From Optimality to Robustness: Dirichlet Randomized Exploration in Stochastic Bandits

Patrick Saux¹

(Joint work with Dorian Baudry¹ and Odalric-Ambrym Maillard¹)

¹ Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000, Lille, France

Motivation: recommendations in the real world

Online advertising

- Huge volume of (meta)data.
- Limited risks.
- Easy to model and simulate (Bernoulli, logistic...).

Motivation: recommendations in the real world

Online advertising

- ✓ Huge volume of (meta)data.
- Limited risks.
- Easy to model and simulate (Bernoulli, logistic...).

Farming

- Slow and scarce data collection process.
- 🗙 Risky.
- ? Simulation?

Motivation: recommendations in the real world

Observe crop yields (rewards) $X_{k,t} \sim \nu_k$ for planting date k (arm). Minimize regret of policy $(\pi_t)_{t=1,...,T}$ on a bandit instance $\nu \in \mathcal{F}$:

$$\mathcal{R}_{T} = \sum_{t=1}^{T} \mu^{*} - \mu_{\pi_{t}} = \sum_{k=1}^{K} (\mu^{*} - \mu_{k}) \mathbb{E}[N_{k}(T)],$$
$$\liminf_{T \to +\infty} \frac{\mathbb{E}[N_{k}(T)]}{\log T} \geq \underbrace{\frac{1}{\inf \{\mathrm{KL}(\nu_{k}, \widetilde{\nu}) \mid \widetilde{\nu} \in \mathcal{F}, \mathbb{E}_{X \sim \widetilde{\nu}}[X] > \mu^{*}\}}_{\mathcal{K}_{\mathrm{inf}}^{\mathcal{F}}(\nu_{k}, \mu^{*})}.$$

Motivation: recommendations in the real world

Observe crop yields (rewards) $X_{k,t} \sim \nu_k$ for planting date k (arm). Minimize regret of policy $(\pi_t)_{t=1,...,T}$ on a bandit instance $\nu \in \mathcal{F}$:

$$\mathcal{R}_{T} = \sum_{t=1}^{T} \mu^{*} - \mu_{\pi_{t}} = \sum_{k=1}^{K} (\mu^{*} - \mu_{k}) \mathbb{E} [N_{k}(T)],$$

$$\liminf_{T \to +\infty} \frac{\mathbb{E} [N_{k}(T)]}{\log T} \geq \underbrace{\frac{1}{\inf \left\{ \mathrm{KL}(\nu_{k}, \widetilde{\nu}) \mid \widetilde{\nu} \in \mathcal{F}, \mathbb{E}_{X \sim \widetilde{\nu}} [X] > \mu^{*} \right\}}_{\mathcal{K}^{\mathcal{F}}_{\mathrm{inf}}(\nu_{k}, \mu^{*})}.$$

Optimal bandit algorithms: SPEF

$$\mathcal{F} = \left\{ \nu \text{ with density } p_{\theta}(x) = h(x)e^{\theta F(x) - \mathcal{L}(\theta)}, \ \theta \in \Theta \subseteq \mathbb{R} \right\}.$$

Algorithm	Scope for optimality	Algorithm parameters
kI-UCB ¹ IMED ² Thompson Sampling ³ SDA ⁴	Single Parameter Exponential Family (SPEF) $(u_{ heta})_{ heta\in\Theta}$	$egin{array}{l} \mathrm{KL}(u_{ heta}, u_{ heta'})\ \mathrm{KL}(u_{ heta}, u_{ heta'})\ \mathrm{Prior/Posterior}\ \mathrm{Non-parametric} \end{array}$

1. Cappé et al. (2013), 2. Honda and Takemura (2015), 3. Korda et al. (2013), 4. Baudry et al. (2020).

Optimal bandit algorithms: bounded

$$\mathcal{F}_B = \left\{
u \text{ such that } \mathbb{P}_{X \sim
u} \left(X \in [b, B] \right) = 1
ight\}.$$

Algorithm	Scope for optimality	Algorithm parameters
Empirical IMED ²	$Supp(u) \subset (-\infty, B]$ u is light-tailed*	
Empirical KL-UCB ¹ NPTS ⁵	$Supp(\nu) \subset [b,B]$	Upper bound <i>B</i>

1. Cappé et al. (2013), 2. Honda and Takemura (2015), 5. Riou and Honda (2020).

Motivation: which setting should we use?

