Bandits

Blitz Course

Odalric-Ambrym Maillard, Fabien Pesquerel and Patrick Saux

March 25, 2021

Multi-armed bandit

- K probability measures ν_1, \ldots, ν_K with mean μ_1, \ldots, μ_K .
- $\mu_{k^*} = \max_{k=1,...,K} \mu_k.$
- Sequence of policies $\pi_t \in \{1, ..., K\}$ for t = 1, ..., T.
- Rewards $Y_t \sim \nu_{\pi_t}$.
- Goal: maximise cumulative expected rewards, or equivalently

$$\min_{(\pi_t)} R_T^{\pi} = \mathbb{E} \left[\sum_{t=1}^T \mu_{k^*} - \mu_{\pi_t} \right] = \sum_{k=1}^K (\mu_{k^*} - \mu_k) \underbrace{\mathbb{E}[N_k(t)]}_{:=\sum_{t=1}^T \mathbb{1}_{\pi_t = k}}.$$

- Partial feedback:
 - $\mathbf{v}_1,\ldots,\mathbf{v}_K$ are not known.
 - lacksquare Observe only Y_t at time t, not the rewards that other arms would have generated.

Link with MDP

- Equivalent to a 1-state MDP (no transition matrix) with action space $A = \{1, ..., K\}$ running for T episodes of length 1.
- Can be seen as a toy model for exploration-exploitation in model-free RL.
- Bandits are valuable on their own! Many applications: optimisation with scarce data, marketing, health, agriculture...

Lower bound (instance dependent)

■ If (ν_1, \ldots, ν_K) are independent measures in family \mathcal{D} , then (under mild assumptions)

$$\liminf_{T \longrightarrow +\infty} \frac{R_T}{\log T} \ge \sum_{k: \mu_k < \mu_{k^*}} \frac{\mu_{k^*} - \mu_k}{\mathcal{K}_{\mathsf{inf}}(\nu_k, \mu_{k^*})}.$$

where

$$\mathcal{K}_{\mathsf{inf}}(\nu_k, \mu_{k^*}) = \inf \bigg\{ KL(\nu_k \| \nu_k') \mid \nu_k' \in \mathcal{D}, \int x d\nu_k'(x) > \mu_{k^*} \bigg\}.$$

- Intuition: hard identification problem when ν_k resembles ν_{k^*} , easy when the optimal arm is obvious.
- \rightarrow For $\mathcal{N}(\theta_k, 1)$, $\mathcal{B}(\theta_k)$... K_{inf} can be replaced by $KL(\theta_k || \theta_{k^*})$.

Naive strategy: Explore-Then-Commit (ETC)

- Choose $m \in \{1, \ldots, T/K\}$.
- Play each arm m times.
- Keep playing the best arm afterwards :

$$\pi_t \in \arg\max_{k=1,...,K} \underbrace{\frac{1}{N_k(t-1)} \sum_{s=1}^{t-1} Y_s \mathbb{1}_{\pi^s = k}}_{=:\widehat{\mu}_{k,t}}.$$

- \checkmark $R_T = \mathcal{O}(\log T)$ for a good choice of m...
- \nearrow ... if one knows all μ_k in advance!
- \times ... if one knows T.
- Cannot rectify after exploration is over.

Upper Confidence Bound (UCB)

■ Compute a $\delta \in (0,1)$ upper confidence bound for arm k at time t:

$$\mathbb{P}\bigg(\mu_k \le UCB_{k,t}\bigg) \ge 1 - \delta.$$

- Play $\pi_t \in \arg \max_{k=1,...,K} UCB_{k,t}$.
- Example: $UCB_{k,t}=\widehat{\mu}_{k,t}+R\sqrt{\frac{\log 1/\delta_t}{2N_k(t-1)}}$ with $\delta_t=1/t^3$ for R-sub-Gaussian distributions.
 - \blacksquare $R = \frac{B}{2}$ if bounded in range of length B (Hoeffding lemma).
 - \blacksquare $R = \sigma$ if Gaussian of variance σ^2 .
 - In practice, use it as a hyperparameter to tune.
- $\checkmark R_T = \mathcal{O}(\log T)...$
- ✓ Balances exploration (low $N_k(t)$) and exploitation (high $\widehat{\mu}_{k,t}$).
- \star ... good asymptotic rate, but suboptimal factor (does not match the \mathcal{K}_{inf}) (sharper confidence intervals may help).

