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Motivation

Motivation: recommendations in the real world

Online advertising
Ë Huge volume of (meta)data.
Ë Limited risks.
Ë Easy to model and simulate

(Bernoulli, logistic...).

Farming
é Slow and scarce data

collection process.
é Risky.
? Simulation?
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 Soil,

� Genetics,

 Fertilizer,

 Planting
date...
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Motivation

Motivation: recommendations in
the real world

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

â Observe crop yields (rewards) Xk,t ∼ νk for planting date k (arm).
� Minimize regret of policy (πt)t=1,...,T on a bandit instance ν ∈ F :

RT =
T∑

t=1
µ∗ − µπt =

K∑

k=1
(µ∗ − µk)E [Nk(T )] ,

lim inf
T→+∞

E [Nk(T )]

log T ≥ 1
inf {KL(νk , ν̃) | ν̃ ∈ F ,EX∼ν̃ [X ] > µ∗}︸ ︷︷ ︸

KFinf (νk ,µ∗)

.
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Motivation

Optimal bandit algorithms: SPEF

F =
{
ν with density pθ(x)=h(x)eθF (x)−L(θ), θ ∈ Θ ⊆ R

}
.

Algorithm Scope for optimality Algorithm parameters
kl-UCB1

IMED2

Thompson Sampling3

SDA4

Single Parameter
Exponential Family (SPEF)

(νθ)θ∈Θ

KL(νθ, νθ′)
KL(νθ, νθ′)
Prior/Posterior
Non-parametric

1. Cappé et al. (2013), 2. Honda and Takemura (2015), 3. Korda et al.
(2013), 4. Baudry et al. (2020).
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Motivation

Optimal bandit algorithms: bounded

FB = {ν such that PX∼ν (X ∈ [b,B]) = 1} .

Algorithm Scope for optimality Algorithm parameters

Empirical IMED2 Supp(ν) ⊂ (−∞,B]
ν is light-tailed?

Empirical KL-UCB1

NPTS5 Supp(ν) ⊂ [b,B]
Upper bound B

1. Cappé et al. (2013), 2. Honda and Takemura (2015), 5. Riou and Honda
(2020).
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Motivation

Motivation: which setting should we use?

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

SPEF ? Definitely not é.
Bounded ? Which choice for B ?
�

B1 ≤ B2 =⇒ KFB1
inf (νk , µ

∗) ≥ KFB2
inf (νk , µ

∗).
Light-tailed ? Reasonable assumption Ë

↪→ ∃λ0 > 0 : ∀λ ∈ [−λ0, λ0], E
[
eλX ] < +∞.

Can we find algorithms assuming only that the distributions are light-tailed,
without strong parametric assumptions on the tails?
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Motivation

What can we expect?
How about not knowing the bound B? Not knowing the variance?

0 1
4 2

= 1
2

1 = 50% = 50%

0 1
4 2

= 5

1 = 95%

= 5%

↪→ Mass leakage at infinity!
Hadiji and Stoltz (2020),
Ashutosh et al. (2021).
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Nonparametric Thompson Sampling
From Riou and Honda (2020)
Pull arm with best resampled mean, denoting X = (X1, . . . ,Xn) an
arms’ history,

µ̃(X ,B) =
n∑

i=1
wi Xi + wn+1B,

w ∼ Dn+1 (1, . . . , 1) (Dirichlet distribution),
B: upper bound of the support of the arms’ distribution.

Ë optimal for a large class of distributions...
é ... upper bounded by a known B.

We generalize to Dirichlet Sampling, comparing two arms k and ` with

µ̃(k, `,B) =
n∑

i=1
wi Xi + wn+1 B (k, `)︸ ︷︷ ︸

data-dependent
exploration bonus

arm k vs arm `

.
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Using data-dependent bonus in pairwise comparisons
A round-based approach Chan (2020); Baudry et al. (2020):

1. Choose a leader : arm with largest number of observations!
2. Perform K − 1 duels : leader vs each challenger .
3. Draw a set of arms: winning challengers (if any) or leader (if none).

↪→ possibly several arms drawn per round.

Pairwise comparison (Duel) step:

Leader → empirical mean µ̂`.
Challenger → Dirichlet Sampling, bonus B (k, `).
Winner: largest of the two!

Intuition: After r rounds, the leader has at least r/K data, its sample mean
should be an accurate estimation. On the other hand, DS ensures enough
exploration for the challengers!
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Motivation

Technical tool #1: duel-based regret decomposition

Theorem (Regret decomposition)
For any light-tailed bandit problem ν = (ν1, . . . , νK ) and any bonus B (`, k),
for any suboptimal arm k it holds that

E[Nk(T )] ≤ nk(T )︸ ︷︷ ︸
Sample size needed
to ”separate” arm k
from the best arm

+ Bν
T︸︷︷︸

Capacity of DS
strategy to ”recover” from a
bad scenario for the best arm

+ O(1)︸ ︷︷ ︸
Constant terms

from light-tailed
concentration

.

nk(T ) will be the first-order term, and mostly depend on the family of
distributions F .
The bonus B (·, ·) will be essentially designed to obtain Bν

T = O(1) for
the family F .
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Motivation

Dirichlet Randomized Exploration

µ̃(k, ℓ,B) =
n∑

i=1

wiXi + wn+1B (k, ℓ)

Exploration bonus B(k, ℓ)
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Motivation

Technical tool #2: boundary crossing probability
We call ”Boundary Crossing Probability” (BCP) the quantity

[BCP] := Pw∼Dn+1

(n+1∑

i=1
wi Xi ≥ µ

)
,

Xn+1 =(X1, . . . ,Xn+1) is a collection of fixed data and w∼Dn (1, . . . , 1).