- SPEF ? Definitely not X.
- Bounded ? Which choice for B ?

$$\stackrel{\scriptstyle \bullet}{\frown} B_1 \leq B_2 \implies \mathcal{K}_{\inf}^{\mathcal{F}_{B_1}}(\nu_k,\mu^*) \geq \mathcal{K}_{\inf}^{\mathcal{F}_{B_2}}(\nu_k,\mu^*).$$

■ Light-tailed ? Reasonable assumption ✓

 $\hookrightarrow \ \exists \lambda_0 > 0 : \ \forall \lambda \in [-\lambda_0, \lambda_0], \ \mathbb{E}\left[e^{\lambda X}\right] < +\infty.$

Can we find algorithms assuming only that the distributions are light-tailed, without strong parametric assumptions on the tails?

What can we expect?

How about not knowing the bound B? Not knowing the variance?

What can we expect?

How about not knowing the bound B? Not knowing the variance?

Ashutosh et al. (2021).

Nonparametric Thompson Sampling

- From Riou and Honda (2020)
- Pull arm with best **resampled** mean, denoting $\mathcal{X} = (X_1, \ldots, X_n)$ an arms' history,

$$\widetilde{\mu}(\mathcal{X},B) = \sum_{i=1}^{n} w_i X_i + w_{n+1}B,$$

- $w \sim \mathcal{D}_{n+1}(1, \dots, 1)$ (Dirichlet distribution),
- *B*: upper bound of the support of the arms' distribution.
- optimal for a large class of distributions...
- \mathbf{X} ... upper bounded by a known B.

Nonparametric Thompson Sampling

- From Riou and Honda (2020)
- Pull arm with best **resampled** mean, denoting $\mathcal{X} = (X_1, \ldots, X_n)$ an arms' history,

$$\widetilde{\mu}(\mathcal{X},B) = \sum_{i=1}^{n} w_i X_i + w_{n+1}B,$$

- $w \sim \mathcal{D}_{n+1}(1, \dots, 1)$ (Dirichlet distribution),
- *B*: upper bound of the support of the arms' distribution.
- optimal for a large class of distributions...
- \times ... upper bounded by a known *B*.

We generalize to **Dirichlet Sampling**, comparing two arms k and ℓ with

$$\widetilde{\mu}(k,\ell,\mathfrak{B}) = \sum_{i=1}^{n} w_i X_i + w_{n+1} \underbrace{\mathfrak{B}(k,\ell)}_{\substack{\text{data-dependent}\\ \text{exploration bonus}\\ \text{arm } k \text{ vs arm } \ell}}_{\substack{\text{data-dependent}\\ \text{exploration bonus}}}$$

Using data-dependent bonus in pairwise comparisons

A round-based approach Chan (2020); Baudry et al. (2020):

- 1. Choose a *leader*: arm with largest number of observations!
- 2. Perform K 1 duels: leader vs each challenger.
- 3. Draw a set of arms: winning challengers (if any) or leader (if none).

 \hookrightarrow possibly several arms drawn per round.

Pairwise comparison (Duel) step:

- Leader \rightarrow empirical mean $\widehat{\mu}_{\ell}$.
- Challenger \rightarrow **Dirichlet Sampling**, bonus $\mathfrak{B}(k, \ell)$.
- Winner: largest of the two!

Intuition: After r rounds, the leader has at least r/K data, its sample mean should be an accurate estimation. On the other hand, DS ensures enough exploration for the challengers!

