3504 7922

Grain yield distributions (=rewards)
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I. Efficient deterministic exploration

� Quantify uncertainty for the score ρ from i.i.d. Y1, . . . , YN .

? Confidence sets: ∀n ∈ N, P
(
ρ ∈ Θ̂n

)
> 1− δ (e.g. δ = 5%).

é p-hacking: incompatible with random (active, data-dependent) N .

Ë Anytime valid confidence sequence:

∀ stopping time N, P
(
ρ ∈ Θ̂N

)
> 1− δ .

Ramdas, Grünwald, et al. Game-theoretic statistics and safe anytime-valid inference. Statistical Science, 2023.
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I. Concentration bounds

Method Assumption Variance
adaptive Random N

t-test Gaussian
(or N → +∞) Ë é

Method of mixtures (MM)
supermartingale inequality Sub-Gaussian é Ë

Bregman MM Exp. families Ë Ë

Empirical
Chernoff MM

Second order
sub-Gaussian Ë Ë

Robbins and Pitman. Application of the method of mixtures to quadratic forms in normal variates. 1949.
Peña, Lai, and Shao. Self-normalized processes: Limit theory and statistical applications. 2009.
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I. Bregman concentration

� Exponential family: pθ(y) = h(y) exp (〈θ, F (y)〉 − L(θ)).

Feature function Log-partition function

Parameter

� Bregman divergence:

B(θ′, θ) = L(θ′)− L(θ)− 〈θ′ − θ,∇L(θ)〉 = KL(pθ ‖ pθ′) .

Family Known anytime valid concentration
Bernoulli,

Gaussian (known variance) Ë

Gaussian, Chi-square,
Poisson, Pareto, etc. é

Kaufmann and Koolen. Mixture martingales revisited. JMLR, 2021.
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I. Bregman concentration

Θ̂δ
n =

{
θ0 ∈ Θ : (n+ c)BL

(
θ0, θ̂n,c(θ0)

)
6 log 1

δ + γn,c(θ0)
}

is an anytime valid confidence sequence for this exponential family.

Bregman divergence

Regularised estimator

θ̂n,c(θ0) = (∇L)−1

 1

n+ c

 n∑
j=1

F (Yj) + c∇L(θ0)



Bregman information gain

γn,c(θ0) = log

 ∫
Θ

exp (−cBL(θ′, θ0)) dθ′∫
Θ

exp
(
−(n+ c)BL(θ′, θ̂n,c(θ0))

)
dθ′



Chowdhury, PS et al., COLT 2023.
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I. Bregman concentration

0 1 2

1

2

=5%, =1, =1, c=1.0

Chowdhury, PS et al., COLT 2023.
22 / 33



Challenges of healthcare recommendations

Online advertising

Ë Huge volume of data.

Ë Easy to model
(Bernoulli, logistic...).

Ë Limited risks (ρ = E).

Healthcare

Ë Slow and scarce data.

é Nonparametric models.

é Risky.

23 / 33



II. Nonparametric: bootstrapping from data only

� Greedy policy:

πt+1 = argmax
k∈[K]

1

Nk
t

Nkt∑
j=1

Y kj .

Empirical average
� Greedy policy:

πt+1 = argmax
k∈[K]

Nkt∑
j=1

wkj,tY
k
j .

wkj,t = 1
Nkt

� Greedy policy with fictitious rewards:

πt+1 = argmax
k∈[K]

Nkt∑
j=1

wkj,tY
k
j + w̃kt Ỹ

k
t .

wkj,t, w̃
k
t = 1

Nkt +1

Fictitious reward

� Randomised greedy policy with fictitious rewards:

πt+1 = argmax
k∈[K]

Nkt∑
j=1

wkj,tY
k
j + w̃kt Ỹ

k
t .

Randomised average

wkj,t, w̃
k
t ∈ [0, 1] random

Nkt∑
j=1

wkj,t + w̃kt = 1
Fictitious reward

� Nonparametric Thompson sampling:

πt+1 = argmax
k∈[K]

Nkt∑
j=1

wkj,tY
k
j + w̃kt Ỹ

k
t .

Dirichlet average

wkj,t, w̃
k
t ∼ Dir(1, . . . , 1)

(uniform distribution on the simplex) Fictitious reward
(≈ reward upper bound)

Beyond bounded rewards (with known bounds)?

