
Reinforcement Learning

Correction TD 1 - MDP

Fabien Pesquerel
fabien.pesquerel@inria.fr

Odalric-Ambrym Maillard
odalric.maillard@inria.fr

Patrick Saux
patrick.saux@inria.fr

March 16, 2021

1 Questions from the audience

You can write below the questions that were asked during the session and see later if you can
remember/re-derive the answers.

1

2 About the course

Exercice 1. Given a MDP with bounded rewards, M = (S,A, p, r), and a deterministic policy π,

1. Recall the Bellman operator associated to the policy π and discounted reward γ,

2. Prove that the Bellman operator is a γ-contraction for the infinity norm.

2

Solution 1. Let π : S −→ A a (stationary) policy and µπ(s) = Eπ[r(s, π(s))] the average reward
when taking action π(s) in state s ∈ S.

1. The value of policy π at state s ∈ S is

V π(s) = Eπ
[∑
t∈N

γtr(st, π(xt)) | s0 = s

]
= Eπ[r(s0, π(s0)) | s0 = s] + Eπ

[∑
t≥1

γtr(st, π(xt)) | s0 = s

]

= µπ(s) + γEπ
[∑
t≥1

γt−1r(st, π(xt)) | s0 = s

]

= µπ(s) + γ
∑
s′S

P (s1 = s′ | s0 = s;π(s0))Eπ
[∑
t≥1

γt−1r(st, π(xt)) | s0 = s, s1 = s′
]

= µπ(s) + γ
∑
s′S

P (s1 = s′ | s0 = s;π(s0))Eπ
[∑
t≥1

γt−1r(st, π(xt)) | s1 = s′
]

︸ ︷︷ ︸
=V π(s′)

(Markov property).

In the tabular case (S = {s1, . . . , sn} is finite), one may conveniently rewrite the last equation
in matrix form:

V π = Mπ + γPπV
π

where

• V π = (V π(si))i=1,...,n,

• Mπ = (µπ(si))i=1,...,n,

• Pπ =

(
P(sj | si, π(si)

)
i,j=1,...,n

, P being the MDP transition kernel.

2. The fixed point equation above calls for a Picard iteration scheme. As a reminder, the
following theorem holds.

Theorem 1 (Banach-Picard fixed point theorem). Let (X , d) a complete metric space and
F : X −→ X a contract mapping (K-Lipschitz for some K < 1).

(a) F admits a unique fixed point x∗ = F (x∗).

(b) For any x0 ∈ X , define (xn)n∈N as xn+1 = F (xn) for n ∈ N. Then

d(x∗, xn) ≤ Kd(x∗, xn−1) ≤ · · · ≤ Knd(x∗, x0).

In particular limn−→+∞ xn = x∗.

In most reinforcement learning settings, the value function V π live in a Euclidean space Rn
or a bounded subset of a reasonable function space, so the assumption of a complete metric
space are easy to satisfy. What is left to prove is the contraction of the linear Bellman
operator:

Tπ : v 7→ µπ + γPπv.

For the sake of notation, let’s assume the state space S is finite and V π lives in R|S| Let
u, v ∈ R|S| and s ∈ S, we have

3

|Tπu(s)− Tπv(s)| = γ|Pπ(u(s)− v(s))|

= γ

∣∣∣∣ ∑
s′∈S

P(s′ | s, π(s))(u− v)

∣∣∣∣ (matrix product)

≤ γ
∑
s′∈S

P(s′ | s, π(s))|u(s′)− v(s′)|

≤ γ
∑
s′∈S

P(s′ | s, π(s))︸ ︷︷ ︸
=1

‖u− v‖∞

= γ‖u− v‖∞.

Therefore, Tπ is γ-contractant for the topology induced by ‖·‖∞.

Remark 1. A similar fixed point equation with similar contraction properties holds for the optimal
Bellman operator

T : v 7→ max
a∈A

E [r(s, a)] + γPav

where Pa =
(
P(s′ | s, a)

)
s,s′∈S . Contrary to Tπ, this operator is not linear due to the max. The

proofs of fixed point and contraction are essentially the same though: simply fix an action a ∈ A
instead of using π(s), and optimise over actions at the end.

