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1 Questions from the audience

You can write below the questions that were asked during the session and see later if you can
remember/re-derive the answers.
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2 Problem - Structured and unstructured bandits

Depending on your choice, please refer to the jupyter notebook or the python files.
We study the classical multi-armed bandit problem specified by a set of real-valued Gaussian

distributions (νa)a∈A with means (µa)a∈A ∈ RA and unitary variances, where A is a finite set of
arms. We denote µ∗ = max{µa|a ∈ A}.

At each time t ≥ 1, an agent must choose an arm at ∈ A, based only on the past. A reward Xt

is drawn from the chosen distribution µat and observed by the agent. The goal of the agent is to
maximize the expected sum of rewards received over time, or equivalently to minimize regret with
respect to the strategy constantly receiving the highest mean reward.

2.1 Bandit Environement

On a Gaussian bandit instance, the Lai and Robbins lower bound tells us that the regret is asymp-
totically no smaller than (∑

a∈A

∆a

KL(µa, µ∗)

)
log(T ),

where KL(µa, µ∗) is the KL-divergence between the Gaussian distribution of mean µa and the
Gaussian distribution of mean µ∗ (unitary variances). The constant in front of the log(T ) may be
called the complexity of the bandit problem.

Bonus Question Derive the formula of the Kullback-Leibler divergences between two Gaussian
distributions.

For all arm a ∈ A, for all time step t ≥ 1, the empirical mean of arm a at time step t is

µ̂a(t) =
1

Na(t)

t∑
s=1

1{as=a}Xs, if Na(t) > 0, 0 otherwise,

where Na(t) =
t∑

s=1
1{as=a} is the number of pulls of arm a at time t. We write µ̂∗(t) = max

a∈A
µ̂a(t).

IMED strategy - Honda and Takemura (2011)
For an arm a ∈ A and a time step t ≥ 1, the IMED index is defined as follows:

Ia(t) = Na(t) KL(µ̂a(t), µ̂∗(t)) + log(Na(t)) .

This quantity can be seen as a transportation cost for “moving” a sub-optimal arm to an
optimal one, plus exploration terms (the logarithms of the numbers of pulls). When an optimal
arm is considered, the transportation cost is null and it remains only the exploration part. Note
that, as stated in Honda and Takemura (2011), Ia(t) is an index in a weak sense since it cannot
be determined only by samples from the arm a but also uses empirical means of current optimal
arms.

IMED is the strategy that consists in pulling an arm with minimal index at each time step:

at+1 = argmin
a∈A

Ia(t) .

2.1.1 Solving the exercise: How to?

Please try to refer to the jupyter notebook TD2.ipynb or the html version of the notebook. Oth-
erwise, you should undersand and execute TD2.py. This code depends on the forban module.

1. Read, understand and execute the how to.ipynb notebook.

2. Read, understand and execute the beginning of TD2.ipynb.

2.2 Upper Confidence Bound algorithms

Question 1 Using the SequentiAlg class, implement the UCB algorithm.
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Question 2 Using the Experiment class, run experiments on (at least) two bandit problems of
your choice.

Question 3 Comment the plots (suboptimality gaps, number of arms...).

2.3 Unimodal Bandit

We assume that A = {0, . . . , A− 1} , A ≥ 1, and µ :

{
A → R
a 7→ µa

is unimodal. That is, there exists

a∗∈A such that µ[[0,a∗]] is increasing and µ[[a∗,A]] is decreasing. It is further assumed that for each
arm a, νa is a Gaussian distribution N (µa, 1) , where µa ∈ R is the mean of the distribution νa.
We denote the structured set of Gaussian unimodal bandit distributions by

Dunimodal =

{
ν = (νa)a∈A : ∀a∈A, νa ∼ N (µa, 1) with µa∈R and µ is unimodal

}
.

On a Gaussian unimodal bandit instance, the Lai and Robbins lower bound tells us that the
regret is asymptotically no smaller than ∑

a∈Va∗

∆a

KL(µa, µ∗)

 log(T ),

where Va∗ = {a∗ − 1, a∗ + 1} ∩ A and KL(µa, µ∗) is the KL-divergence between the Gaussian
distribution of mean µa and the Gaussian distribution of mean µ∗ (variances equal to 1). The
constant in front of the log(T ) may be called the unimodal complexity of the bandit problem.

2.3.1 Computing regret lower bound for a unimodal bandit instance

Question 4 Write a function that computes the complexity of a unimodal Gaussian bandit
instance.

Question 5 Write a function that generates at random a unimodal Gaussian bandit instance.

Question 6 On a unimodal Gaussian bandit instance ν of your choice, add the theoretical lower
bound t 7→ Cunimodal(ν) log(t) where Cunimodal(ν) is the unimodal complexity of a unimodal bandit
problem to the regret curve of IMED. Add a plot with experiments of your choice using the previous
algorithms.

2.3.2 IMED for Unimodal Bandit

For an arm a ∈ A and a time step t ≥ 1, the IMED4UB index is defined as follows:

Ia(t) = Na(t) KL(µ̂a(t), µ̂∗(t)) + log(Na(t)) .

IMED4UB is the strategy that consists in pulling an arm in the neighbourhood of the current
optimal arm (also called leader arm, the one with the largest empirical mean) with minimal index
at each time step:

at+1 = arg min
a∈Vâ∗(t)∪a∗

Ia(t) .