Lemma (BCP bounds)
Let X̄n+1 = maxXn+1 ≥ g(n) and ∆̄+

n = 1
n
∑

Xi<X̄n+1
(µ− Xi )

+, then

− n∆̄+
n

g(n)− µ ≤ log [BCP] ≤ −(n + 1)KF ¯Xn+1
inf (ν̂Xn+1 , µ) .

↪→ motivates the following exploration bonus with leverage ρ > 0:

B(k, `) := B (Xk , µ̂`, ρ) := µ̂` + ρ× 1
n

n∑

i=1
(µ̂` − Xk,i )

+
.
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Motivation

Dirichlet Randomized Exploration

µ̃(k, ℓ,B) =
n∑

i=1

wiXi + wn+1B (k, ℓ)

Exploration bonus B(k, ℓ)

B(k, ℓ) = B (Xk, µ̂ℓ, ρ)

= µ̂ℓ + ρ× 1

n

n∑

i=1

(µ̂ℓ −Xk,i)
+
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Algorithm #1: Bounded Dirichlet Sampling (BDS)

Case 1: known upper bound
X ≤ B with known B:

B (`, k) = B (NPTS, Riou and Honda (2020)) .

Case 2: unknown but detectable bound
P (X ∈ [B − γ,B]) ≥ p with known γ, p (but not B!):

B (`, k) = max

(
B(Xk , µ̂`, ρ), max

i=1,...,n
Xk,i +γ

)
.

Theorem
For any ρ ≥ −1/ log(1− p), BDS is optimal in case 2 for the family
Fγ,p = {ν : ∃Bν : P(X ≤ Bν) = 1 and P(X ∈ [Bν − γ,Bν ]) ≥ p}}.
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Motivation

Algorithm #2: Quantile Dirichlet Sampling (QDS)

? What about unbounded distributions?

q1 CVaR

100% mass

q1 CVaR

90% mass

10% mass

@ ... truncate them!

20



Motivation

Algorithm #2: Quantile Dirichlet Sampling (QDS)

nα: exact number of observations smaller than the 1− α quantile.

Ĉk,α = 1
n−nα

n∑
i=nα+1

Xk,(i): empirical CVaR (≈ Eν [X |X > q1−α(ν)]).

Non-uniform Dirichlet sampling w ∼ D(1, . . . , 1︸ ︷︷ ︸
nα

, n − nα, 1) and:

nα∑

i=1
wi Xk,(i) + wnα+1Ĉk,α + wnα+2B(Xk , µ̂`, ρ) .

Theorem
For any ρ ≥ (1 + α) /α2, QDS has logarithmic regret for the family of
semi-bounded distributions that are ”dense enough” after their quantile 1−α.
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Algorithm #3: Robust Dirichlet Sampling (RDS)

Can we have no assumption at all?

é Not with log T regret: Hadiji and Stoltz (2020), Ashutosh et al. (2021)
 Intuition: ρ = ρn must grow to ∞ to eventually capture all possible

settings:
n∑

i=1
wi Xk,i + wn+1B(Xk , µ̂`, ρn).

Theorem
Let ρn → +∞, ρn = o(n). For light-tailed distributions, RDS satisfies

RT = O (log (T ) log log (T )) .

↪→ We recommend ρn =
√

log n as a baseline!
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Motivation

Dirichlet Randomized Exploration

µ̃(k, ℓ,B) =
n∑

i=1

wiXi + wn+1B (k, ℓ)

Exploration bonus B(k, ℓ)

B(k, ℓ) = B (Xk, µ̂ℓ, ρ)

= µ̂ℓ + ρ× 1

n

n∑

i=1

(µ̂ℓ −Xk,i)
+

BDS
ρ ≥ −1

log(1−p)

QDS
ρ ≥ 1+α

α2

RDS
ρn =

√
log (n)
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Motivation

Experiments: recommendations in agriculture

0 3013 9259 0 3271 8791 0 3630 8095 0 3397 8119

We compare DS algorithms with optimal algorithms considering bounded
distributions with known B.
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Experiments: recommendations in agriculture
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0

300K

600K

empirical IMED
NPTS
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RDS
QDS

(Oracle upper bound).
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Experiments: recommendations in agriculture
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300K

600K

empirical IMED
NPTS
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RDS
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(Conservative expert upper bound, 50% larger than oracle).
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Motivation

Conclusion

Ë Generic regret analysis of round-based index policies,
Ë Analysis of BCP and empirical Kinf ,
Ë Three instances of Dirichlet Randomized Exploration with strong

guarantees.

Future works?
? Heavy-tails? Reweighting of median of means?
? Resampling in contextual bandits?
? Deployment in vivo for agricultural recommendations?
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