Kveton, Szepesvari, et al. ICML, 2019.
Riou and Honda. ALT, 2020.
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k
t .

Randomised average

wkj,t, w̃
k
t ∈ [0, 1] random

Nkt∑
j=1

wkj,t + w̃kt = 1
Fictitious reward

� Nonparametric Thompson sampling:

πt+1 = argmax
k∈[K]

Nkt∑
j=1

wkj,tY
k
j + w̃kt Ỹ
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II. Regret guarantees for Dirichlet sampling

πt+1 = argmax
k∈[K]

Nkt∑
j=1

wkj,tY
k
j + w̃kt Ỹ

k
t .

� Regret guarantees (instance-dependent)

Ë Optimal in several settings
(bounded, bounded detectable, semibounded + quantile condition)

­ Light tailed: RT = O (log(T ) log log(T )).

Baudry, PS et al., NeurIPS 2021.
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II. Dirichlet sampling

0 2500 5000 7500 10000
Time

0

3

6

1e5 Cumulative regret
empirical IMED
NPTS
RDS

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

0 3179 8281 0 3317 8656 0 3504 7922

Baudry, PS et al., NeurIPS 2021.
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Challenges of healthcare recommendations

Online advertising

Ë Huge volume of data.

Ë Easy to model
(Bernoulli, logistic...).

Ë Limited risks (ρ = E).

Healthcare

Ë Slow and scarce data.

Ë Nonparametric models.

é Risky.
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III. From risk-neutral to risk-aware
� Non-contextual bandits:

I Maillard. Robust risk-averse stochastic multi-armed bandits.
ALT, 2013.

I Baudry, Gautron, et al. Optimal Thompson sampling strategies
for support-aware CVAR bandits.
ICML, 2021a.

� Contextual bandits?

� Classical linear bandit Y = 〈θ?, X〉+ zero-mean noise:

θ̂t+1 = min
θ∈Θ

t∑
s=1

(Ys − 〈θ,Xs〉)2 + exploration .

Estimator of
ρ(ν) = Eν [Y | X]

� Classical linear bandit Y = 〈θ?, X〉+ zero-mean noise:

θ̂t+1 = min
θ∈Θ

t∑
s=1
L (Ys, 〈θ,Xs〉) + exploration .

Estimator of
ρ(ν) = min

θ
Eν [L (Y, 〈θ,X〉) | X]

(M-estimator)

L(y, ξ) = (y − ξ)2

� Elicitable risk measure linear bandit Y ≈ 〈θ?, X〉+ zero ρ-noise:

L (strongly) convex mapping

Expectile: L(y, ξ) = |p− 1y<ξ| (y − ξ)2

( 6= loss for negative and positive rewards).

1 0 1
y

p = 0.5
p = 0.1

Abbasi-Yadkori, Pál, and Szepesvári. Improved algorithms for linear stochastic bandits. NIPS, 2011.
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III. Risk-aware policies

� Deterministic exploration:

πt+1 = argmaxx

〈
θ̂t+1, x

〉
+ UCB(x),

Worst case: RT = Õ
(√

T
)

.

� Randomised Dirichlet exploration:

θ̃t+1 = min
θ∈Θ

t∑
s=1

wtsL (Ys, 〈θ,Xs〉) + w̃tt+1L
(
Ỹ , 〈θ, X̃〉

)
,

πt+1 = argmax
x

〈
θ̃t+1, x

〉
,

Worst case: RT
?
= Õ

(√
T
)

.

Linear Gaussian Thompson sampling?
(strong approximation of weighted bootstrap)

PS, Maillard, EWRL 2022; PS, Maillard, AISTATS 2023.
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III. Risk-aware policies

250 500 750 1000 1250 1500
Time

0

50

100

150

200

250

300

350

400 Cumulative expectile regret
LinUCB (mean)
LinUCB-CR (expectile)
LinDS-CR (expectile)

PS, Maillard, EWRL 2022; PS, Maillard, AISTATS 2023.
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Challenges of healthcare recommendations

Online advertising

Ë Huge volume of data.

Ë Easy to model
(Bernoulli, logistic...).