Question 7 Write a class that provides an IMED type strategy for unimodal bandit inspired
from the regret lower bound for unimodal structure.
Experiment like it was done in part 1. You can comment and add experiments of your choice.
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2.4 Lipschitz Bandit

We assume that A = {0, . . . , A− 1} , A ≥ 1, and µ :

{
A → R
a 7→ µa

is k-Lipschitz, where is k is

assumed to be known. That is, for all a, a′ ∈A, |µa − µa′ | ≤ k×|a − a′|. It is further assumed
that for each arm a, νa is a Gaussian distribution N (µa, 1) , where µa ∈ R is the mean of the
distribution νa. We denote the structured set of Gaussian k-Lipschitz bandit distributions by

Dk-Lip =

{
ν = (νa)a∈A : ∀a∈A, νa ∼ N (µa, 1) with µa∈R and µ is k-Lipschitz

}
.

On a Gaussian k-Lipschitz bandit instance, the lower bounds tell us that the numbers of pulls
satisfy asymptotically the following inequalities

∀a ∈ A,
∑
a′∈Va

KL(µa′ , µ∗−k|a−a′|) Na′(T ) ≥ log(T ) ,

where Va =
{
a′∈A : µa′<µ∗−k|a−a′|

}
and KL(µ, µ′) is the KL-divergence between the Gaussian

distribution of mean µ and the Gaussian distribution of mean µ′ (unitary variances). The constant
Ck-Lip(ν) resulting from the following linear programming problem may be called the Lipschitz
complexity of the bandit problem:

Ck-Lip(ν) = min

{∑
a∈A

(µ∗ − µa)na : n ∈ RA+ s.t. ∀a ∈ A,
∑
a′∈Va

KL(µa′ , µ∗−k|a−a′|) na′ ≥ 1

}
.

2.4.1 Computing regret lower bound for a k-Lipschitz bandit instance

Question 8 Write a function that computes the complexity of a k-Lipschitz bandit instance.

Question 9 Write a function that generates at random a Lipschitz Gaussian bandit instance.

Question 10 On a k-Lipschitz Gaussian bandit instance ν of your choice, add the theoretical
lower bound t 7→ Ck−Lip(ν) log(t) where Ck-Lip(ν) is the lipschitz complexity of a lipschitz bandit
problem to the regret curve of IMED.

2.4.2 IMED for Lipschitz Bandit

For an arm a ∈ A and a time step t ≥ 1, the IMED4LB index is defined as foollows:

Ia(t) =
∑

a′∈V̂a(t)

Na′(t) KL(µ̂a′(t), µ̂∗(t)− k|a− a′|) + log(Na′(t)) ,

where V̂a(t) =
{
a′∈A : µ̂a′(t)≤ µ̂∗(t)−k|a−a′|

}
.

IMED4LB is the strategy that consists in pulling an arm with minimal index at each time step:

at+1 = arg min
a∈Vâ∗(t)

Ia(t) .

Question 11 Write a class that provides an IMED type strategy for Lipschitz bandit inspired
from the lower bounds on the number of pulls for Lipschitz structure.
Experiment like it was done in part 1. You can comment and add experiments of your choice.

2.5 Linear Bandit

Let us consider the discretisation A = {0, . . . , A− 1} , A ≥ 1 of the space X =

{
xa =

a

A
, a ∈

A
}
⊂ [0, 1]. Let us consider the parameter space Θ = B(O, 1) ⊂ Rd, d = 2p + 1, p ≥ 1, and

the related function space FΘ =

{
fθ : x ∈ X 7→ θTφ(x) , θ ∈ Θ

}
, where ∀x ∈ X , φ(x) =

(1, cos(2πx), sin(2πx), . . . , cos(2πpx), sin(2πpx)). It is further assumed that for all parameter θ ∈
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Θ, for all arm a ∈ A, νa(θ) is a Gaussian distribution N (µa(θ), 1) , where µa(θ) = fθ(xa) is the
mean of the distribution νa(θ). We denote the structured set of Linear bandit distributions by

DΘ =

{
ν(θ) = (νa(θ))a∈A , θ ∈ Θ

}
.

Question 12 Write a function that generates at random a Linear Gaussian bandit instance.

2.5.1 The LinearUCB algorithm

Question 13 Implement the linear UCB algorithm: LinearUCB(λ = 1, δ = 0.05 , σ2 = 1).

2.5.2 The Linear IMED algorithm

For an arm a ∈ A and a time step t ≥ 1, the LinearIMED index is defined as follows:

Ia(t) = N eff
a (t)

(
maxx∈X f̂t,λ(x)− f̂t,λ(xa)

)2

2
+ log

(
N eff
a (t)

)
,

where f̂t,λ is the current estimate of f and N eff
a (t) =

(
||φ(xa)||2

G−1
t

)−1

, the effective number of pull

of arms a. Gt is the current Gramm matrix (used for the regression).
LinearIMED is the strategy that consists in pulling an arm with minimal index at each time

step:
at+1 = argmin

a∈A
Ia(t) .

Question 14 Write a class that provides an IMED type strategy for linear bandit inspired from
the lower bounds on the number of pulls for Linear structure.

Question 15 Compare LinearUCB and LinearIMED.
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