4

3 Exercises to build the intuition

Exercice 2 (On the influence of the discount factor). We consider this simple MDP in which all
the transitions are deterministic.

start

su1 ... sun

sd1 ... sdm

end

r = 0

r = 0 r = 0

r = 0

r = 0 r = 0

r = 1

r = 2

1. Compute Q(s, up) and Q(s, down) as functions of γ (the discount factor), n (length of the
upper chain, i.e., the number of states after the initial state when choosing up from that
state) and m (length of the lower chain, i.e., the number of states after the initial state when
choosing down from that state).

2. Compute the optimal policy π∗ as a function of γ, n and m.

5

Solution 2. 1. There are only two policies on this deterministic MDP which can be denoted
as up and down. This is because there is only one available action in each state except for
the first one. Because of that, the expected values that we want to compute are just real
sums. By definition of the state-action value function, one can write:

Q(start, up) = Eπup,MDP

(
n∑
t=0

γtrt|s0 = up, a0 = up

)
=

n∑
t=0

γtrt = γn

Q(start, down) = Eπdown,MDP

(
n∑
t=0

γtrt|s0 = up, a0 = down

)
=

n∑
t=0

γtrt = 2γm

2. Since there are only two policies, one only have to compare the two previous computed
quantities:

Q(start, up)

Q(start, down)
=

1

2
γn−m.

Therefore, π∗ = πup if γn−m > 2 and π∗ = πdown if γn−m < 2. The case γn−m = 2 can be
broken arbitrarily.

6

Exercice 3 (On the influence of the reward function). We consider this simple maze.

1. Knowing that all transitions are deterministic, what are some strategies that allows to escape
the maze?

2. Which rewards and function of rewards1 would you choose to compute an escape policy?

3. Which rewards and function of rewards would you choose to compute an escape policy that
uses the minimal number of moves?

1Discounted, average, ...

7

Solution 3. 1. We are considering deterministic policies. The space of all valid policies (the
one that allows to reach the terminal) is made of all the policies that create a path from
start to terminal. One can map Start to either up or down. If up has been chosen, one can
prescribe whatever we want for the lower chain and necessarily choose the right action after
the up transition. If down has been chosen as the first action, one can prescribe whatever
we want for the upper chain and necessarily choose the right actions after the up transition
in all subsequent states of the lower chain.

2. No strictly positive reward for every transitions except the ones pointing to the terminal is a
necessary but not sufficient condition. For instance, if all rewards are 0s, we may not learn to
escape the maze. Instead, the difference between the rewards of transitions to the terminal
and other rewards should be strictly positive.

3. We may do one of the two things : modify the reward function by using a discount factor or
modify the rewards of the MDP. If all rewards are 0s except the ones associated to transitions
to the terminal that we set equal to 1, then the cumulative reward computed using a discount
factor of γ is γT . T is the time spent within the maze before escaping it using a policy. The
larger the time, the smaller the cumulative reward. Hence, we will compute a policy escaping
with a minimal number of moves. One can also set all rewards of non-terminal transitions to
-1 and set the rewards terminal transitions to 0. In this case, the cumulative reward is −T
where T is the same quantity as before. Once again, the smaller the time spent in the maze,
the larger the cumulative reward.

8

4 Apply the theory

Students can hope to come back to this section later in the course and test what they will learn
(algorithms, methods, heuristics). In particular, Deep RL ideas might be tested using the following
exercise. Students are assumed to be familiar with python 3.X and usual scientific libraries. In
particular, it is recommended to install numpy, scipy2, gym and pyTorch (that will be used later
in the course).

Exercice 4 (Gym & Frozen Lake). Frozen Lake is a gym environment that we will use to implement
some algorithms that were learned during the first class. In the following, we will use a discount
factor of γ = 0.9.

1. To check that everything is installed on your computer/environment run the small script
check env.py. It will try to import the necessary libraries and print current versions of
them. You can use those versions to help you with any troubleshooting.