Ë Limited risks (ρ = E).

Healthcare

Ë Slow and scarce data.

Ë Nonparametric models.

Ë Risky.

31 / 33



Conclusion and future works

Preoperative Postperative
Prospective tool to improve

follow-up (complications, costs)

Concentration
Anytime

Variance adaptive
Nonparametric

Dirichlet sampling

Risk
Elicitable scores
Linear bandits

CVaR? Mean-variance?

SOSG? LinDS?
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Questions

Question
at time t

Question
at time t−1

Question
at time t+1

Angry jury Happy jury Confused jury
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Empirical Chernoff concentration
� Sub-Gaussian (SG): ∀λ ∈ R, logE

[
eλ(Y−µ)

]
6 λ2R2

2 .

� Second order sub-Gaussian (SOSG):
∀λ ∈ R+, logE

[
e−λ(Y−µ)2

]
6 − 1

2 log
(
1 + 2λ(ρR)2

)
.

Second to first order variance ratio (ρ ∈ (0, 1])

Family Known anytime valid concentration
Gaussian

(unknown variance) é

Uniform, symmetric triangular
(unknown support) é

Other nonparametric
distributions é
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Empirical Chernoff concentration

Θ̂δ
n =

[
µ̂n ±

√
2
n

(
1 + α

n

)
R2 log

(
2
√

1+n
α

δ

)]
Proxy variance

is an anytime valid confidence sequence for SG.

Θ̂δ
n,ρ =

[
µ̂n ±

√
2
n

(
1 + α

n

) bn/2cV Ibn/2c
ρ2

(
GT
β,γ,ζ,bn/2c

)−1

( 3
δ )

log

(
3
√

1+n
α

δ

)]

GT
β,γ,ζ,bn/2c(z) =

U
(
β, γ + t

2
; ζ + z

2

)
U(β, γ; ζ)

U(b, c; z) =
1

Γ(b)

∫ +∞

0

ub−1(1 + u)c−b−1e−zudu

(Tricomi’s confluent hypergeometric function)

Empirical variance estimator

Second to first order
variance ratio

is an anytime valid confidence sequence for SOSG.

PS, TBA 2024.
36 / 33



Empirical Chernoff concentration

Θ̂δ
n =

[
µ̂n ±

√
2
n

(
1 + α

n

)
R2 log

(
2
√

1+n
α

δ

)]
Proxy variance

is an anytime valid confidence sequence for SG.

Θ̂δ
n,ρ =

[
µ̂n ±

√
2
n

(
1 + α

n

) bn/2cV Ibn/2c
ρ2

(
GT
β,γ,ζ,bn/2c

)−1

( 3
δ )

log

(
3
√

1+n
α

δ

)]

GT
β,γ,ζ,bn/2c(z) =

U
(
β, γ + t

2
; ζ + z

2

)
U(β, γ; ζ)

U(b, c; z) =
1

Γ(b)

∫ +∞

0

ub−1(1 + u)c−b−1e−zudu

(Tricomi’s confluent hypergeometric function)

Empirical variance estimator

Second to first order
variance ratio

is an anytime valid confidence sequence for SOSG.

PS, TBA 2024.
36 / 33



Empirical Chernoff concentration

Θ̂δ
n =

[
µ̂n ±

√
2
n

(
1 + α

n

)
R2 log

(
2
√

1+n
α

δ

)]
Proxy variance

is an anytime valid confidence sequence for SG.

Θ̂δ
n,ρ =

[
µ̂n ±

√
2
n

(
1 + α

n

) bn/2cV Ibn/2c
ρ2

(
GT
β,γ,ζ,bn/2c

)−1

( 3
δ )

log

(
3
√

1+n
α

δ

)]

GT
β,γ,ζ,bn/2c(z) =

U
(
β, γ + t

2
; ζ + z

2

)
U(β, γ; ζ)

U(b, c; z) =
1

Γ(b)

∫ +∞

0

ub−1(1 + u)c−b−1e−zudu

(Tricomi’s confluent hypergeometric function)

Empirical variance estimator

Second to first order
variance ratio

is an anytime valid confidence sequence for SOSG.

PS, TBA 2024.
36 / 33



Empirical Chernoff concentration

PS, TBA 2024.
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