Linear Contextual Bandit

- Set of vectors $\mathcal{X}_t \subset \mathbb{R}^d$.
- Sequence of policies $X_t \in \mathcal{X}_t$ for t = 1, ..., T.
- Rewards

$$Y_t = X_t^{\top} \theta^* + \eta_t$$

where η_t is a centred sub-Gaussian noise (think $\mathcal{N}(0, \sigma^2)$).

Goal: minimise

$$\min_{(\pi_t)} R_T^{\pi} = \sum_{t=1}^T \max_{x \in \mathcal{X}_t} x^{\top} \theta^* - X_t^{\top} \theta^*.$$

- Partial feedback:
 - θ^* is not known.
 - lacksquare Observe only Y_t at time t, not the rewards that other vectors would have generated.

Applications

- Multi-armed bandits are a special case of linear bandits.
 - $\mathcal{X}_t = \{e_1, \dots, e_K\}$ where e_k is the k-th vector of the canonical basis of \mathcal{R}^K (d = K).
 - $\bullet \theta_k^* = \mu_k, \ Y_t = \mu_{\pi_t} + \eta_{\pi_t} \sim \nu_k \ \text{for} \ k = 1, \dots, K.$
- Personalised recommendation.
 - At time t, a user arrives with features $X_t \in \mathbb{R}^p$ and we make a recommendation π_t among K options (d = pK).
 - $Y_t = X_t^\top \theta_{\pi_t}^* + \eta_t.$
 - Example:
 - K movies.
 - \blacksquare X_t vector of previously liked genres.
 - Y_t likelihood that user watches movie π_t .

Linear UCB

Solve the regularised least-squares problem

$$\widehat{\theta}_t \in \arg\min_{\theta \in \mathbb{R}^d} \sum_{s=1}^{t-1} ||Y_s - X_s^\top \theta||_2^2 + \lambda ||\theta||_2^2.$$

■ Compute for $x \in \mathcal{X}_t$

$$UCB_t(x) = x^{\top} \widehat{\theta}_t + \beta_t(x).$$

- Play $\pi_t \in \arg\max_{x \in \mathcal{X}_t} UCB_t(x)$.
- $\checkmark R_T = \widetilde{\mathcal{O}}(d\sqrt{T})...$
- \nearrow ... for a suitable choice of confidence bound β .

(- (미) (- (리) (- (리) (리) (리) (리) (리)

Linear UCB in practice

- $V_t = \sum_{s=1}^{t-1} X_s X_s^\top + \lambda I_d.$
- V_t^{-1} obtained from V_{t-1}^{-1} in $\mathcal{O}(d^2)$ (Sherman-Morrison).
- $\widehat{\theta}_t = V_t^{-1} \sum_{s=1}^{t-1} Y_s X_s.$
- \bullet $(\eta_t)_{t=1,...,T}$ R-sub-Gaussian process.
- $\forall x \in \mathcal{X}_t, \|x\|_2 \le L.$
- $\|\theta^*\|_2 \le S.$
- $\lambda \geq 1$.
- $\beta_t(x) = \left(\sqrt{\lambda}S + R\sqrt{d\log\left(1 + \frac{tL^2}{d\lambda}\right) + 2\log\frac{1}{\delta}}\right)\sqrt{x^\top V_t^{-1}x}.$
- In practice : $\beta_t(x) = \beta_0 \sqrt{x^\top V_t^{-1} x}$ where β_0 is a hyperparameter to tune.