Technical tool #1: duel-based regret decomposition

Theorem (Regret decomposition)

For any light-tailed bandit problem $\nu = (\nu_1, \dots, \nu_K)$ and any bonus $\mathfrak{B}(\ell, k)$, for any suboptimal arm k it holds that

- $n_k(T)$ will be the first-order term, and mostly depend on the family of distributions \mathcal{F} .
- The bonus 𝔅 (·, ·) will be essentially designed to obtain B^ν_T = O(1) for the family 𝓕.

Dirichlet Randomized Exploration

$$\widetilde{\mu}(k, \ell, \mathfrak{B}) = \sum_{i=1}^{n} w_i X_i + w_{n+1} \mathfrak{B}(k, \ell)$$

$$\downarrow$$
Exploration bonus $\mathfrak{B}(k, \ell)$

Technical tool #2: boundary crossing probability We call "Boundary Crossing Probability" (BCP) the quantity

$$[\mathsf{BCP}] \coloneqq \mathbb{P}_{\mathsf{w} \sim \mathcal{D}_{n+1}} \left(\sum_{i=1}^{n+1} \mathsf{w}_i X_i \ge \mu \right) \;,$$

 $\mathcal{X}_{n+1} = (X_1, \ldots, X_{n+1})$ is a collection of *fixed* data and $w \sim \mathcal{D}_n(1, \ldots, 1)$.

Lemma (BCP bounds)

Let
$$\bar{\mathcal{X}}_{n+1} = \max \mathcal{X}_{n+1} \ge g(n)$$
 and $\bar{\Delta}_n^+ = \frac{1}{n} \sum_{X_i < \bar{\mathcal{X}}_{n+1}} (\mu - X_i)^+$, then

$$-\frac{n\Delta_n^+}{g(n)-\mu} \leq \log\left[BCP\right] \leq -(n+1)\mathcal{K}_{\inf}^{\mathcal{F}_{\mathcal{X}_{n+1}^-}}\left(\widehat{\nu}_{\mathcal{X}_{n+1}},\mu\right).$$

 \hookrightarrow motivates the following exploration bonus with **leverage** $\rho > 0$:

$$\mathfrak{B}(k,\ell)\coloneqq B\left(\mathcal{X}_k,\widehat{\mu}_\ell,
ho
ight)\coloneqq\widehat{\mu}_\ell+
ho imesrac{1}{n}\sum_{i=1}^n\left(\widehat{\mu}_\ell-X_{k,i}
ight)^+\;.$$

Dirichlet Randomized Exploration

$$\widetilde{\mu}(k,\ell,\mathfrak{B}) = \sum_{i=1}^{n} w_i X_i + w_{n+1}\mathfrak{B}(k,\ell)$$
Exploration bonus $\mathfrak{B}(k,\ell)$

$$\downarrow$$

$$\mathfrak{B}(k,\ell) = B\left(\mathcal{X}_k,\widehat{\mu}_\ell,\rho\right)$$

$$= \widehat{\mu}_\ell + \rho \times \frac{1}{n} \sum_{i=1}^{n} \left(\widehat{\mu}_\ell - X_{k,i}\right)^+$$

Algorithm #1: Bounded Dirichlet Sampling (BDS)

Case 1: known upper bound

 $X \leq B$ with **known** B:

 $\mathfrak{B}(\ell, k) = B$ (NPTS, Riou and Honda (2020)).

Case 2: unknown but detectable bound

 $\mathbb{P}(X \in [B - \gamma, B]) \ge p$ with known γ, p (but not B!):

$$\mathfrak{B}(\ell, k) = \max\left(B(\mathcal{X}_k, \widehat{\mu}_\ell, \rho), \max_{i=1,\dots,n} X_{k,i} + \gamma\right)$$

Theorem

For any $\rho \ge -1/\log(1-p)$, BDS is optimal in case 2 for the family $\mathcal{F}_{\gamma,p} = \{\nu : \exists B_{\nu} : \mathbb{P}(X \le B_{\nu}) = 1 \text{ and } \mathbb{P}(X \in [B_{\nu} - \gamma, B_{\nu}]) \ge p\}\}.$

Algorithm #2: Quantile Dirichlet Sampling (QDS)

? What about unbounded distributions?