2. To better grasp the Frozen Lake environment, read, understand and run discover.py (until
the stop mark). Describe the MDP associated to this environment and formalize mathemati-
cally the goal of an agent.

3. Using the aforementioned environment, get a Monte-Carlo estimation of the value function
of a simple deterministic policy at s0, the initial state. For instance, this simple policy could
be to always going to the right. This is the implemented example in discover.py.

4. In the case of finite MDPs, the value function V π of a policy π is a vector in R|S| (Tabular
case). Write V π as the solution of a the product of a matrix with a vector (both known once
π is). Write a function that takes a deterministic policy π as an input and outputs its value
function V π. Compare the result of this question with the Monte-Carlo estimation of the
previous question and check for consistency.

5. Using the contraction property of the Bellman operator, implement a function that iteratively
apply the Bellman operator to compute the value function V π of a policy π. What could be a
good stopping criterion for your algorithm?

6. Using the contraction property of the optimal Bellman operator, implement a function that
iteratively apply the optimal Bellman operator to compute the optimal value function V ∗.

7. Compute an optimal policy for this environment using Value Iteration (see appendix).

8. Compute an optimal policy for this environment using Policy Iteration (see appendix).

9. Compute an optimal policy for this environment using Q-learning (see appendix). Note the
change of setting: you need to simulate several episodes of Frozen Lake and learn from
observed transitions only (for instance you may not assume the transition probabilities are
known). Feel free to play with the number of episodes, learning rate and exploration parameter
ε. You may set the is slippery argument to False when declaring the environment to have
deterministic transitions and help the algorithm learn faster.

10. Compare quantitatively the three methods.

2Those that are looking for performance might want to take a look at sparse representation of matrices
(scipy.sparse.csr matrix) and computation’s techniques with arrays (BLAS and LAPACK are used as routine in
scipy).

9

https://gym.openai.com/envs/FrozenLake-v0/
https://gym.openai.com/docs/
https://www.eleves.ens.fr/home/pesquere/cs_2021/TD1/check_env.py
https://www.eleves.ens.fr/home/pesquere/cs_2021/TD1/discover.py
https://www.eleves.ens.fr/home/pesquere/cs_2021/TD1/discover.py

A Algorithms

Algorithm: Value Iteration

Input: MDP transition kernel P(s′ | s, a) and average reward µ(s, a), discount factor γ,
number of iterations N .

Initialisation: v0 ∈ R|S|, n = 0.
while n < N do

for s ∈ S do
v(s)← maxa∈A µ(s, a) + γ

∑
s′∈S P (s′ | s, a)v(s′);

end
n← n+ 1;

end
Return: π ∈ arg maxa∈A µ(·, a) + γ

∑
s′∈S P (s′ | ·, a)v(s′).

Algorithm: Policy Iteration

Input: MDP transition kernel P(s′ | s, a) and average reward µ(s, a), discount factor γ.
Initialisation: π ∈ AS .
while policy not stable do

for s ∈ S do
vπ(s)← (I − γPπ)−1µπ(s); // policy evaluation

π(s)← arg maxa∈A µ(s, a) + γ
∑
s′∈S P (s′ | s, a)v(s′); // policy improvement

end

end
Return: π.

Algorithm: Q-Learning (episodic, ε greedy)

Input: Discount factor γ, learning rates (αt)t∈N, number of episodes T , ε > 0.
Initialisation: Q ∈ RS×A, t = 0.
while t < T do

h← 0;
Start episode t in state sh and action ah;
while episode not terminated do

Take action ah in state sh, observe reward rh and move to state sh+1;
Q(sh, ah)← Q(sh, ah) + αt

(
rh + γmaxb∈AQ(sh+1, b)−Q(sh, ah)

)
;

ah+1 ∈ arg maxb∈AQ(sh+1, b) with probability 1− ε else ah+1 ∼ Unif(A);
Check if episode t is terminated;

end
t← t+ 1;

end
Return: π(s) ∈ arg maxa∈AQ(s, a)

10

	Questions from the audience
	About the course
	Exercises to build the intuition
	Apply the theory
	Algorithms