℅ … truncate them!

Algorithm #2: Quantile Dirichlet Sampling (QDS)

• n_{α} : exact number of observations smaller than the $1 - \alpha$ quantile.

• $\widehat{C}_{k,\alpha} = \frac{1}{n-n_{\alpha}} \sum_{i=n_{\alpha}+1}^{''} X_{k,(i)}$: empirical CVaR ($\approx \mathbb{E}_{\nu}[X|X > q_{1-\alpha}(\nu)]$).

Non-uniform Dirichlet sampling $w \sim \mathcal{D}(\underbrace{1,\ldots,1}, n-n_{\alpha}, 1)$ and:

$$\sum_{i=1}^{n_{\alpha}} w_i X_{k,(i)} + w_{n_{\alpha}+1} \widehat{C}_{k,\alpha} + w_{n_{\alpha}+2} B(\mathcal{X}_k, \widehat{\mu}_{\ell}, \rho) .$$

 n_{α}

Theorem

For any $\rho \ge (1 + \alpha) / \alpha^2$, QDS has **logarithmic regret** for the family of semi-bounded distributions that are "dense enough" after their quantile $1 - \alpha$.

Algorithm #3: Robust Dirichlet Sampling (RDS)

Can we have no assumption at all?

- ★ Not with log T regret: Hadiji and Stoltz (2020), Ashutosh et al. (2021)
- Intuition: $\rho = \rho_n$ must grow to ∞ to eventually capture all possible settings:

$$\sum_{i=1}^n w_i X_{k,i} + w_{n+1} B(\mathcal{X}_k, \widehat{\mu}_\ell, \rho_n).$$

Theorem

Let $\rho_n \to +\infty$, $\rho_n = o(n)$. For **light-tailed distributions**, RDS satisfies $\mathcal{R}_T = \mathcal{O}(\log(T) \log \log(T))$.

 \hookrightarrow We recommend $\rho_n = \sqrt{\log n}$ as a baseline!

Experiments: recommendations in agriculture

We compare DS algorithms with optimal algorithms considering bounded distributions with known *B*.

Experiments: recommendations in agriculture

Experiments: recommendations in agriculture

Conclusion

- Generic regret analysis of round-based index policies,
- Analysis of BCP and empirical \mathcal{K}_{inf} ,
- Three instances of Dirichlet Randomized Exploration with strong guarantees.

Future works?

- ? Heavy-tails? Reweighting of median of means?
- ? Resampling in contextual bandits?
- ? Deployment in vivo for agricultural recommendations?

- Ashutosh, K., Nair, J., Kagrecha, A., and Jagannathan, K. (2021). Bandit algorithms: Letting go of logarithmic regret for statistical robustness. In <u>International Conference on Artificial Intelligence and</u> Statistics, pages 622–630. PMLR.
- Baudry, D., Kaufmann, E., and Maillard, O.-A. (2020). Sub-sampling for efficient non-parametric bandit exploration. Advances in Neural Information Processing Systems, 33.
- Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., and Stoltz, G. (2013). Kullback-Leibler upper confidence bounds for optimal sequential allocation. Annals of Statistics, 41(3):1516–1541.
- Chan, H. P. (2020). The multi-armed bandit problem: An efficient nonparametric solution. <u>The Annals</u> of Statistics, 48(1):346–373.
- Hadiji, H. and Stoltz, G. (2020). Adaptation to the range in *k*-armed bandits. <u>arXiv preprint</u> arXiv:2006.03378.
- Honda, J. and Takemura, A. (2015). Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards. Journal of Machine Learning Research, 16:3721–3756.
- Korda, N., Kaufmann, E., and Munos, R. (2013). Thompson sampling for one-dimensional exponential family bandits. In Advances in Neural Information Processing Systems.
- Riou, C. and Honda, J. (2020). Bandit algorithms based on thompson sampling for bounded reward distributions. In Algorithmic Learning Theory, pages 777–826. PMLR.